Upload folder using huggingface_hub
Browse files- OUTPUTS/cifnet-18-tiny-lr0.01-attention/all_results.json +1 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-attention/config.json +67 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-attention/image_classification_no_trainer/1712011059.4757543/events.out.tfevents.1712011059.ids-ws-06.3573944.1 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-attention/image_classification_no_trainer/1712011059.478225/hparams.yml +30 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-attention/image_classification_no_trainer/accuracy_accuracy/events.out.tfevents.1712011313.ids-ws-06.3573944.2 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-attention/image_classification_no_trainer/events.out.tfevents.1712011059.ids-ws-06.3573944.0 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-attention/model.safetensors +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-attention/preprocessor_config.json +37 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/all_results.json +1 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/config.json +60 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/image_classification_no_trainer/1712011004.1205187/events.out.tfevents.1712011004.ids-ws-06.3571203.1 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/image_classification_no_trainer/1712011004.1220295/hparams.yml +30 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/image_classification_no_trainer/accuracy_accuracy/events.out.tfevents.1712011108.ids-ws-06.3571203.2 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/image_classification_no_trainer/events.out.tfevents.1712011004.ids-ws-06.3571203.0 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/model.safetensors +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/preprocessor_config.json +37 -0
- OUTPUTS/cifnet-18-tiny-lr0.1-baseline/all_results.json +1 -0
- OUTPUTS/cifnet-18-tiny-lr0.1-baseline/config.json +58 -0
- OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/1711990816.257815/events.out.tfevents.1711990816.ids-ws-06.2843209.1 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/1711990816.2593696/hparams.yml +30 -0
- OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/accuracy_accuracy/events.out.tfevents.1711990897.ids-ws-06.2843209.2 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/events.out.tfevents.1711990816.ids-ws-06.2843209.0 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/events.out.tfevents.1712005878.ids-ws-06.3270132.0 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/events.out.tfevents.1712005910.ids-ws-06.3270878.0 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/events.out.tfevents.1712005974.ids-ws-06.3271814.0 +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.1-baseline/model.safetensors +3 -0
- OUTPUTS/cifnet-18-tiny-lr0.1-baseline/preprocessor_config.json +37 -0
- OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/all_results.json +1 -0
- OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/config.json +67 -0
- OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/image_classification_no_trainer/1712166496.7234852/events.out.tfevents.1712166496.ids-ws-06.1309582.1 +3 -0
- OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/image_classification_no_trainer/1712166496.724743/hparams.yml +30 -0
- OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/image_classification_no_trainer/accuracy_accuracy/events.out.tfevents.1712166664.ids-ws-06.1309582.2 +3 -0
- OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/image_classification_no_trainer/events.out.tfevents.1712166496.ids-ws-06.1309582.0 +3 -0
- OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/model.safetensors +3 -0
- OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/preprocessor_config.json +37 -0
- OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/test_model.log +244 -0
OUTPUTS/cifnet-18-tiny-lr0.01-attention/all_results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eval_accuracy": 0.5882666666666667}
|
OUTPUTS/cifnet-18-tiny-lr0.01-attention/config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/resnet-18",
|
3 |
+
"activation": "silu",
|
4 |
+
"architectures": [
|
5 |
+
"CifNetForImageClassification"
|
6 |
+
],
|
7 |
+
