epsil's picture
First Commit
dc95647
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f32fc06b320>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32fc06b3b0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32fc06b440>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32fc06b4d0>",
"_build": "<function ActorCriticPolicy._build at 0x7f32fc06b560>",
"forward": "<function ActorCriticPolicy.forward at 0x7f32fc06b5f0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32fc06b680>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f32fc06b710>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32fc06b7a0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32fc06b830>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32fc06b8c0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f32fc0b8780>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVdgEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsEhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUjAFDlHSUUpSMBGhpZ2iUaBIolhAAAAAAAAAAmpmZQP//f39Qd9Y+//9/f5RoCksEhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgQAAAAAAAAAAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksEhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolgQAAAAAAAAAAQEBAZRoIUsEhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float32",
"shape": [
4
],
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
"bounded_below": "[ True True True True]",
"bounded_above": "[ True True True True]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
"n": 2,
"shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 131072,
"_total_timesteps": 100000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652119132.5685916,
"learning_rate": 0.0002,
"tensorboard_log": "logs",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAH5sAsCzBea/pwSbvIHWtb12E7k8RmZKPYA5ujvaKoc835PpvrE1DL8AbSC+MMm+vugjZbxk1Bo/R/gYPQAmNb8fSgq+Cx5YPlx3kryFxdu+xukwv/AtNL+sV2w7PtijPv9UiLwNLDc+RRTNvVTCPr9FuVk9s1CxvuTn6bxkfJs+pVPrPz3qvT/jUdM9KrJyPaN2Rj4/bCw7dy3lvGoCjbwfWpM9kwFdPpN/zDudEya+qN3bv7WBo78Fhcq9YMtZvqpxL79OUT6/oIsnve09dD1/Moa82B2ovKJynLw5E2G9dOCgvIvXHD017Om5amwhPXrvD0BQZYg/EDvwPaW/ij+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.3107200000000001,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFAAAAAAACMAWyUTRQBjAF0lEdAY0dzYEnss3V9lChoBkdAWMAAAAAAAGgHS2NoCEdAY0eeq7yxzXV9lChoBkdAXEAAAAAAAGgHS3FoCEdAY0kNkOI683V9lChoBkdAMgAAAAAAAGgHSxJoCEdAY0j7HAAQx3V9lChoBkdAaSAAAAAAAGgHS8loCEdAY0kd7v5P/XV9lChoBkdAbAAAAAAAAGgHS+BoCEdAY0sb6xgRb3V9lChoBkdAZKAAAAAAAGgHS6VoCEdAY0sA5q/M4nV9lChoBkdAZ0AAAAAAAGgHS7poCEdAY0xMh5gPVnV9lChoBkdAWYAAAAAAAGgHS2ZoCEdAY0xI5o4+83V9lChoBkdAYyAAAAAAAGgHS5loCEdAY046vJRwZXV9lChoBkdAWYAAAAAAAGgHS2ZoCEdAY0/UQTVUdnV9lChoBkdAZCAAAAAAAGgHS6FoCEdAY1CJj2BatHV