ermu2001's picture
Upload folder using huggingface_hub
3543ae8 verified
raw
history blame
13.3 kB
CifNetForImageClassification(
(resnet): CifNetModel(
(embedder): CifNetEmbeddings(
(embedder): CifNetConvLayer(
(convolution): Conv2d(3, 32, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
(pooler): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(encoder): CifNetEncoder(
(stages): ModuleList(
(0): CifNetStage(
(layers): Sequential(
(0): CifNetBasicLayer(
(shortcut): CifNetShortCut(
(convolution): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(layer): Sequential(
(0): CifNetConvLayer(
(convolution): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
(1): CifNetConvLayer(
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
)
)
)
)
(1): CifNetStage(
(layers): Sequential(
(0): CifNetBasicLayer(
(shortcut): Identity()
(layer): Sequential(
(0): CifNetConvLayer(
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
(1): CifNetConvLayer(
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
)
)
(1): CifNetBasicLayer(
(shortcut): Identity()
(layer): Sequential(
(0): CifNetConvLayer(
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
(1): CifNetConvLayer(
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
)
)
)
)
(2): CifNetStage(
(layers): Sequential(
(0): CifNetBasicLayer(
(shortcut): CifNetShortCut(
(convolution): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(layer): Sequential(
(0): CifNetConvLayer(
(convolution): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
(1): CifNetConvLayer(
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
)
)
(1): CifNetBasicLayer(
(shortcut): Identity()
(layer): Sequential(
(0): CifNetConvLayer(
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
(1): CifNetConvLayer(
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
)
)
)
)
(3): CifNetStage(
(layers): Sequential(
(0): CifNetBasicLayer(
(shortcut): Identity()
(layer): Sequential(
(0): CifNetConvLayer(
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
(1): CifNetConvLayer(
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
)
)
(1): CifNetBasicLayer(
(shortcut): Identity()
(layer): Sequential(
(0): CifNetConvLayer(
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
(1): CifNetConvLayer(
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(activation): SiLU()
)
)
)
)
)
)
)
(pooler): AdaptiveAvgPool2d(output_size=(1, 1))
)
(classifier): Sequential(
(0): Flatten(start_dim=1, end_dim=-1)
(1): Linear(in_features=128, out_features=10, bias=True)
)
)
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [4, 32, 112, 112] 4,704
BatchNorm2d-2 [4, 32, 112, 112] 64
SiLU-3 [4, 32, 112, 112] 0
CifNetConvLayer-4 [4, 32, 112, 112] 0
MaxPool2d-5 [4, 32, 56, 56] 0
CifNetEmbeddings-6 [4, 32, 56, 56] 0
Conv2d-7 [4, 64, 28, 28] 18,432
BatchNorm2d-8 [4, 64, 28, 28] 128
SiLU-9 [4, 64, 28, 28] 0
CifNetConvLayer-10 [4, 64, 28, 28] 0
Conv2d-11 [4, 64, 28, 28] 36,864
BatchNorm2d-12 [4, 64, 28, 28] 128