"attention_kwargs": {
|
8 |
+
"attention_bias": true,
|
9 |
+
"attention_dropout": 0.1,
|
10 |
+
"attn_channels": 8,
|
11 |
+
"attn_kernel_size": 1,
|
12 |
+
"attn_stride": 1,
|
13 |
+
"max_position_embeddings": 784,
|
14 |
+
"num_heads": 4
|
15 |
+
},
|
16 |
+
"bottleneck_kwargs": {},
|
17 |
+
"depths": [
|
18 |
+
2,
|
19 |
+
2,
|
20 |
+
2,
|
21 |
+
2
|
22 |
+
],
|
23 |
+
"embedding_kwargs": {
|
24 |
+
"embedding_kernel_size_1": 7,
|
25 |
+
"embedding_kernel_size_2": 2,
|
26 |
+
"embedding_size": 64,
|
27 |
+
"embedding_stride_1": 2,
|
28 |
+
"embedding_stride_2": 2
|
29 |
+
},
|
30 |
+
"hidden_sizes": [
|
31 |
+
128,
|
32 |
+
128,
|
33 |
+
128,
|
34 |
+
128
|
35 |
+
],
|
36 |
+
"id2label": {
|
37 |
+
"0": "airplane",
|
38 |
+
"1": "automobile",
|
39 |
+
"2": "bird",
|
40 |
+
"3": "cat",
|
41 |
+
"4": "deer",
|
42 |
+
"5": "dog",
|
43 |
+
"6": "frog",
|
44 |
+
"7": "horse",
|
45 |
+
"8": "ship",
|
46 |
+
"9": "truck"
|
47 |
+
},
|
48 |
+
"label2id": {
|
49 |
+
"airplane": "0",
|
50 |
+
"automobile": "1",
|
51 |
+
"bird": "2",
|
52 |
+
"cat": "3",
|
53 |
+
"deer": "4",
|
54 |
+
"dog": "5",
|
55 |
+
"frog": "6",
|
56 |
+
"horse": "7",
|
57 |
+
"ship": "8",
|
58 |
+
"truck": "9"
|
59 |
+
},
|
60 |
+
"layer_type": "attention",
|
61 |
+
"main_kernel_size": 3,
|
62 |
+
"model_type": "resnet",
|
63 |
+
"num_channels": 3,
|
64 |
+
"problem_type": "single_label_classification",
|
65 |
+
"torch_dtype": "float32",
|
66 |
+
"transformers_version": "4.39.2"
|
67 |
+
}
|
OUTPUTS/cifnet-18-tiny-lr0.01-attention/image_classification_no_trainer/1712011059.4757543/events.out.tfevents.1712011059.ids-ws-06.3573944.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e78aa7985cd8002a5736ee3f597751cf153da26720997318a5cc03ba2e48cc0
|
3 |
+
size 1527
|
OUTPUTS/cifnet-18-tiny-lr0.01-attention/image_classification_no_trainer/1712011059.478225/hparams.yml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
checkpointing_steps: null
|
2 |
+
dataset_name: cifar10
|
3 |
+
gradient_accumulation_steps: 1
|
4 |
+
hub_model_id: null
|
5 |
+
hub_token: null
|
6 |
+
ignore_mismatched_sizes: false
|
7 |
+
image_column_name: img
|
8 |
+
label_column_name: label
|
9 |
+
learning_rate: 0.01
|
10 |
+
lr_scheduler_type: cosine
|
11 |
+
max_eval_samples: null
|
12 |
+
max_train_samples: null
|
13 |
+
max_train_steps: 64000
|
14 |
+
model_name_or_path: MODELS/cifnet-18-tiny_attention
|
15 |
+
num_train_epochs: 193
|
16 |
+
num_warmup_steps: 6400
|
17 |
+
num_workers: 32
|
18 |
+
output_dir: OUTPUTS/cifnet-18-tiny-lr0.01-attention
|
19 |
+
per_device_eval_batch_size: 8
|
20 |
+
per_device_train_batch_size: 128
|
21 |
+
push_to_hub: false
|
22 |
+
report_to: tensorboard
|
23 |
+
resume_from_checkpoint: null
|
24 |
+
seed: 42
|
25 |
+
train_dir: null
|
26 |
+
train_val_split: 0.15
|
27 |
+
trust_remote_code: false
|
28 |
+
validation_dir: null
|
29 |
+
weight_decay: 0.0
|
30 |
+
with_tracking: true
|
OUTPUTS/cifnet-18-tiny-lr0.01-attention/image_classification_no_trainer/accuracy_accuracy/events.out.tfevents.1712011313.ids-ws-06.3573944.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd1d30768486cf990d9c456f8835bfd8e0377d4b915ba6130a672ec506e7e3f0
|
3 |
+
size 9303
|
OUTPUTS/cifnet-18-tiny-lr0.01-attention/image_classification_no_trainer/events.out.tfevents.1712011059.ids-ws-06.3573944.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1297be01c0c58a7253886eb8f4dddf1b936668db78fea5bb51bc5acb5c4dc9c2
|
3 |
+
size 7097748
|
OUTPUTS/cifnet-18-tiny-lr0.01-attention/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91cea81fd92b0f4a9a9b227446a74d0d849fac57f8471db014e3769f86c5a53a
|
3 |
+
size 8558960
|
OUTPUTS/cifnet-18-tiny-lr0.01-attention/preprocessor_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"crop_pct",
|
7 |
+
"resample",
|
8 |
+
"do_rescale",
|
9 |
+
"rescale_factor",
|
10 |
+
"do_normalize",
|
11 |
+
"image_mean",
|
12 |
+
"image_std",
|
13 |
+
"return_tensors",
|
14 |
+
"data_format",
|
15 |
+
"input_data_format"
|
16 |
+
],
|
17 |
+
"crop_pct": 0.875,
|
18 |
+
"do_normalize": true,
|
19 |
+
"do_rescale": true,
|
20 |
+
"do_resize": true,
|
21 |
+
"image_mean": [
|
22 |
+
0.485,
|
23 |
+
0.456,
|
24 |
+
0.406
|
25 |
+
],
|
26 |
+
"image_processor_type": "ConvNextImageProcessor",
|
27 |
+
"image_std": [
|
28 |
+
0.229,
