|
CifNetForImageClassification( |
|
(resnet): CifNetModel( |
|
(embedder): CifNetEmbeddings( |
|
(embedder): CifNetConvLayer( |
|
(convolution): Conv2d(3, 32, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) |
|
(normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(pooler): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) |
|
) |
|
(encoder): CifNetEncoder( |
|
(stages): ModuleList( |
|
(0): CifNetStage( |
|
(layers): Sequential( |
|
(0): CifNetBasicLayer( |
|
(shortcut): CifNetShortCut( |
|
(convolution): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False) |
|
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
) |
|
(layer): Sequential( |
|
(0): CifNetConvLayer( |
|
(convolution): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(1): CifNetConvLayer( |
|
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(1): CifNetStage( |
|
(layers): Sequential( |
|
(0): CifNetBasicLayer( |
|
(shortcut): Identity() |
|
(layer): Sequential( |
|
(0): CifNetConvLayer( |
|
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(1): CifNetConvLayer( |
|
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
) |
|
) |
|
(1): CifNetBasicLayer( |
|
(shortcut): Identity() |
|
(layer): Sequential( |
|
(0): CifNetConvLayer( |
|
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(1): CifNetConvLayer( |
|
(convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(2): CifNetStage( |
|
(layers): Sequential( |
|
(0): CifNetBasicLayer( |
|
(shortcut): CifNetShortCut( |
|
(convolution): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
) |
|
(layer): Sequential( |
|
(0): CifNetConvLayer( |
|
(convolution): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(1): CifNetConvLayer( |
|
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
) |
|
) |
|
(1): CifNetBasicLayer( |
|
(shortcut): Identity() |
|
(layer): Sequential( |
|
(0): CifNetConvLayer( |
|
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(1): CifNetConvLayer( |
|
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(3): CifNetStage( |
|
(layers): Sequential( |
|
(0): CifNetBasicLayer( |
|
(shortcut): Identity() |
|
(layer): Sequential( |
|
(0): CifNetConvLayer( |
|
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(1): CifNetConvLayer( |
|
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
) |
|
) |
|
(1): CifNetBasicLayer( |
|
(shortcut): Identity() |
|
(layer): Sequential( |
|
(0): CifNetConvLayer( |
|
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
(1): CifNetConvLayer( |
|
(convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) |
|
(normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) |
|
(activation): SiLU() |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): AdaptiveAvgPool2d(output_size=(1, 1)) |
|
) |
|
(classifier): Sequential( |
|
(0): Flatten(start_dim=1, end_dim=-1) |
|
(1): Linear(in_features=128, out_features=10, bias=True) |
|
) |
|
) |
|
---------------------------------------------------------------- |
|
Layer (type) Output Shape Param # |
|
================================================================ |
|
Conv2d-1 [4, 32, 112, 112] 4,704 |
|
BatchNorm2d-2 [4, 32, 112, 112] 64 |
|
SiLU-3 [4, 32, 112, 112] 0 |
|
CifNetConvLayer-4 [4, 32, 112, 112] 0 |
|
MaxPool2d-5 [4, 32, 56, 56] 0 |
|
CifNetEmbeddings-6 [4, 32, 56, 56] 0 |
|
Conv2d-7 [4, 64, 28, 28] 18,432 |
|
BatchNorm2d-8 [4, 64, 28, 28] 128 |
|
SiLU-9 [4, 64, 28, 28] 0 |
|
CifNetConvLayer-10 [4, 64, 28, 28] 0 |
