Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 154.50 +/- 82.63
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f798cc62ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f798cc62f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f798cc69050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f798cc690e0>", "_build": "<function ActorCriticPolicy._build at 0x7f798cc69170>", "forward": "<function ActorCriticPolicy.forward at 0x7f798cc69200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f798cc69290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f798cc69320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f798cc693b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f798cc69440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f798cc694d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f798cc3d3c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651672739.957, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMB22j32jCu66pThu6HqbjValpO7TmfRtAAAgD8AAIA/Zm05vcPtGrpL56m7AIXhtSgyEjva08M6AACAPwAAgD8wDbk+qI7UvGqSIzzBnoW6KKP8vcoO2roAAIA/AACAPzMYSj70vKO8zyuXPE2x+LoidQ2+hp/EuwAAgD8AAIA/Jucivj13Gz5PnAM+8qtnvtksiL12i089AAAAAAAAAACayTW81U5dPsERMbwG30u+1yQlu3nHhL0AAAAAAAAAAM2SQz64qN06aPdnuwmEQri/nYw8vhovuQAAgD8AAIA/oNkrvvZDQzuONzC5XJJLNlMmxLw7k0w4AACAPwAAgD8ARcI9KWBuur3SX7tAtgC29sBXO303gjoAAIA/AACAP81hE772aB45AtJiOFTdkLYYoTC80ABFNgAAgD8AAIA/khm1vhdOIDwKhx+65kK7Nz6tLb0CNDo5AACAPwAAgD8A4A27rB0APsX0Wb1VRg++xIyYvUa//DwAAAAAAAAAABMuHj4K7lW7C42eu+zYGzmOm8+8sjGPOgAAgD8AAIA/bccYPuwN5buYXsq6I9iHONMjOb2mlPg5AACAPwAAgD/W9Z8+wV/TPYIgpjsSvwm+MpWuPFMtMT0AAAAAAAAAALPmjL1cZ2i6VXmyu+N4JTcmtQa76hdttgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8l8gCJCSXkCUhpRSlIwBbJRN6AOMAXSUR0CDNV+xW1c/dX2UKGgGaAloD0MIX3tmSYCDVkCUhpRSlGgVTegDaBZHQINBj+glF+d1fZQoaAZoCWgPQwgXSFD8GPhZQJSGlFKUaBVN6ANoFkdAg0Z5hBqsVHV9lChoBmgJaA9DCJ4kXTP5UVpAlIaUUpRoFU3oA2gWR0CDS9UPQOWjdX2UKGgGaAloD0MI4iL3dHXHHMCUhpRSlGgVTREBaBZHQINPJC+lCTl1fZQoaAZoCWgPQwhaf0sA/k5TQJSGlFKUaBVN6ANoFkdAg1UqDCgsb3V9lChoBmgJaA9DCJShKqbS9UHAlIaUUpRoFU01AWgWR0CDYDoDgZTAdX2UKGgGaAloD0MIeXb51oftNsCUhpRSlGgVTbsBaBZHQINuskOZssR1fZQoaAZoCWgPQwhS0Vj7OxRUQJSGlFKUaBVN6ANoFkdAg4Sb+98JD3V9lChoBmgJaA9DCJfhP91A42BAlIaUUpRoFU3oA2gWR0CDhxOZ9d/sdX2UKGgGaAloD0MI3qzB+6p9WUCUhpRSlGgVTegDaBZHQIOKR08vEjx1fZQoaAZoCWgPQwjr/UY7bvhjQJSGlFKUaBVN6ANoFkdAg5KCZfD1oXV9lChoBmgJaA9DCOm3rwPnYGFAlIaUUpRoFU3oA2gWR0CDvGMlTm4idX2UKGgGaAloD0MIpOTVOQbKVUCUhpRSlGgVTegDaBZHQIO84lWwNb11fZQoaAZoCWgPQwh8taM4R3ZZQJSGlFKUaBVN6ANoFkdAg8QTgdfb9XV9lChoBmgJaA9DCMKJ6NfWY1RAlIaUUpRoFU3oA2gWR0CDyM20AtFsdX2UKGgGaAloD0MIKENVTKXTWkCUhpRSlGgVTegDaBZHQIQfNQTEit91fZQoaAZoCWgPQwj+X3XkSOlRQJSGlFKUaBVN6ANoFkdAhCtgn+hoNHV9lChoBmgJaA9DCAQeGEB4VGBAlIaUUpRoFU3oA2gWR0CEMFOsT37DdX2UKGgGaAloD0MI+rZgqS6QVkCUhpRSlGgVTegDaBZHQIQ1sdRzijt1fZQoaAZoCWgPQwjxuRPsv1pOQJSGlFKUaBVN6ANoFkdAhDjneizsyHV9lChoBmgJaA9DCJerH5vk9F1AlIaUUpRoFU3oA2gWR0CEPp0CA+Y/dX2UKGgGaAloD0MIGedvQiHcWECUhpRSlGgVTegDaBZHQIRI9zKcNH91fZQoaAZoCWgPQwjYEByXcZ5XQJSGlFKUaBVN6ANoFkdAhFYfQjUutnV9lChoBmgJaA9DCObrMvynwFxAlIaUUpRoFU3oA2gWR0CEaOd92HLzdX2UKGgGaAloD0MIJA1uawvQUUCUhpRSlGgVTegDaBZHQIRrG7UXpGF1fZQoaAZoCWgPQwh9W7BUF45eQJSGlFKUaBVN6ANoFkdAhG4Z0r9VFXV9lChoBmgJaA9DCCi5wyYyflVAlIaUUpRoFU3oA2gWR0CEdiUi6g/UdX2UKGgGaAloD0MI5pMVw9XJIMCUhpRSlGgVTT0BaBZHQISK4evIOpd1fZQoaAZoCWgPQwg3jILgccdgQJSGlFKUaBVN6ANoFkdAhJ6aAe7tiXV9lChoBmgJaA9DCN44Kcx7s1hAlIaUUpRoFU3oA2gWR0CEnxas6q82dX2UKGgGaAloD0MIRKhSswc1XECUhpRSlGgVTegDaBZHQISlxb0OEuh1fZQoaAZoCWgPQwi4rMJmANdkQJSGlFKUaBVN6ANoFkdAhKpkcjqv/3V9lChoBmgJaA9DCHC1TlyOHFVAlIaUUpRoFU3oA2gWR0CFAeHD7655dX2UKGgGaAloD0MI6Xx4liDrX0CUhpRSlGgVTegDaBZHQIUPXbsWweN1fZQoaAZoCWgPQwiamZmZmZRfQJSGlFKUaBVN6ANoFkdAhRT8+zMRpXV9lChoBmgJaA9DCPBquTMTwl9AlIaUUpRoFU3oA2gWR0CFGz51vES/dX2UKGgGaAloD0MIscItH0nyXUCUhpRSlGgVTegDaBZHQIUfBOgxrSF1fZQoaAZoCWgPQwhrYRbauQNhQJSGlFKUaBVN6ANoFkdAhScfM4cWCXV9lChoBmgJaA9DCNnO91PjjFhAlIaUUpRoFU3oA2gWR0CFM7R5TqB3dX2UKGgGaAloD0MIzNHj9zbDQ8CUhpRSlGgVTWwBaBZHQIVG1nkDIR11fZQoaAZoCWgPQwh6bTZWYt1dQJSGlFKUaBVN6ANoFkdAhVgONgjQiXV9lChoBmgJaA9DCFW9/E6TTFtAlIaUUpRoFU3oA2gWR0CFWspSaVlgdX2UKGgGaAloD0MId4apLXUIUECUhpRSlGgVTegDaBZHQIVeN52Qnx91fZQoaAZoCWgPQwjT9NkB1wdLQJSGlFKUaBVN6ANoFkdAhWe2vStvGnV9lChoBmgJaA9DCLOVl/xPHlJAlIaUUpRoFU3oA2gWR0CFf2aa1Cw9dX2UKGgGaAloD0MIsaVHUz2gV0CUhpRSlGgVTegDaBZHQIWTnf4yoGZ1fZQoaAZoCWgPQwiu00hL5aJdQJSGlFKUaBVN6ANoFkdAhZQXLeQ+2XV9lChoBmgJaA9DCGSw4lRrm1xAlIaUUpRoFU3oA2gWR0CFm0kFfReDdX2UKGgGaAloD0MIx/KuesCQWkCUhpRSlGgVTegDaBZHQIWf/njhky11fZQoaAZoCWgPQwhOuFfmre9cQJSGlFKUaBVN6ANoFkdAhgT+UQkHEHV9lChoBmgJaA9DCHh7EALyEl5AlIaUUpRoFU3oA2gWR0CGCpATIvJzdX2UKGgGaAloD0MI3PKRlPRbXkCUhpRSlGgVTegDaBZHQIYQhzDGcWl1fZQoaAZoCWgPQwjtfhXgu5FUQJSGlFKUaBVN6ANoFkdAhhQmuTzNEHV9lChoBmgJaA9DCE+WWu83qmBAlIaUUpRoFU3oA2gWR0CGGlv/io87dX2UKGgGaAloD0MIio7k8h+zVkCUhpRSlGgVTegDaBZHQIYmIIY3vQZ1fZQoaAZoCWgPQwgnaJPDJ05iQJSGlFKUaBVN6ANoFkdAhjkKqfe1r3V9lChoBmgJaA9DCLjM6bKY711AlIaUUpRoFU3oA2gWR0CGSYE2YOUddX2UKGgGaAloD0MIS8gHPRsEYkCUhpRSlGgVTegDaBZHQIZL9wgkkbB1fZQoaAZoCWgPQwhkIqXZPGNhQJSGlFKUaBVN6ANoFkdAhk9lb3XZoXV9lChoBmgJaA9DCNcUyOwsuktAlIaUUpRoFU3oA2gWR0CGWHEaVD8cdX2UKGgGaAloD0MIFXMQdLSEYUCUhpRSlGgVTegDaBZHQIZvx7gKnel1fZQoaAZoCWgPQwghBU8hV+ZgQJSGlFKUaBVN6ANoFkdAhoSUIkZ75XV9lChoBmgJaA9DCLpoyHiUxFlAlIaUUpRoFU3oA2gWR0CGhRR0EHMVdX2UKGgGaAloD0MIa4E9JlIxV0CUhpRSlGgVTegDaBZHQIaMT9S/CZZ1fZQoaAZoCWgPQwi4yagyjD9YQJSGlFKUaBVN6ANoFkdAhpEyYoiLVHV9lChoBmgJaA9DCIuMDkjCg1xAlIaUUpRoFU3oA2gWR0CG+4jPfKp2dX2UKGgGaAloD0MI6dFUT+ZWXUCUhpRSlGgVTegDaBZHQIcBA53kgfV1fZQoaAZoCWgPQwiZEHNJ1ZplQJSGlFKUaBVN6ANoFkdAhwdcJMQEp3V9lChoBmgJaA9DCIP7AQ8MsmJAlIaUUpRoFU3oA2gWR0CHC1muDBdldX2UKGgGaAloD0MISpo/prXxIcCUhpRSlGgVTWMBaBZHQIcQuKdhAnl1fZQoaAZoCWgPQwj9uz5z1rRXQJSGlFKUaBVN6ANoFkdAhxH1nuiN83V9lChoBmgJaA9DCGXggJYuLGFAlIaUUpRoFU3oA2gWR0CHHYVymygPdX2UKGgGaAloD0MIFNGvrZ+uXkCUhpRSlGgVTegDaBZHQIcuy4FzMid1fZQoaAZoCWgPQwhl/PuMC39ZQJSGlFKUaBVN6ANoFkdAhz19kz41xnV9lChoBmgJaA9DCJ2+nq9Z41pAlIaUUpRoFU3oA2gWR0CHP6H+IdlvdX2UKGgGaAloD0MIDeTZ5VsrWkCUhpRSlGgVTegDaBZHQIdCkR8MNMJ1fZQoaAZoCWgPQwhJgJpatlbyP5SGlFKUaBVNbgFoFkdAh0enxz7uUnV9lChoBmgJaA9DCFHbhlGQhGFAlIaUUpRoFU3oA2gWR0CHSmkiUxEfdX2UKGgGaAloD0MIV2DI6tYmZECUhpRSlGgVTegDaBZHQIddx8D0UXZ1fZQoaAZoCWgPQwjekbHa/A9VQJSGlFKUaBVN6ANoFkdAh27QzUI9knV9lChoBmgJaA9DCAge3941ilVAlIaUUpRoFU3oA2gWR0CHbzqs2eg+dX2UKGgGaAloD0MIiEZ3EDviYECUhpRSlGgVTegDaBZHQId1OQnx8Up1fZQoaAZoCWgPQwjXEvJBT8phQJSGlFKUaBVN6ANoFkdAh95Y7ihnJ3V9lChoBmgJaA9DCLLxYItdI2JAlIaUUpRoFU3oA2gWR0CH4/snAqNIdX2UKGgGaAloD0MIzvqUY7J5VUCUhpRSlGgVTegDaBZHQIfqFjd56dF1fZQoaAZoCWgPQwgmGM41zGJgQJSGlFKUaBVN6ANoFkdAh/OHoHLRr3V9lChoBmgJaA9DCHwMVpzq3GBAlIaUUpRoFU3oA2gWR0CH9NSy+pOvdX2UKGgGaAloD0MIodgKmhaQYkCUhpRSlGgVTegDaBZHQIgAqzPa+N91fZQoaAZoCWgPQwiYaJCCp2xgQJSGlFKUaBVN6ANoFkdAiBLhrN4Z/HV9lChoBmgJaA9DCDum7souo1dAlIaUUpRoFU3oA2gWR0CIIdR1oxpMdX2UKGgGaAloD0MI198SgP+3YECUhpRSlGgVTegDaBZHQIgkBJXhfjV1fZQoaAZoCWgPQwgs8uuH2JRXQJSGlFKUaBVN6ANoFkdAiCbw2/BWP3V9lChoBmgJaA9DCI1feCXJll9AlIaUUpRoFU3oA2gWR0CIK+gUUO/ddX2UKGgGaAloD0MId6G5TiPsYECUhpRSlGgVTegDaBZHQIguk1Q66rh1fZQoaAZoCWgPQwhyqN+FrSpcQJSGlFKUaBVN6ANoFkdAiEEl7laKUHV9lChoBmgJaA9DCGn/A6xVAl5AlIaUUpRoFU3oA2gWR0CIUlvo/zJ7dX2UKGgGaAloD0MIms3jMJiLYUCUhpRSlGgVTegDaBZHQIhSx9d/rjZ1fZQoaAZoCWgPQwj4iJgSSfQOQJSGlFKUaBVL6mgWR0CIU+fSx7iRdX2UKGgGaAloD0MIca32sBeDW0CUhpRSlGgVTegDaBZHQIhYtiUgSvl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ee67afbf827e0f45289c0fbd7d97548d44e1a2c2d7f0c5640b97c6a8ba2df5f
|
3 |
+
size 144044
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f798cc62ef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f798cc62f80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f798cc69050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f798cc690e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f798cc69170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f798cc69200>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f798cc69290>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f798cc69320>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f798cc693b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f798cc69440>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f798cc694d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f798cc3d3c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651672739.957,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMB22j32jCu66pThu6HqbjValpO7TmfRtAAAgD8AAIA/Zm05vcPtGrpL56m7AIXhtSgyEjva08M6AACAPwAAgD8wDbk+qI7UvGqSIzzBnoW6KKP8vcoO2roAAIA/AACAPzMYSj70vKO8zyuXPE2x+LoidQ2+hp/EuwAAgD8AAIA/Jucivj13Gz5PnAM+8qtnvtksiL12i089AAAAAAAAAACayTW81U5dPsERMbwG30u+1yQlu3nHhL0AAAAAAAAAAM2SQz64qN06aPdnuwmEQri/nYw8vhovuQAAgD8AAIA/oNkrvvZDQzuONzC5XJJLNlMmxLw7k0w4AACAPwAAgD8ARcI9KWBuur3SX7tAtgC29sBXO303gjoAAIA/AACAP81hE772aB45AtJiOFTdkLYYoTC80ABFNgAAgD8AAIA/khm1vhdOIDwKhx+65kK7Nz6tLb0CNDo5AACAPwAAgD8A4A27rB0APsX0Wb1VRg++xIyYvUa//DwAAAAAAAAAABMuHj4K7lW7C42eu+zYGzmOm8+8sjGPOgAAgD8AAIA/bccYPuwN5buYXsq6I9iHONMjOb2mlPg5AACAPwAAgD/W9Z8+wV/TPYIgpjsSvwm+MpWuPFMtMT0AAAAAAAAAALPmjL1cZ2i6VXmyu+N4JTcmtQa76hdttgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8l8gCJCSXkCUhpRSlIwBbJRN6AOMAXSUR0CDNV+xW1c/dX2UKGgGaAloD0MIX3tmSYCDVkCUhpRSlGgVTegDaBZHQINBj+glF+d1fZQoaAZoCWgPQwgXSFD8GPhZQJSGlFKUaBVN6ANoFkdAg0Z5hBqsVHV9lChoBmgJaA9DCJ4kXTP5UVpAlIaUUpRoFU3oA2gWR0CDS9UPQOWjdX2UKGgGaAloD0MI4iL3dHXHHMCUhpRSlGgVTREBaBZHQINPJC+lCTl1fZQoaAZoCWgPQwhaf0sA/k5TQJSGlFKUaBVN6ANoFkdAg1UqDCgsb3V9lChoBmgJaA9DCJShKqbS9UHAlIaUUpRoFU01AWgWR0CDYDoDgZTAdX2UKGgGaAloD0MIeXb51oftNsCUhpRSlGgVTbsBaBZHQINuskOZssR1fZQoaAZoCWgPQwhS0Vj7OxRUQJSGlFKUaBVN6ANoFkdAg4Sb+98JD3V9lChoBmgJaA9DCJfhP91A42BAlIaUUpRoFU3oA2gWR0CDhxOZ9d/sdX2UKGgGaAloD0MI3qzB+6p9WUCUhpRSlGgVTegDaBZHQIOKR08vEjx1fZQoaAZoCWgPQwjr/UY7bvhjQJSGlFKUaBVN6ANoFkdAg5KCZfD1oXV9lChoBmgJaA9DCOm3rwPnYGFAlIaUUpRoFU3oA2gWR0CDvGMlTm4idX2UKGgGaAloD0MIpOTVOQbKVUCUhpRSlGgVTegDaBZHQIO84lWwNb11fZQoaAZoCWgPQwh8taM4R3ZZQJSGlFKUaBVN6ANoFkdAg8QTgdfb9XV9lChoBmgJaA9DCMKJ6NfWY1RAlIaUUpRoFU3oA2gWR0CDyM20AtFsdX2UKGgGaAloD0MIKENVTKXTWkCUhpRSlGgVTegDaBZHQIQfNQTEit91fZQoaAZoCWgPQwj+X3XkSOlRQJSGlFKUaBVN6ANoFkdAhCtgn+hoNHV9lChoBmgJaA9DCAQeGEB4VGBAlIaUUpRoFU3oA2gWR0CEMFOsT37DdX2UKGgGaAloD0MI+rZgqS6QVkCUhpRSlGgVTegDaBZHQIQ1sdRzijt1fZQoaAZoCWgPQwjxuRPsv1pOQJSGlFKUaBVN6ANoFkdAhDjneizsyHV9lChoBmgJaA9DCJerH5vk9F1AlIaUUpRoFU3oA2gWR0CEPp0CA+Y/dX2UKGgGaAloD0MIGedvQiHcWECUhpRSlGgVTegDaBZHQIRI9zKcNH91fZQoaAZoCWgPQwjYEByXcZ5XQJSGlFKUaBVN6ANoFkdAhFYfQjUutnV9lChoBmgJaA9DCObrMvynwFxAlIaUUpRoFU3oA2gWR0CEaOd92HLzdX2UKGgGaAloD0MIJA1uawvQUUCUhpRSlGgVTegDaBZHQIRrG7UXpGF1fZQoaAZoCWgPQwh9W7BUF45eQJSGlFKUaBVN6ANoFkdAhG4Z0r9VFXV9lChoBmgJaA9DCCi5wyYyflVAlIaUUpRoFU3oA2gWR0CEdiUi6g/UdX2UKGgGaAloD0MI5pMVw9XJIMCUhpRSlGgVTT0BaBZHQISK4evIOpd1fZQoaAZoCWgPQwg3jILgccdgQJSGlFKUaBVN6ANoFkdAhJ6aAe7tiXV9lChoBmgJaA9DCN44Kcx7s1hAlIaUUpRoFU3oA2gWR0CEnxas6q82dX2UKGgGaAloD0MIRKhSswc1XECUhpRSlGgVTegDaBZHQISlxb0OEuh1fZQoaAZoCWgPQwi4rMJmANdkQJSGlFKUaBVN6ANoFkdAhKpkcjqv/3V9lChoBmgJaA9DCHC1TlyOHFVAlIaUUpRoFU3oA2gWR0CFAeHD7655dX2UKGgGaAloD0MI6Xx4liDrX0CUhpRSlGgVTegDaBZHQIUPXbsWweN1fZQoaAZoCWgPQwiamZmZmZRfQJSGlFKUaBVN6ANoFkdAhRT8+zMRpXV9lChoBmgJaA9DCPBquTMTwl9AlIaUUpRoFU3oA2gWR0CFGz51vES/dX2UKGgGaAloD0MIscItH0nyXUCUhpRSlGgVTegDaBZHQIUfBOgxrSF1fZQoaAZoCWgPQwhrYRbauQNhQJSGlFKUaBVN6ANoFkdAhScfM4cWCXV9lChoBmgJaA9DCNnO91PjjFhAlIaUUpRoFU3oA2gWR0CFM7R5TqB3dX2UKGgGaAloD0MIzNHj9zbDQ8CUhpRSlGgVTWwBaBZHQIVG1nkDIR11fZQoaAZoCWgPQwh6bTZWYt1dQJSGlFKUaBVN6ANoFkdAhVgONgjQiXV9lChoBmgJaA9DCFW9/E6TTFtAlIaUUpRoFU3oA2gWR0CFWspSaVlgdX2UKGgGaAloD0MId4apLXUIUECUhpRSlGgVTegDaBZHQIVeN52Qnx91fZQoaAZoCWgPQwjT9NkB1wdLQJSGlFKUaBVN6ANoFkdAhWe2vStvGnV9lChoBmgJaA9DCLOVl/xPHlJAlIaUUpRoFU3oA2gWR0CFf2aa1Cw9dX2UKGgGaAloD0MIsaVHUz2gV0CUhpRSlGgVTegDaBZHQIWTnf4yoGZ1fZQoaAZoCWgPQwiu00hL5aJdQJSGlFKUaBVN6ANoFkdAhZQXLeQ+2XV9lChoBmgJaA9DCGSw4lRrm1xAlIaUUpRoFU3oA2gWR0CFm0kFfReDdX2UKGgGaAloD0MIx/KuesCQWkCUhpRSlGgVTegDaBZHQIWf/njhky11fZQoaAZoCWgPQwhOuFfmre9cQJSGlFKUaBVN6ANoFkdAhgT+UQkHEHV9lChoBmgJaA9DCHh7EALyEl5AlIaUUpRoFU3oA2gWR0CGCpATIvJzdX2UKGgGaAloD0MI3PKRlPRbXkCUhpRSlGgVTegDaBZHQIYQhzDGcWl1fZQoaAZoCWgPQwjtfhXgu5FUQJSGlFKUaBVN6ANoFkdAhhQmuTzNEHV9lChoBmgJaA9DCE+WWu83qmBAlIaUUpRoFU3oA2gWR0CGGlv/io87dX2UKGgGaAloD0MIio7k8h+zVkCUhpRSlGgVTegDaBZHQIYmIIY3vQZ1fZQoaAZoCWgPQwgnaJPDJ05iQJSGlFKUaBVN6ANoFkdAhjkKqfe1r3V9lChoBmgJaA9DCLjM6bKY711AlIaUUpRoFU3oA2gWR0CGSYE2YOUddX2UKGgGaAloD0MIS8gHPRsEYkCUhpRSlGgVTegDaBZHQIZL9wgkkbB1fZQoaAZoCWgPQwhkIqXZPGNhQJSGlFKUaBVN6ANoFkdAhk9lb3XZoXV9lChoBmgJaA9DCNcUyOwsuktAlIaUUpRoFU3oA2gWR0CGWHEaVD8cdX2UKGgGaAloD0MIFXMQdLSEYUCUhpRSlGgVTegDaBZHQIZvx7gKnel1fZQoaAZoCWgPQwghBU8hV+ZgQJSGlFKUaBVN6ANoFkdAhoSUIkZ75XV9lChoBmgJaA9DCLpoyHiUxFlAlIaUUpRoFU3oA2gWR0CGhRR0EHMVdX2UKGgGaAloD0MIa4E9JlIxV0CUhpRSlGgVTegDaBZHQIaMT9S/CZZ1fZQoaAZoCWgPQwi4yagyjD9YQJSGlFKUaBVN6ANoFkdAhpEyYoiLVHV9lChoBmgJaA9DCIuMDkjCg1xAlIaUUpRoFU3oA2gWR0CG+4jPfKp2dX2UKGgGaAloD0MI6dFUT+ZWXUCUhpRSlGgVTegDaBZHQIcBA53kgfV1fZQoaAZoCWgPQwiZEHNJ1ZplQJSGlFKUaBVN6ANoFkdAhwdcJMQEp3V9lChoBmgJaA9DCIP7AQ8MsmJAlIaUUpRoFU3oA2gWR0CHC1muDBdldX2UKGgGaAloD0MISpo/prXxIcCUhpRSlGgVTWMBaBZHQIcQuKdhAnl1fZQoaAZoCWgPQwj9uz5z1rRXQJSGlFKUaBVN6ANoFkdAhxH1nuiN83V9lChoBmgJaA9DCGXggJYuLGFAlIaUUpRoFU3oA2gWR0CHHYVymygPdX2UKGgGaAloD0MIFNGvrZ+uXkCUhpRSlGgVTegDaBZHQIcuy4FzMid1fZQoaAZoCWgPQwhl/PuMC39ZQJSGlFKUaBVN6ANoFkdAhz19kz41xnV9lChoBmgJaA9DCJ2+nq9Z41pAlIaUUpRoFU3oA2gWR0CHP6H+IdlvdX2UKGgGaAloD0MIDeTZ5VsrWkCUhpRSlGgVTegDaBZHQIdCkR8MNMJ1fZQoaAZoCWgPQwhJgJpatlbyP5SGlFKUaBVNbgFoFkdAh0enxz7uUnV9lChoBmgJaA9DCFHbhlGQhGFAlIaUUpRoFU3oA2gWR0CHSmkiUxEfdX2UKGgGaAloD0MIV2DI6tYmZECUhpRSlGgVTegDaBZHQIddx8D0UXZ1fZQoaAZoCWgPQwjekbHa/A9VQJSGlFKUaBVN6ANoFkdAh27QzUI9knV9lChoBmgJaA9DCAge3941ilVAlIaUUpRoFU3oA2gWR0CHbzqs2eg+dX2UKGgGaAloD0MIiEZ3EDviYECUhpRSlGgVTegDaBZHQId1OQnx8Up1fZQoaAZoCWgPQwjXEvJBT8phQJSGlFKUaBVN6ANoFkdAh95Y7ihnJ3V9lChoBmgJaA9DCLLxYItdI2JAlIaUUpRoFU3oA2gWR0CH4/snAqNIdX2UKGgGaAloD0MIzvqUY7J5VUCUhpRSlGgVTegDaBZHQIfqFjd56dF1fZQoaAZoCWgPQwgmGM41zGJgQJSGlFKUaBVN6ANoFkdAh/OHoHLRr3V9lChoBmgJaA9DCHwMVpzq3GBAlIaUUpRoFU3oA2gWR0CH9NSy+pOvdX2UKGgGaAloD0MIodgKmhaQYkCUhpRSlGgVTegDaBZHQIgAqzPa+N91fZQoaAZoCWgPQwiYaJCCp2xgQJSGlFKUaBVN6ANoFkdAiBLhrN4Z/HV9lChoBmgJaA9DCDum7souo1dAlIaUUpRoFU3oA2gWR0CIIdR1oxpMdX2UKGgGaAloD0MI198SgP+3YECUhpRSlGgVTegDaBZHQIgkBJXhfjV1fZQoaAZoCWgPQwgs8uuH2JRXQJSGlFKUaBVN6ANoFkdAiCbw2/BWP3V9lChoBmgJaA9DCI1feCXJll9AlIaUUpRoFU3oA2gWR0CIK+gUUO/ddX2UKGgGaAloD0MId6G5TiPsYECUhpRSlGgVTegDaBZHQIguk1Q66rh1fZQoaAZoCWgPQwhyqN+FrSpcQJSGlFKUaBVN6ANoFkdAiEEl7laKUHV9lChoBmgJaA9DCGn/A6xVAl5AlIaUUpRoFU3oA2gWR0CIUlvo/zJ7dX2UKGgGaAloD0MIms3jMJiLYUCUhpRSlGgVTegDaBZHQIhSx9d/rjZ1fZQoaAZoCWgPQwj4iJgSSfQOQJSGlFKUaBVL6mgWR0CIU+fSx7iRdX2UKGgGaAloD0MIca32sBeDW0CUhpRSlGgVTegDaBZHQIhYtiUgSvl1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee3ea9b47a6644a75b0aa3ae21d47a9b35592c85f4dd66c64fa548dea516bd4e
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:788fa5cbef77679f45ce4f26550830d6882dd74f05eb3bd94d0a31632db80c0f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92eb08ac3c90f79b73b9ffa68fa8062f8d38dff35d3a2f8af06ede2e9f6ac1da
|
3 |
+
size 244367
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 154.50068752791543, "std_reward": 82.62974274842004, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T14:19:20.518941"}
|