|
29 |
+
0.224,
|
30 |
+
0.225
|
31 |
+
],
|
32 |
+
"resample": 3,
|
33 |
+
"rescale_factor": 0.00392156862745098,
|
34 |
+
"size": {
|
35 |
+
"shortest_edge": 224
|
36 |
+
}
|
37 |
+
}
|
OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/all_results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eval_accuracy": 0.8850666666666667}
|
OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/config.json
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/resnet-18",
|
3 |
+
"activation": "silu",
|
4 |
+
"architectures": [
|
5 |
+
"CifNetForImageClassification"
|
6 |
+
],
|
7 |
+
"bottleneck_kwargs": {
|
8 |
+
"reduction": 2
|
9 |
+
},
|
10 |
+
"depths": [
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2,
|
14 |
+
2
|
15 |
+
],
|
16 |
+
"embedding_kwargs": {
|
17 |
+
"embedding_kernel_size_1": 7,
|
18 |
+
"embedding_kernel_size_2": 2,
|
19 |
+
"embedding_size": 64,
|
20 |
+
"embedding_stride_1": 2,
|
21 |
+
"embedding_stride_2": 2
|
22 |
+
},
|
23 |
+
"hidden_sizes": [
|
24 |
+
128,
|
25 |
+
128,
|
26 |
+
128,
|
27 |
+
128
|
28 |
+
],
|
29 |
+
"id2label": {
|
30 |
+
"0": "airplane",
|
31 |
+
"1": "automobile",
|
32 |
+
"2": "bird",
|
33 |
+
"3": "cat",
|
34 |
+
"4": "deer",
|
35 |
+
"5": "dog",
|
36 |
+
"6": "frog",
|
37 |
+
"7": "horse",
|
38 |
+
"8": "ship",
|
39 |
+
"9": "truck"
|
40 |
+
},
|
41 |
+
"label2id": {
|
42 |
+
"airplane": "0",
|
43 |
+
"automobile": "1",
|
44 |
+
"bird": "2",
|
45 |
+
"cat": "3",
|
46 |
+
"deer": "4",
|
47 |
+
"dog": "5",
|
48 |
+
"frog": "6",
|
49 |
+
"horse": "7",
|
50 |
+
"ship": "8",
|
51 |
+
"truck": "9"
|
52 |
+
},
|
53 |
+
"layer_type": "bottleneck",
|
54 |
+
"main_kernel_size": 3,
|
55 |
+
"model_type": "resnet",
|
56 |
+
"num_channels": 3,
|
57 |
+
"problem_type": "single_label_classification",
|
58 |
+
"torch_dtype": "float32",
|
59 |
+
"transformers_version": "4.39.2"
|
60 |
+
}
|
OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/image_classification_no_trainer/1712011004.1205187/events.out.tfevents.1712011004.ids-ws-06.3571203.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fa7f8e0970a035148480c2ea26a2b5f3b52a30d30f0b6c65174a7f2e8c66c9d
|
3 |
+
size 1529
|
OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/image_classification_no_trainer/1712011004.1220295/hparams.yml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
checkpointing_steps: null
|
2 |
+
dataset_name: cifar10
|
3 |
+
gradient_accumulation_steps: 1
|
4 |
+
hub_model_id: null
|
5 |
+
hub_token: null
|
6 |
+
ignore_mismatched_sizes: false
|
7 |
+
image_column_name: img
|
8 |
+
label_column_name: label
|
9 |
+
learning_rate: 0.01
|
10 |
+
lr_scheduler_type: cosine
|
11 |
+
max_eval_samples: null
|
12 |
+
max_train_samples: null
|
13 |
+
max_train_steps: 64000
|
14 |
+
model_name_or_path: MODELS/cifnet-18-tiny_bottleneck
|
15 |
+
num_train_epochs: 193
|
16 |
+
num_warmup_steps: 6400
|
17 |
+
num_workers: 32
|
18 |
+
output_dir: OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck
|
19 |
+
per_device_eval_batch_size: 8
|
20 |
+
per_device_train_batch_size: 128
|
21 |
+
push_to_hub: false
|
22 |
+
report_to: tensorboard
|
23 |
+
resume_from_checkpoint: null
|
24 |
+
seed: 42
|
25 |
+
train_dir: null
|
26 |
+
train_val_split: 0.15
|
27 |
+
trust_remote_code: false
|
28 |
+
validation_dir: null
|
29 |
+
weight_decay: 0.0
|
30 |
+
with_tracking: true
|
OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/image_classification_no_trainer/accuracy_accuracy/events.out.tfevents.1712011108.ids-ws-06.3571203.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b862c1881b72d740c714a4012bcff65ce8802c94fb4e24934002c572177ad3b
|
3 |
+
size 9303
|
OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/image_classification_no_trainer/events.out.tfevents.1712011004.ids-ws-06.3571203.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c3afc00d53b3e89aa960a20cb90c030a42cfa8d5313dd03b8176c719379aea1
|
3 |
+
size 7097748
|
OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2eae9cef23d23e579a121ddde3d08a00293aaa095704518d2c94d26cbf9b273
|
3 |
+
size 1599776
|
OUTPUTS/cifnet-18-tiny-lr0.01-bottleneck/preprocessor_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"crop_pct",
|
7 |
+
"resample",
|
8 |
+
"do_rescale",
|
9 |
+
"rescale_factor",
|
10 |
+
"do_normalize",
|
11 |