|
Conv2d-11 [4, 64, 28, 28] 36,864 |
|
BatchNorm2d-12 [4, 64, 28, 28] 128 |
|
SiLU-13 [4, 64, 28, 28] 0 |
|
CifNetConvLayer-14 [4, 64, 28, 28] 0 |
|
Conv2d-15 [4, 64, 28, 28] 2,048 |
|
BatchNorm2d-16 [4, 64, 28, 28] 128 |
|
CifNetShortCut-17 [4, 64, 28, 28] 0 |
|
CifNetBasicLayer-18 [4, 64, 28, 28] 0 |
|
CifNetStage-19 [4, 64, 28, 28] 0 |
|
Conv2d-20 [4, 64, 28, 28] 36,864 |
|
BatchNorm2d-21 [4, 64, 28, 28] 128 |
|
SiLU-22 [4, 64, 28, 28] 0 |
|
CifNetConvLayer-23 [4, 64, 28, 28] 0 |
|
Conv2d-24 [4, 64, 28, 28] 36,864 |
|
BatchNorm2d-25 [4, 64, 28, 28] 128 |
|
SiLU-26 [4, 64, 28, 28] 0 |
|
CifNetConvLayer-27 [4, 64, 28, 28] 0 |
|
Identity-28 [4, 64, 28, 28] 0 |
|
CifNetBasicLayer-29 [4, 64, 28, 28] 0 |
|
Conv2d-30 [4, 64, 28, 28] 36,864 |
|
BatchNorm2d-31 [4, 64, 28, 28] 128 |
|
SiLU-32 [4, 64, 28, 28] 0 |
|
CifNetConvLayer-33 [4, 64, 28, 28] 0 |
|
Conv2d-34 [4, 64, 28, 28] 36,864 |
|
BatchNorm2d-35 [4, 64, 28, 28] 128 |
|
SiLU-36 [4, 64, 28, 28] 0 |
|
CifNetConvLayer-37 [4, 64, 28, 28] 0 |
|
Identity-38 [4, 64, 28, 28] 0 |
|
CifNetBasicLayer-39 [4, 64, 28, 28] 0 |
|
CifNetStage-40 [4, 64, 28, 28] 0 |
|
Conv2d-41 [4, 128, 14, 14] 73,728 |
|
BatchNorm2d-42 [4, 128, 14, 14] 256 |
|
SiLU-43 [4, 128, 14, 14] 0 |
|
CifNetConvLayer-44 [4, 128, 14, 14] 0 |
|
Conv2d-45 [4, 128, 14, 14] 147,456 |
|
BatchNorm2d-46 [4, 128, 14, 14] 256 |
|
SiLU-47 [4, 128, 14, 14] 0 |
|
CifNetConvLayer-48 [4, 128, 14, 14] 0 |
|
Conv2d-49 [4, 128, 14, 14] 8,192 |
|
BatchNorm2d-50 [4, 128, 14, 14] 256 |
|
CifNetShortCut-51 [4, 128, 14, 14] 0 |
|
CifNetBasicLayer-52 [4, 128, 14, 14] 0 |
|
Conv2d-53 [4, 128, 14, 14] 147,456 |
|
BatchNorm2d-54 [4, 128, 14, 14] 256 |
|
SiLU-55 [4, 128, 14, 14] 0 |
|
CifNetConvLayer-56 [4, 128, 14, 14] 0 |
|
Conv2d-57 [4, 128, 14, 14] 147,456 |
|
BatchNorm2d-58 [4, 128, 14, 14] 256 |
|
SiLU-59 [4, 128, 14, 14] 0 |
|
CifNetConvLayer-60 [4, 128, 14, 14] 0 |
|
Identity-61 [4, 128, 14, 14] 0 |
|
CifNetBasicLayer-62 [4, 128, 14, 14] 0 |
|
CifNetStage-63 [4, 128, 14, 14] 0 |
|
Conv2d-64 [4, 128, 14, 14] 147,456 |
|
BatchNorm2d-65 [4, 128, 14, 14] 256 |
|
SiLU-66 [4, 128, 14, 14] 0 |
|
CifNetConvLayer-67 [4, 128, 14, 14] 0 |
|
Conv2d-68 [4, 128, 14, 14] 147,456 |
|
BatchNorm2d-69 [4, 128, 14, 14] 256 |
|
SiLU-70 [4, 128, 14, 14] 0 |
|
CifNetConvLayer-71 [4, 128, 14, 14] 0 |
|
Identity-72 [4, 128, 14, 14] 0 |
|
CifNetBasicLayer-73 [4, 128, 14, 14] 0 |
|
Conv2d-74 [4, 128, 14, 14] 147,456 |
|
BatchNorm2d-75 [4, 128, 14, 14] 256 |
|
SiLU-76 [4, 128, 14, 14] 0 |
|
CifNetConvLayer-77 [4, 128, 14, 14] 0 |
|
Conv2d-78 [4, 128, 14, 14] 147,456 |
|
BatchNorm2d-79 [4, 128, 14, 14] 256 |
|
SiLU-80 [4, 128, 14, 14] 0 |
|
CifNetConvLayer-81 [4, 128, 14, 14] 0 |
|
Identity-82 [4, 128, 14, 14] 0 |
|
CifNetBasicLayer-83 [4, 128, 14, 14] 0 |
|
CifNetStage-84 [4, 128, 14, 14] 0 |
|
CifNetEncoder-85 [[-1, 128, 14, 14]] 0 |
|
AdaptiveAvgPool2d-86 [4, 128, 1, 1] 0 |
|
CifNetModel-87 [[-1, 128, 14, 14], [-1, 128, 1, 1]] 0 |
|
Flatten-88 [4, 128] 0 |
|
Linear-89 [4, 10] 1,290 |
|
================================================================ |
|
Total params: 1,328,170 |
|
Trainable params: 1,328,170 |
|
Non-trainable params: 0 |
|
---------------------------------------------------------------- |
|
Input size (MB): 2.30 |
|
Forward/backward pass size (MB): 165.19 |
|
Params size (MB): 5.07 |
|
Estimated Total Size (MB): 172.56 |
|
---------------------------------------------------------------- |
|
|