erjui commited on
Commit
e204171
·
verified ·
1 Parent(s): 7621756

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +3 -34
README.md CHANGED
@@ -90,7 +90,7 @@ This model performs **Contextualized Structured Radiology Report Generation (CSR
90
  - Max images per sample: 2
91
 
92
  **Hardware:**
93
- - GPU: NVIDIA A100 (or equivalent)
94
  - Training framework: HuggingFace Transformers + PEFT
95
 
96
  ## Usage
@@ -167,37 +167,6 @@ Musculoskeletal and Chest Wall:
167
  - Bilateral rib fractures noted
168
  ```
169
 
170
- ## Evaluation
171
-
172
- The model is evaluated using standard medical NLG metrics with additional temporal reasoning evaluation:
173
-
174
- - **RadGraph F1**: Measures clinical entity and relation extraction accuracy
175
- - **BLEU**: N-gram overlap with reference reports
176
- - **ROUGE** (ROUGE-1, ROUGE-2, ROUGE-L): Recall-oriented metrics
177
- - **BERTScore**: Semantic similarity using contextual embeddings
178
- - **CheXbert F1**: Clinical accuracy for pathology classification
179
- - **Temporal consistency**: Evaluation of comparison statements and longitudinal reasoning
180
-
181
- For detailed evaluation results, see the paper: [Automated Structured Radiology Report Generation with Rich Clinical Context](https://arxiv.org/abs/2510.00428)
182
-
183
- ## Limitations
184
-
185
- - Trained exclusively on chest X-ray images (not applicable to other imaging modalities)
186
- - Performance may vary on images from different institutions or imaging protocols
187
- - May not capture all rare pathologies or edge cases
188
- - Requires expert radiologist review before clinical use
189
- - Temporal reasoning accuracy depends on quality of prior study information
190
- - Should not be used as the sole diagnostic tool
191
-
192
- ## Ethical Considerations
193
-
194
- - **Medical AI Responsibility**: This model generates medical text and must be used responsibly
195
- - **Human Oversight Required**: All outputs should be reviewed by qualified radiologists
196
- - **Data Privacy**: Ensure compliance with HIPAA, GDPR, and local healthcare regulations
197
- - **Bias and Fairness**: Model trained on specific datasets may have biases; validate on diverse populations
198
- - **Clinical Validation**: Requires thorough validation before any clinical deployment
199
- - **Longitudinal Data Handling**: Ensure proper patient consent and data governance for temporal data
200
-
201
  ## Citation
202
 
203
  If you use this model, please cite:
@@ -214,8 +183,8 @@ If you use this model, please cite:
214
  Also cite the base model:
215
  ```bibtex
216
  @article{chen2024chexagent,
217
- title={CheXagent: Towards a Foundation Model for Chest X-Ray Interpretation},
218
- author={Chen, Zhihong and Varma, Maya and Delbrouck, Jean-Benoit and Paschali, Magdalini and Blankemeier, Louis and Van Veen, Dave and Valanarasu, Jeya Maria Jose and Youssef, Alaa and Cohen, Joseph Paul and Reis, Eduardo Pontes and Tsai, Emily B. and Johnston, Andrew and Olsen, Cameron and Abraham, Tanishq Mathew and Gatidis, Sergios and Chaudhari, Akshay S. and Lungren, Matthew P.},
219
  journal={arXiv preprint arXiv:2401.12208},
220
  year={2024}
221
  }
 
90
  - Max images per sample: 2
91
 
92
  **Hardware:**
93
+ - GPU: NVIDIA H100
94
  - Training framework: HuggingFace Transformers + PEFT
95
 
96
  ## Usage
 
167
  - Bilateral rib fractures noted
168
  ```
169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
  ## Citation
171
 
172
  If you use this model, please cite:
 
183
  Also cite the base model:
184
  ```bibtex
185
  @article{chen2024chexagent,
186
+ title={Chexagent: Towards a foundation model for chest x-ray interpretation},
187
+ author={Chen, Zhihong and Varma, Maya and Delbrouck, Jean-Benoit and Paschali, Magdalini and Blankemeier, Louis and Van Veen, Dave and Valanarasu, Jeya Maria Jose and Youssef, Alaa and Cohen, Joseph Paul and Reis, Eduardo Pontes and others},
188
  journal={arXiv preprint arXiv:2401.12208},
189
  year={2024}
190
  }