+
"image_mean",
|
12 |
+
"image_std",
|
13 |
+
"return_tensors",
|
14 |
+
"data_format",
|
15 |
+
"input_data_format"
|
16 |
+
],
|
17 |
+
"crop_pct": 0.875,
|
18 |
+
"do_normalize": true,
|
19 |
+
"do_rescale": true,
|
20 |
+
"do_resize": true,
|
21 |
+
"image_mean": [
|
22 |
+
0.485,
|
23 |
+
0.456,
|
24 |
+
0.406
|
25 |
+
],
|
26 |
+
"image_processor_type": "ConvNextImageProcessor",
|
27 |
+
"image_std": [
|
28 |
+
0.229,
|
29 |
+
0.224,
|
30 |
+
0.225
|
31 |
+
],
|
32 |
+
"resample": 3,
|
33 |
+
"rescale_factor": 0.00392156862745098,
|
34 |
+
"size": {
|
35 |
+
"shortest_edge": 224
|
36 |
+
}
|
37 |
+
}
|
OUTPUTS/cifnet-18-tiny-lr0.1-baseline/all_results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eval_accuracy": 0.9098666666666667}
|
OUTPUTS/cifnet-18-tiny-lr0.1-baseline/config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/resnet-18",
|
3 |
+
"activation": "silu",
|
4 |
+
"architectures": [
|
5 |
+
"CifNetForImageClassification"
|
6 |
+
],
|
7 |
+
"bottleneck_kwargs": {},
|
8 |
+
"depths": [
|
9 |
+
2,
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2
|
13 |
+
],
|
14 |
+
"embedding_kwargs": {
|
15 |
+
"embedding_kernel_size_1": 7,
|
16 |
+
"embedding_kernel_size_2": 2,
|
17 |
+
"embedding_size": 64,
|
18 |
+
"embedding_stride_1": 2,
|
19 |
+
"embedding_stride_2": 2
|
20 |
+
},
|
21 |
+
"hidden_sizes": [
|
22 |
+
128,
|
23 |
+
128,
|
24 |
+
128,
|
25 |
+
128
|
26 |
+
],
|
27 |
+
"id2label": {
|
28 |
+
"0": "airplane",
|
29 |
+
"1": "automobile",
|
30 |
+
"2": "bird",
|
31 |
+
"3": "cat",
|
32 |
+
"4": "deer",
|
33 |
+
"5": "dog",
|
34 |
+
"6": "frog",
|
35 |
+
"7": "horse",
|
36 |
+
"8": "ship",
|
37 |
+
"9": "truck"
|
38 |
+
},
|
39 |
+
"label2id": {
|
40 |
+
"airplane": "0",
|
41 |
+
"automobile": "1",
|
42 |
+
"bird": "2",
|
43 |
+
"cat": "3",
|
44 |
+
"deer": "4",
|
45 |
+
"dog": "5",
|
46 |
+
"frog": "6",
|
47 |
+
"horse": "7",
|
48 |
+
"ship": "8",
|
49 |
+
"truck": "9"
|
50 |
+
},
|
51 |
+
"layer_type": "basic",
|
52 |
+
"main_kernel_size": 3,
|
53 |
+
"model_type": "resnet",
|
54 |
+
"num_channels": 3,
|
55 |
+
"problem_type": "single_label_classification",
|
56 |
+
"torch_dtype": "float32",
|
57 |
+
"transformers_version": "4.39.2"
|
58 |
+
}
|
OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/1711990816.257815/events.out.tfevents.1711990816.ids-ws-06.2843209.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a93f5edcaf2926a4d524fec33a0a0cbe2c52ed4b941073b6b525159e7dc31f0
|
3 |
+
size 1515
|
OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/1711990816.2593696/hparams.yml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
checkpointing_steps: null
|
2 |
+
dataset_name: cifar10
|
3 |
+
gradient_accumulation_steps: 1
|
4 |
+
hub_model_id: null
|
5 |
+
hub_token: null
|
6 |
+
ignore_mismatched_sizes: false
|
7 |
+
image_column_name: img
|
8 |
+
label_column_name: label
|
9 |
+
learning_rate: 0.1
|
10 |
+
lr_scheduler_type: cosine
|
11 |
+
max_eval_samples: null
|
12 |
+
max_train_samples: null
|
13 |
+
max_train_steps: 64000
|
14 |
+
model_name_or_path: MODELS/cifnet-18-tiny
|
15 |
+
num_train_epochs: 193
|
16 |
+
num_warmup_steps: 6400
|
17 |
+
num_workers: 8
|
18 |
+
output_dir: OUTPUTS/cifnet-18-tiny-lr0.1-baseline
|
19 |
+
per_device_eval_batch_size: 8
|
20 |
+
per_device_train_batch_size: 64
|
21 |
+
push_to_hub: false
|
22 |
+
report_to: tensorboard
|
23 |
+
resume_from_checkpoint: null
|
24 |
+
seed: 42
|
25 |
+
train_dir: null
|
26 |
+
train_val_split: 0.15
|
27 |
+
trust_remote_code: false
|
28 |
+
validation_dir: null
|
29 |
+
weight_decay: 0.0
|
30 |
+
with_tracking: true
|
OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/accuracy_accuracy/events.out.tfevents.1711990897.ids-ws-06.2843209.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0fae188b2abc54739437bb9e00936e6e5e100a67d09985c5d883f172266c878
|
3 |
+
size 9303
|
OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/events.out.tfevents.1711990816.ids-ws-06.2843209.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b69c4138aa6e5c4f6fc9b73297938dd01c8b91fc4612f41203a91b17736ea16
|
3 |
+
size 7097748
|
OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/events.out.tfevents.1712005878.ids-ws-06.3270132.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9192baa8ad3c9b782adb099cffa391cc790bf488e8c72444bfeb0c0e8eac8ddf
