yopzey commited on
Commit
4f3eb43
2 Parent(s): 74ed6a1 9190d78

Resolved merge conflicts and fixed LFS tracking

Browse files
.gitattributes CHANGED
@@ -1,3 +1,4 @@
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
@@ -33,3 +34,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
1
+ <<<<<<< HEAD
2
  *.7z filter=lfs diff=lfs merge=lfs -text
3
  *.arrow filter=lfs diff=lfs merge=lfs -text
4
  *.bin filter=lfs diff=lfs merge=lfs -text
 
34
  *.zip filter=lfs diff=lfs merge=lfs -text
35
  *.zst filter=lfs diff=lfs merge=lfs -text
36
  *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ =======
38
+ adapter_model.bin filter=lfs diff=lfs merge=lfs -text
39
+ >>>>>>> master
40
+ tokenizer.model filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-chat-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ ### Framework versions
206
+
207
+
208
+ - PEFT 0.6.2
__pycache__/utils.cpython-311.pyc ADDED
Binary file (1.09 kB). View file
 
adapter_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.1,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 64,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "q_proj",
20
+ "v_proj"
21
+ ],
22
+ "task_type": "CAUSAL_LM"
23
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a2120679768b581cb5fa5413ec2c270c7bdb0d67f4243843e2bc65a092ede24
3
+ size 134262410
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
chat_cli.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+
4
+ def chat_with_model(model_path: str):
5
+ # Ensure CUDA is available and set the device to use the first GPU
6
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
+ print(f"Using device: {device}")
8
+
9
+ # Load the model and tokenizer
10
+ model = AutoModelForCausalLM.from_pretrained(model_path).to(device)
11
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
12
+
13
+ # Wrap the model with DataParallel to use multiple GPUs
14
+ if torch.cuda.is_available() and torch.cuda.device_count() > 1:
15
+ print(f"Using {torch.cuda.device_count()} GPUs!")
16
+ model = torch.nn.DataParallel(model)
17
+
18
+ print("You're now chatting with the model. Type 'quit' to exit.")
19
+
20
+ while True:
21
+ # Get user input
22
+ input_text = input("You: ")
23
+ if input_text.lower() == 'quit':
24
+ break
25
+
26
+ # Encode the input text
27
+ input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
28
+
29
+ # Generate a response
30
+ with torch.no_grad():
31
+ generated_text_samples = model.generate(input_ids, max_length=50, pad_token_id=tokenizer.eos_token_id)
32
+
33
+ # Decode and print the model's response
34
+ response_text = tokenizer.decode(generated_text_samples[0], skip_special_tokens=True)
35
+ print("AI:", response_text)
36
+
37
+ if __name__ == "__main__":
38
+ model_path = '/home/energyxadmin/UI2/merge'
39
+ chat_with_model(model_path)
merge_script.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from peft import PeftModel # Ensure you have 'peft' library or modify according to your setup
3
+ import os
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
5
+ import argparse
6
+ from utils import get_logger # Ensure this is implemented in your environment
7
+ import json
8
+
9
+ logger = get_logger("merge", "info")
10
+
11
+ def smart_tokenizer_and_embedding_resize(tokenizer, model, custom_tokens_path=None):
12
+ """Resize tokenizer and embedding to accommodate new tokens."""
13
+ special_tokens_dict = {
14
+ "pad_token": "[PAD]",
15
+ "eos_token": "</s>",
16
+ "bos_token": "<s>",
17
+ "unk_token": "<unk>"
18
+ }
19
+
20
+ # Load custom tokens if specified
21
+ custom_tokens = []
22
+ if custom_tokens_path is not None:
23
+ with open(custom_tokens_path, 'r') as file:
24
+ custom_tokens = [line.strip() for line in file.readlines()]
25
+
26
+ num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
27
+ if custom_tokens:
28
+ num_added_toks += tokenizer.add_tokens(custom_tokens, special_tokens=True)
29
+
30
+ model.resize_token_embeddings(len(tokenizer))
31
+ logger.info(f"Resized tokenizer and model embeddings. Added {num_added_toks} tokens.")
32
+
33
+ def main():
34
+ parser = argparse.ArgumentParser()
35
+ parser.add_argument("-bm", "--base_model", type=str, default="meta-llama/Llama-2-7b-chat-hf", help="Base model name or path")
36
+ parser.add_argument("-lm", "--lora_model", type=str, required=True, help="Path to the Lora model directory")
37
+ parser.add_argument("-o", "--output", type=str, required=True, help="Output directory for the merged model")
38
+ parser.add_argument("--custom_tokens", type=str, default=None, help="Path to a file containing custom tokens")
39
+ args = parser.parse_args()
40
+
41
+ if not os.path.exists(args.lora_model):
42
+ raise FileNotFoundError(f"LoRA model directory {args.lora_model} not found.")
43
+
44
+ os.makedirs(args.output, exist_ok=True)
45
+
46
+ # Load the base model and tokenizer
47
+ model = AutoModelForCausalLM.from_pretrained(args.base_model)
48
+ tokenizer = AutoTokenizer.from_pretrained(args.base_model)
49
+
50
+ # Adjust tokenizer and model for any additional tokens
51
+ smart_tokenizer_and_embedding_resize(tokenizer, model, args.custom_tokens)
52
+
53
+ # Load and merge the LoRA model
54
+ logger.info("Loading and merging the LoRA model...")
55
+ lora_model = PeftModel.from_pretrained(model, args.lora_model, merge_with_base=True)
56
+
57
+ # Save the merged model and tokenizer
58
+ lora_model.save_pretrained(args.output)
59
+ tokenizer.save_pretrained(args.output)
60
+ logger.info(f"Merged model saved to {args.output}")
61
+
62
+ if __name__ == "__main__":
63
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
test.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+
3
+ model_path = '/home/energyxadmin/UI2/merge'
4
+
5
+ model = AutoModelForCausalLM.from_pretrained(model_path)
6
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
7
+
8
+ # Example text generation
9
+ input_ids = tokenizer.encode("What song did Eric Pask write or was a part of", return_tensors="pt")
10
+ generated_text_samples = model.generate(input_ids, max_length=1000)
11
+
12
+ print("Generated text:", tokenizer.decode(generated_text_samples[0], skip_special_tokens=True))
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "32000": {
28
+ "content": "[PAD]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ }
35
+ },
36
+ "bos_token": "<s>",
37
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
38
+ "clean_up_tokenization_spaces": false,
39
+ "eos_token": "</s>",
40
+ "legacy": false,
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "[PAD]",
43
+ "padding_side": "right",
44
+ "sp_model_kwargs": {},
45
+ "tokenizer_class": "LlamaTokenizer",
46
+ "unk_token": "<unk>",
47
+ "use_default_system_prompt": false
48
+ }
utils.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing_extensions import Literal
3
+ from rich.logging import RichHandler
4
+
5
+
6
+ def get_logger(name: str, level: Literal["info", "warning", "debug"]) -> logging.Logger:
7
+ rich_handler = RichHandler(level=logging.INFO, rich_tracebacks=True, markup=True)
8
+
9
+ logger = logging.getLogger(name)
10
+ logger.setLevel(logging._nameToLevel[level.upper()])
11
+
12
+ if not logger.handlers:
13
+ logger.addHandler(rich_handler)
14
+
15
+ logger.propagate = False
16
+
17
+ return logger