SiLU-13 [4, 64, 28, 28] 0
CifNetConvLayer-14 [4, 64, 28, 28] 0
Conv2d-15 [4, 64, 28, 28] 2,048
BatchNorm2d-16 [4, 64, 28, 28] 128
CifNetShortCut-17 [4, 64, 28, 28] 0
CifNetBasicLayer-18 [4, 64, 28, 28] 0
CifNetStage-19 [4, 64, 28, 28] 0
Conv2d-20 [4, 64, 28, 28] 36,864
BatchNorm2d-21 [4, 64, 28, 28] 128
SiLU-22 [4, 64, 28, 28] 0
CifNetConvLayer-23 [4, 64, 28, 28] 0
Conv2d-24 [4, 64, 28, 28] 36,864
BatchNorm2d-25 [4, 64, 28, 28] 128
SiLU-26 [4, 64, 28, 28] 0
CifNetConvLayer-27 [4, 64, 28, 28] 0
Identity-28 [4, 64, 28, 28] 0
CifNetBasicLayer-29 [4, 64, 28, 28] 0
Conv2d-30 [4, 64, 28, 28] 36,864
BatchNorm2d-31 [4, 64, 28, 28] 128
SiLU-32 [4, 64, 28, 28] 0
CifNetConvLayer-33 [4, 64, 28, 28] 0
Conv2d-34 [4, 64, 28, 28] 36,864
BatchNorm2d-35 [4, 64, 28, 28] 128
SiLU-36 [4, 64, 28, 28] 0
CifNetConvLayer-37 [4, 64, 28, 28] 0
Identity-38 [4, 64, 28, 28] 0
CifNetBasicLayer-39 [4, 64, 28, 28] 0
CifNetStage-40 [4, 64, 28, 28] 0
Conv2d-41 [4, 128, 14, 14] 73,728
BatchNorm2d-42 [4, 128, 14, 14] 256
SiLU-43 [4, 128, 14, 14] 0
CifNetConvLayer-44 [4, 128, 14, 14] 0
Conv2d-45 [4, 128, 14, 14] 147,456
BatchNorm2d-46 [4, 128, 14, 14] 256
SiLU-47 [4, 128, 14, 14] 0
CifNetConvLayer-48 [4, 128, 14, 14] 0
Conv2d-49 [4, 128, 14, 14] 8,192
BatchNorm2d-50 [4, 128, 14, 14] 256
CifNetShortCut-51 [4, 128, 14, 14] 0
CifNetBasicLayer-52 [4, 128, 14, 14] 0
Conv2d-53 [4, 128, 14, 14] 147,456
BatchNorm2d-54 [4, 128, 14, 14] 256
SiLU-55 [4, 128, 14, 14] 0
CifNetConvLayer-56 [4, 128, 14, 14] 0
Conv2d-57 [4, 128, 14, 14] 147,456
BatchNorm2d-58 [4, 128, 14, 14] 256
SiLU-59 [4, 128, 14, 14] 0
CifNetConvLayer-60 [4, 128, 14, 14] 0
Identity-61 [4, 128, 14, 14] 0
CifNetBasicLayer-62 [4, 128, 14, 14] 0
CifNetStage-63 [4, 128, 14, 14] 0
Conv2d-64 [4, 128, 14, 14] 147,456
BatchNorm2d-65 [4, 128, 14, 14] 256
SiLU-66 [4, 128, 14, 14] 0
CifNetConvLayer-67 [4, 128, 14, 14] 0
Conv2d-68 [4, 128, 14, 14] 147,456
BatchNorm2d-69 [4, 128, 14, 14] 256
SiLU-70 [4, 128, 14, 14] 0
CifNetConvLayer-71 [4, 128, 14, 14] 0
Identity-72 [4, 128, 14, 14] 0
CifNetBasicLayer-73 [4, 128, 14, 14] 0
Conv2d-74 [4, 128, 14, 14] 147,456
BatchNorm2d-75 [4, 128, 14, 14] 256
SiLU-76 [4, 128, 14, 14] 0
CifNetConvLayer-77 [4, 128, 14, 14] 0
Conv2d-78 [4, 128, 14, 14] 147,456
BatchNorm2d-79 [4, 128, 14, 14] 256
SiLU-80 [4, 128, 14, 14] 0
CifNetConvLayer-81 [4, 128, 14, 14] 0
Identity-82 [4, 128, 14, 14] 0
CifNetBasicLayer-83 [4, 128, 14, 14] 0
CifNetStage-84 [4, 128, 14, 14] 0
CifNetEncoder-85 [[-1, 128, 14, 14]] 0
AdaptiveAvgPool2d-86 [4, 128, 1, 1] 0
CifNetModel-87 [[-1, 128, 14, 14], [-1, 128, 1, 1]] 0
Flatten-88 [4, 128] 0
Linear-89 [4, 10] 1,290
================================================================
Total params: 1,328,170
Trainable params: 1,328,170
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 2.30
Forward/backward pass size (MB): 165.19
Params size (MB): 5.07
Estimated Total Size (MB): 172.56
----------------------------------------------------------------