|
3 |
+
size 5224
|
OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/events.out.tfevents.1712005910.ids-ws-06.3270878.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5e863751f1f853cf1b8b12baa014129233e18414db88999a94687f642518ecd
|
3 |
+
size 5331
|
OUTPUTS/cifnet-18-tiny-lr0.1-baseline/image_classification_no_trainer/events.out.tfevents.1712005974.ids-ws-06.3271814.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:885c493ef11f32ff32116742372f067a841b42b4d0b2ceaade47a0e2ac2fb468
|
3 |
+
size 8541
|
OUTPUTS/cifnet-18-tiny-lr0.1-baseline/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7cb9e7fb91383489b4d2d42d418250d1cd7cdafbcefd3b4d922eaa0d3797991
|
3 |
+
size 8082536
|
OUTPUTS/cifnet-18-tiny-lr0.1-baseline/preprocessor_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"crop_pct",
|
7 |
+
"resample",
|
8 |
+
"do_rescale",
|
9 |
+
"rescale_factor",
|
10 |
+
"do_normalize",
|
11 |
+
"image_mean",
|
12 |
+
"image_std",
|
13 |
+
"return_tensors",
|
14 |
+
"data_format",
|
15 |
+
"input_data_format"
|
16 |
+
],
|
17 |
+
"crop_pct": 0.875,
|
18 |
+
"do_normalize": true,
|
19 |
+
"do_rescale": true,
|
20 |
+
"do_resize": true,
|
21 |
+
"image_mean": [
|
22 |
+
0.485,
|
23 |
+
0.456,
|
24 |
+
0.406
|
25 |
+
],
|
26 |
+
"image_processor_type": "ConvNextImageProcessor",
|
27 |
+
"image_std": [
|
28 |
+
0.229,
|
29 |
+
0.224,
|
30 |
+
0.225
|
31 |
+
],
|
32 |
+
"resample": 3,
|
33 |
+
"rescale_factor": 0.00392156862745098,
|
34 |
+
"size": {
|
35 |
+
"shortest_edge": 224
|
36 |
+
}
|
37 |
+
}
|
OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/all_results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eval_accuracy": 0.8581333333333333}
|
OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/resnet-18",
|
3 |
+
"activation": "silu",
|
4 |
+
"architectures": [
|
5 |
+
"CifNetForImageClassification"
|
6 |
+
],
|
7 |
+
"attention_kwargs": {
|
8 |
+
"attention_bias": true,
|
9 |
+
"attention_dropout": 0.1,
|
10 |
+
"attn_channels": 8,
|
11 |
+
"attn_kernel_size": 1,
|
12 |
+
"attn_stride": 1,
|
13 |
+
"max_position_embeddings": 784,
|
14 |
+
"num_heads": 4
|
15 |
+
},
|
16 |
+
"bottleneck_kwargs": {},
|
17 |
+
"depths": [
|
18 |
+
2,
|
19 |
+
2,
|
20 |
+
2,
|
21 |
+
2
|
22 |
+
],
|
23 |
+
"embedding_kwargs": {
|
24 |
+
"embedding_kernel_size_1": 7,
|
25 |
+
"embedding_kernel_size_2": 2,
|
26 |
+
"embedding_size": 64,
|
27 |
+
"embedding_stride_1": 2,
|
28 |
+
"embedding_stride_2": 2
|
29 |
+
},
|
30 |
+
"hidden_sizes": [
|
31 |
+
128,
|
32 |
+
128,
|
33 |
+
128,
|
34 |
+
128
|
35 |
+
],
|
36 |
+
"id2label": {
|
37 |
+
"0": "airplane",
|
38 |
+
"1": "automobile",
|
39 |
+
"2": "bird",
|
40 |
+
"3": "cat",
|
41 |
+
"4": "deer",
|
42 |
+
"5": "dog",
|
43 |
+
"6": "frog",
|
44 |
+
"7": "horse",
|
45 |
+
"8": "ship",
|
46 |
+
"9": "truck"
|
47 |
+
},
|
48 |
+
"label2id": {
|
49 |
+
"airplane": "0",
|
50 |
+
"automobile": "1",
|
51 |
+
"bird": "2",
|
52 |
+
"cat": "3",
|
53 |
+
"deer": "4",
|
54 |
+
"dog": "5",
|
55 |
+
"frog": "6",
|
56 |
+
"horse": "7",
|
57 |
+
"ship": "8",
|
58 |
+
"truck": "9"
|
59 |
+
},
|
60 |
+
"layer_type": "attention",
|
61 |
+
"main_kernel_size": 3,
|
62 |
+
"model_type": "resnet",
|
63 |
+
"num_channels": 3,
|
64 |
+
"problem_type": "single_label_classification",
|
65 |
+
"torch_dtype": "float32",
|
66 |
+
"transformers_version": "4.39.2"
|
67 |
+
}
|
OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/image_classification_no_trainer/1712166496.7234852/events.out.tfevents.1712166496.ids-ws-06.1309582.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:851d6e980e9dc0742f553927b6f58f145a780c79883dcdad1ee7c6679fc04472
|
3 |
+
size 1538
|
OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/image_classification_no_trainer/1712166496.724743/hparams.yml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
checkpointing_steps: null
|
2 |
+
dataset_name: cifar10
|
3 |
+
gradient_accumulation_steps: 1
|
4 |
+
hub_model_id: null
|
5 |
+
hub_token: null
|
6 |
+
ignore_mismatched_sizes: false
|
7 |
+
image_column_name: img
|
8 |
+
label_column_name: label
|
9 |
+
learning_rate: 0.001
|
10 |
+
lr_scheduler_type: cosine
|
11 |
+
max_eval_samples: null
|
12 |
+
max_train_samples: null
|
13 |
+
max_train_steps: 64000
|
14 |
+
model_name_or_path: MODELS/cifnet-18-tiny_attention
|
15 |
+
num_train_epochs: 193
|
16 |
+
num_warmup_steps: 6400
|
17 |
+
num_workers: 32
|
18 |
+
output_dir: OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm
|
19 |
+
per_device_eval_batch_size: 8
|
20 |
+
per_device_train_batch_size: 128
|
21 |
+
push_to_hub: false
|
22 |
+
report_to: tensorboard
|
23 |
+
resume_from_checkpoint: null
|
24 |
+
seed: 42
|
25 |
+
train_dir: null
|
26 |
+
train_val_split: 0.15
|
27 |
+
trust_remote_code: false
|
28 |
+
validation_dir: null
|
29 |
+
weight_decay: 0.0
|
30 |
+
with_tracking: true
|
OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/image_classification_no_trainer/accuracy_accuracy/events.out.tfevents.1712166664.ids-ws-06.1309582.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc8b387e8a97d4b9ee10ed2720744cdf37fe66ad7cfd1f3f337a74c80093d3fc
|
3 |
+
size 9303
|
OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/image_classification_no_trainer/events.out.tfevents.1712166496.ids-ws-06.1309582.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e796fb32756b831eaf9a9165a930afbfb4ce88cf21f5ad967cedc3e21f7c3c7
|
3 |
+
size 7097748
|
OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a5c087497fc208338ea1589b401818a3fe31bd68e0ee6df5026cb691977eb05
|
3 |
+
size 8558960
|
OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/preprocessor_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"crop_pct",
|
7 |
+
"resample",
|
8 |
+
"do_rescale",
|
9 |
+
"rescale_factor",
|
10 |
+
"do_normalize",
|
11 |
+
"image_mean",
|
12 |
+
"image_std",
|
13 |
+
"return_tensors",
|
14 |
+
"data_format",
|
15 |
+
"input_data_format"
|
16 |
+
],
|
17 |
+
"crop_pct": 0.875,
|
18 |
+
"do_normalize": true,
|
19 |
+
"do_rescale": true,
|
20 |
+
"do_resize": true,
|
21 |
+
"image_mean": [
|
22 |
+
0.485,
|
23 |
+
0.456,
|
24 |
+
0.406
|
25 |
+
],
|
26 |
+
"image_processor_type": "ConvNextImageProcessor",
|
27 |
+
"image_std": [
|
28 |
+
0.229,
|
29 |
+
0.224,
|
30 |
+
0.225
|
31 |
+
],
|
32 |
+
"resample": 3,
|
33 |
+
"rescale_factor": 0.00392156862745098,
|
34 |
+
"size": {
|
35 |
+
"shortest_edge": 224
|
36 |
+
}
|
37 |
+
}
|
OUTPUTS/cifnet-18-tiny_attention--lr0.001--prenorm/test_model.log
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CifNetForImageClassification(
|
2 |
+
(resnet): CifNetModel(
|
3 |
+
(embedder): CifNetEmbeddings(
|
4 |
+
(embedder): CifNetConvLayer(
|
5 |
+
(convolution): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
|
6 |
+
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
7 |
+
(activation): SiLU()
|
8 |
+
)
|
9 |
+
(pooler): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
10 |
+
)
|
11 |
+
(encoder): CifNetEncoder(
|
12 |
+
(stages): ModuleList(
|
13 |
+
(0): CifNetStage(
|
14 |
+
(layers): Sequential(
|
15 |
+
(0): CifNetSelfAttentionLayer(
|
16 |
+
(shortcut): CifNetShortCut(
|
17 |
+
(convolution): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
|
18 |
+
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
19 |
+
)
|
20 |
+
(in_conv): CifNetConvLayer(
|
21 |
+
(convolution): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
22 |
+
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
23 |
+
(activation): SiLU()
|
24 |
+
)
|
25 |
+
(attention): CifNetSelfAttention(
|
26 |
+
(q_proj): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
|
27 |
+
(k_proj): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
|
28 |
+
(v_proj): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
|
29 |
+
(o_proj): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
|
30 |
+
)
|
31 |
+
(activation): SiLU()
|
32 |
+
(attention_norm): CifNetRMSNorm()
|
33 |
+
(out_conv): CifNetConvLayer(
|
34 |
+
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
35 |
+
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
36 |
+
(activation): SiLU()
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
(1-3): 3 x CifNetStage(
|
42 |
+
(layers): Sequential(
|
43 |
+
(0): CifNetSelfAttentionLayer(
|
44 |
+
(shortcut): Identity()
|
45 |
+
(in_conv): CifNetConvLayer(
|
46 |
+
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
47 |
+
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
48 |
+
(activation): SiLU()
|
49 |
+
)
|
50 |
+
(attention): CifNetSelfAttention(
|
51 |
+
(q_proj): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
|
52 |
+
(k_proj): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
|
53 |
+
(v_proj): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
|
54 |
+
(o_proj): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
|
55 |
+
)
|
56 |
+
(activation): SiLU()
|
57 |
+
(attention_norm): CifNetRMSNorm()
|
58 |
+
(out_conv): CifNetConvLayer(
|
59 |
+
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
60 |
+
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
61 |
+
(activation): SiLU()
|
62 |
+
)
|
63 |
+
)
|
64 |
+
(1): CifNetSelfAttentionLayer(
|
65 |
+
(shortcut): Identity()
|
66 |
+
(in_conv): CifNetConvLayer(
|
67 |
+
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
68 |
+
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
69 |
+
(activation): SiLU()
|
70 |
+
)
|
71 |
+
(attention): CifNetSelfAttention(
|
72 |
+
(q_proj): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
|
73 |
+
(k_proj): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
|
74 |
+
(v_proj): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
|
75 |
+
(o_proj): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
|
76 |
+
)
|
77 |
+
(activation): SiLU()
|
78 |
+
(attention_norm): CifNetRMSNorm()
|
79 |
+
(out_conv): CifNetConvLayer(
|
80 |
+
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
81 |
+
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
82 |
+
(activation): SiLU()
|
83 |
+
)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
)
|
87 |
+
)
|
88 |
+
)
|
89 |
+
(pooler): AdaptiveAvgPool2d(output_size=(1, 1))
|
90 |
+
)
|
91 |
+
(classifier): Sequential(
|
92 |
+
(0): Flatten(start_dim=1, end_dim=-1)
|
93 |
+
(1): Linear(in_features=128, out_features=10, bias=True)
|
94 |
+
)
|
95 |
+
)
|
96 |
+
----------------------------------------------------------------
|
97 |
+
Layer (type) Output Shape Param #
|
98 |
+
================================================================
|
99 |
+
Conv2d-1 [4, 64, 112, 112] 9,408
|
100 |
+
BatchNorm2d-2 [4, 64, 112, 112] 128
|
101 |
+
SiLU-3 [4, 64, 112, 112] 0
|
102 |
+
CifNetConvLayer-4 [4, 64, 112, 112] 0
|
103 |
+
MaxPool2d-5 [4, 64, 56, 56] 0
|
104 |
+
CifNetEmbeddings-6 [4, 64, 56, 56] 0
|
105 |
+
Conv2d-7 [4, 128, 28, 28] 73,728
|
106 |
+
BatchNorm2d-8 [4, 128, 28, 28] 256
|
107 |
+
SiLU-9 [4, 128, 28, 28] 0
|
108 |
+
CifNetConvLayer-10 [4, 128, 28, 28] 0
|
109 |
+
CifNetRMSNorm-11 [4, 28, 28, 128] 128
|
110 |
+
Conv2d-12 [4, 32, 28, 28] 4,128
|
111 |
+
Conv2d-13 [4, 32, 28, 28] 4,128
|
112 |
+
Conv2d-14 [4, 32, 28, 28] 4,128
|
113 |
+
Conv2d-15 [4, 128, 28, 28] 4,224
|
114 |
+
CifNetSelfAttention-16 [4, 128, 28, 28] 0
|
115 |
+
SiLU-17 [4, 128, 28, 28] 0
|
116 |
+
Conv2d-18 [4, 128, 28, 28] 147,456
|
117 |
+
BatchNorm2d-19 [4, 128, 28, 28] 256
|
118 |
+
SiLU-20 [4, 128, 28, 28] 0
|
119 |
+
CifNetConvLayer-21 [4, 128, 28, 28] 0
|
120 |
+
Conv2d-22 [4, 128, 28, 28] 8,192
|
121 |
+
BatchNorm2d-23 [4, 128, 28, 28] 256
|
122 |
+
CifNetShortCut-24 [4, 128, 28, 28] 0
|
123 |
+
CifNetSelfAttentionLayer-25 [4, 128, 28, 28] 0
|
124 |
+
CifNetStage-26 [4, 128, 28, 28] 0
|
125 |
+
Conv2d-27 [4, 128, 28, 28] 147,456
|
126 |
+
BatchNorm2d-28 [4, 128, 28, 28] 256
|
127 |
+
SiLU-29 [4, 128, 28, 28] 0
|
128 |
+
CifNetConvLayer-30 [4, 128, 28, 28] 0
|
129 |
+
CifNetRMSNorm-31 [4, 28, 28, 128] 128
|
130 |
+
Conv2d-32 [4, 32, 28, 28] 4,128
|
131 |
+
Conv2d-33 [4, 32, 28, 28] 4,128
|
132 |
+
Conv2d-34 [4, 32, 28, 28] 4,128
|
133 |
+
Conv2d-35 [4, 128, 28, 28] 4,224
|
134 |
+
CifNetSelfAttention-36 [4, 128, 28, 28] 0
|
135 |
+
SiLU-37 [4, 128, 28, 28] 0
|
136 |
+
Conv2d-38 [4, 128, 28, 28] 147,456
|
137 |
+
BatchNorm2d-39 [4, 128, 28, 28] 256
|
138 |
+
SiLU-40 [4, 128, 28, 28] 0
|
139 |
+
CifNetConvLayer-41 [4, 128, 28, 28] 0
|
140 |
+
Identity-42 [4, 128, 28, 28] 0
|
141 |
+
CifNetSelfAttentionLayer-43 [4, 128, 28, 28] 0
|
142 |
+
Conv2d-44 [4, 128, 28, 28] 147,456
|
143 |
+
BatchNorm2d-45 [4, 128, 28, 28] 256
|
144 |
+
SiLU-46 [4, 128, 28, 28] 0
|
145 |
+
CifNetConvLayer-47 [4, 128, 28, 28] 0
|
146 |
+
CifNetRMSNorm-48 [4, 28, 28, 128] 128
|
147 |
+
Conv2d-49 [4, 32, 28, 28] 4,128
|
148 |
+
Conv2d-50 [4, 32, 28, 28] 4,128
|
149 |
+
Conv2d-51 [4, 32, 28, 28] 4,128
|
150 |
+
Conv2d-52 [4, 128, 28, 28] 4,224
|
151 |
+
CifNetSelfAttention-53 [4, 128, 28, 28] 0
|
152 |
+
SiLU-54 [4, 128, 28, 28] 0
|
153 |
+
Conv2d-55 [4, 128, 28, 28] 147,456
|
154 |
+
BatchNorm2d-56 [4, 128, 28, 28] 256
|
155 |
+
SiLU-57 [4, 128, 28, 28] 0
|
156 |
+
CifNetConvLayer-58 [4, 128, 28, 28] 0
|
157 |
+
Identity-59 [4, 128, 28, 28] 0
|
158 |
+
CifNetSelfAttentionLayer-60 [4, 128, 28, 28] 0
|
159 |
+
CifNetStage-61 [4, 128, 28, 28] 0
|
160 |
+
Conv2d-62 [4, 128, 28, 28] 147,456
|
161 |
+
BatchNorm2d-63 [4, 128, 28, 28] 256
|
162 |
+
SiLU-64 [4, 128, 28, 28] 0
|
163 |
+
CifNetConvLayer-65 [4, 128, 28, 28] 0
|
164 |
+
CifNetRMSNorm-66 [4, 28, 28, 128] 128
|
165 |
+
Conv2d-67 [4, 32, 28, 28] 4,128
|
166 |
+
Conv2d-68 [4, 32, 28, 28] 4,128
|
167 |
+
Conv2d-69 [4, 32, 28, 28] 4,128
|
168 |
+
Conv2d-70 [4, 128, 28, 28] 4,224
|
169 |
+
CifNetSelfAttention-71 [4, 128, 28, 28] 0
|
170 |
+
SiLU-72 [4, 128, 28, 28] 0
|
171 |
+
Conv2d-73 [4, 128, 28, 28] 147,456
|
172 |
+
BatchNorm2d-74 [4, 128, 28, 28] 256
|
173 |
+
SiLU-75 [4, 128, 28, 28] 0
|
174 |
+
CifNetConvLayer-76 [4, 128, 28, 28] 0
|
175 |
+
Identity-77 [4, 128, 28, 28] 0
|
176 |
+
CifNetSelfAttentionLayer-78 [4, 128, 28, 28] 0
|
177 |
+
Conv2d-79 [4, 128, 28, 28] 147,456
|
178 |
+
BatchNorm2d-80 [4, 128, 28, 28] 256
|
179 |
+
SiLU-81 [4, 128, 28, 28] 0
|
180 |
+
CifNetConvLayer-82 [4, 128, 28, 28] 0
|
181 |
+
CifNetRMSNorm-83 [4, 28, 28, 128] 128
|
182 |
+
Conv2d-84 [4, 32, 28, 28] 4,128
|
183 |
+
Conv2d-85 [4, 32, 28, 28] 4,128
|
184 |
+
Conv2d-86 [4, 32, 28, 28] 4,128
|
185 |
+
Conv2d-87 [4, 128, 28, 28] 4,224
|
186 |
+
CifNetSelfAttention-88 [4, 128, 28, 28] 0
|
187 |
+
SiLU-89 [4, 128, 28, 28] 0
|
188 |
+
Conv2d-90 [4, 128, 28, 28] 147,456
|
189 |
+
BatchNorm2d-91 [4, 128, 28, 28] 256
|
190 |
+
SiLU-92 [4, 128, 28, 28] 0
|
191 |
+
CifNetConvLayer-93 [4, 128, 28, 28] 0
|
192 |
+
Identity-94 [4, 128, 28, 28] 0
|
193 |
+
CifNetSelfAttentionLayer-95 [4, 128, 28, 28] 0
|
194 |
+
CifNetStage-96 [4, 128, 28, 28] 0
|
195 |
+
Conv2d-97 [4, 128, 28, 28] 147,456
|
196 |
+
BatchNorm2d-98 [4, 128, 28, 28] 256
|
197 |
+
SiLU-99 [4, 128, 28, 28] 0
|
198 |
+
CifNetConvLayer-100 [4, 128, 28, 28] 0
|
199 |
+
CifNetRMSNorm-101 [4, 28, 28, 128] 128
|
200 |
+
Conv2d-102 [4, 32, 28, 28] 4,128
|
201 |
+
Conv2d-103 [4, 32, 28, 28] 4,128
|
202 |
+
Conv2d-104 [4, 32, 28, 28] 4,128
|
203 |
+
Conv2d-105 [4, 128, 28, 28] 4,224
|
204 |
+
CifNetSelfAttention-106 [4, 128, 28, 28] 0
|
205 |
+
SiLU-107 [4, 128, 28, 28] 0
|
206 |
+
Conv2d-108 [4, 128, 28, 28] 147,456
|
207 |
+
BatchNorm2d-109 [4, 128, 28, 28] 256
|
208 |
+
SiLU-110 [4, 128, 28, 28] 0
|
209 |
+
CifNetConvLayer-111 [4, 128, 28, 28] 0
|
210 |
+
Identity-112 [4, 128, 28, 28] 0
|
211 |
+
CifNetSelfAttentionLayer-113 [4, 128, 28, 28] 0
|
212 |
+
Conv2d-114 [4, 128, 28, 28] 147,456
|
213 |
+
BatchNorm2d-115 [4, 128, 28, 28] 256
|
214 |
+
SiLU-116 [4, 128, 28, 28] 0
|
215 |
+
CifNetConvLayer-117 [4, 128, 28, 28] 0
|
216 |
+
CifNetRMSNorm-118 [4, 28, 28, 128] 128
|
217 |
+
Conv2d-119 [4, 32, 28, 28] 4,128
|
218 |
+
Conv2d-120 [4, 32, 28, 28] 4,128
|
219 |
+
Conv2d-121 [4, 32, 28, 28] 4,128
|
220 |
+
Conv2d-122 [4, 128, 28, 28] 4,224
|
221 |
+
CifNetSelfAttention-123 [4, 128, 28, 28] 0
|
222 |
+
SiLU-124 [4, 128, 28, 28] 0
|
223 |
+
Conv2d-125 [4, 128, 28, 28] 147,456
|
224 |
+
BatchNorm2d-126 [4, 128, 28, 28] 256
|
225 |
+
SiLU-127 [4, 128, 28, 28] 0
|
226 |
+
CifNetConvLayer-128 [4, 128, 28, 28] 0
|
227 |
+
Identity-129 [4, 128, 28, 28] 0
|
228 |
+
CifNetSelfAttentionLayer-130 [4, 128, 28, 28] 0
|
229 |
+
CifNetStage-131 [4, 128, 28, 28] 0
|
230 |
+
CifNetEncoder-132 [[-1, 128, 28, 28]] 0
|
231 |
+
AdaptiveAvgPool2d-133 [4, 128, 1, 1] 0
|
232 |
+
CifNetModel-134 [[-1, 128, 28, 28], [-1, 128, 1, 1]] 0
|
233 |
+
Flatten-135 [4, 128] 0
|
234 |
+
Linear-136 [4, 10] 1,290
|
235 |
+
================================================================
|
236 |
+
Total params: 2,130,666
|
237 |
+
Trainable params: 2,130,666
|
238 |
+
Non-trainable params: 0
|
239 |
+
----------------------------------------------------------------
|
240 |
+
Input size (MB): 2.30
|
241 |
+
Forward/backward pass size (MB): 542.07
|
242 |
+
Params size (MB): 8.13
|
243 |
+
Estimated Total Size (MB): 552.50
|
244 |
+
----------------------------------------------------------------
|