9lChoBkdATIAAAAAAAGgHSzloCEdAY1JIxQBPsXV9lChoBkdAbYAAAAAAAGgHS+xoCEdAY1MJEYwZfnV9lChoBkdAZiAAAAAAAGgHS7FoCEdAY1LjaPCEYnV9lChoBkdAchAAAAAAAGgHTSEBaAhHQGNTbCSA6Ml1fZQoaAZHQGAAAAAAAABoB0uAaAhHQGNTeKCQLeB1fZQoaAZHQG0AAAAAAABoB0voaAhHQGNTsQmNR3x1fZQoaAZHQGZAAAAAAABoB0uyaAhHQGNTojOcDr91fZQoaAZHQGBgAAAAAABoB0uDaAhHQGNU62F36hx1fZQoaAZHQGDAAAAAAABoB0uGaAhHQGNVHLA57w91fZQoaAZHQG6gAAAAAABoB0v1aAhHQGNV8ZDRc/t1fZQoaAZHQGnAAAAAAABoB0vOaAhHQGNW7TtsvZh1fZQoaAZHQFKAAAAAAABoB0tKaAhHQGNXV+7UXpJ1fZQoaAZHQHCAAAAAAABoB00IAWgIR0BjWB17pmmMdX2UKGgGR0BsoAAAAAAAaAdL5WgIR0BjWDpPhybQdX2UKGgGR0BfwAAAAAAAaAdLf2gIR0BjW9srNGExdX2UKGgGR0BkYAAAAAAAaAdLo2gIR0BjXePmxMWXdX2UKGgGR0BggAAAAAAAaAdLhGgIR0BjXwZIg/1QdX2UKGgGR0BrYAAAAAAAaAdL22gIR0BjXyakRBeHdX2UKGgGR0BtAAAAAAAAaAdL6GgIR0BjXz+ee4CqdX2UKGgGR0BooAAAAAAAaAdLxWgIR0BjYRNbkfcOdX2UKGgGR0BqgAAAAAAAaAdL1GgIR0BjYWZJCjUNdX2UKGgGR0Bn4AAAAAAAaAdLv2gIR0BjYgZdfLLZdX2UKGgGR0BnIAAAAAAAaAdLuWgIR0BjYzSE12q2dX2UKGgGR0BlIAAAAAAAaAdLqWgIR0BjY2ivgWJrdX2UKGgGR0B5sAAAAAAAaAdNmwFoCEdAY2eSDh99dHV9lChoBkdAcgAAAAAAAGgHTSABaAhHQGNnuMVDa5B1fZQoaAZHQHJgAAAAAABoB00mAWgIR0BjaFqQA+6idX2UKGgGR0Bt4AAAAAAAaAdL72gIR0BjaP4EfT1DdX2UKGgGR0BwYAAAAAAAaAdNBgFoCEdAY2mP/aQFLXV9lChoBkdAZGAAAAAAAGgHS6NoCEdAY2mKxcE/0XV9lChoBkdAYuAAAAAAAGgHS5doCEdAY2ok690zTHV9lChoBkdAbaAAAAAAAGgHS+1oCEdAY2zfIjnmrHV9lChoBkdAdZAAAAAAAGgHTVkBaAhHQGNtfZuhsZZ1fZQoaAZHQGbAAAAAAABoB0u2aAhHQGNugrxy4nZ1fZQoaAZHQF7AAAAAAABoB0t7aAhHQGNv+LFXJYF1fZQoaAZHQGlgAAAAAABoB0vLaAhHQGNwaKLsKLN1fZQoaAZHQGbAAAAAAABoB0u2aAhHQGNwdQ40dil1fZQoaAZHQF9AAAAAAABoB0t9aAhHQGNwvZRKpUB1fZQoaAZHQGvgAAAAAABoB0vfaAhHQGNwvo3aSLZ1fZQoaAZHQHHAAAAAAABoB00cAWgIR0Bjc03EQ5FPdX2UKGgGR0BzMAAAAAAAaAdNMwFoCEdAY3SVnEl3QnV9lChoBkdAUwAAAAAAAGgHS0xoCEdAY3WR0U47zXV9lChoBkdAa4AAAAAAAGgHS9xoCEdAY3ZRE4Nqg3V9lChoBkdAamAAAAAAAGgHS9NoCEdAY3e76Hj6vnV9lChoBkdAZeAAAAAAAGgHS69oCEdAY3p4yoGY8nV9lChoBkdAdSAAAAAAAGgHTVIBaAhHQGN7FGXokiV1fZQoaAZHQGTAAAAAAABoB0umaAhHQGN7aP0Zm7J1fZQoaAZHQHFAAAAAAABoB00UAWgIR0Bje9xZMcp9dX2UKGgGR0BxsAAAAAAAaAdNGwFoCEdAY3zeVs1sL3V9lChoBkdAbgAAAAAAAGgHS/BoCEdAY30fOlfqo3V9lChoBkdAZ0AAAAAAAGgHS7poCEdAY31mHP/rB3V9lChoBkdAYQAAAAAAAGgHS4hoCEdAY32/FBIFvHV9lChoBkdAY6AAAAAAAGgHS51oCEdAY33AzHjp93V9lChoBkdAS4AAAAAAAGgHSzdoCEdAY33nGsFMZnV9lChoBkdAb6AAAAAAAGgHS/1oCEdAY35iobXHznV9lChoBkdAYWAAAAAAAGgHS4toCEdAY3/4IKMNt3V9lChoBkdAa2AAAAAAAGgHS9toCEdAY3/StNi6QXV9lChoBkdAQQAAAAAAAGgHSyJoCEdAY4BkFOfukXV9lChoBkdAcbAAAAAAAGgHTRsBaAhHQGOD1kUbkwN1fZQoaAZHQFIAAAAAAABoB0tIaAhHQGOEy2x6fJ51fZQoaAZHQGHAAAAAAABoB0uOaAhHQGOE8VQAMlV1fZQoaAZHQHjwAAAAAABoB02PAWgIR0BjhVqzqrzYdX2UKGgGR0BXAAAAAAAAaAdLXGgIR0Bjhtp/PPcBdX2UKGgGR0BlYAAAAAAAaAdLq2gIR0Bjhs+JP69CdX2UKGgGR0Bk4AAAAAAAaAdLp2gIR0Bjh1w3o9s8dX2UKGgGR0BbQAAAAAAAaAdLbWgIR0Bjh1iSaEzwdX2UKGgGR0BiAAAAAAAAaAdLkGgIR0Bjh3gBLf1pdX2UKGgGR0BtQAAAAAAAaAdL6mgIR0BjiAlOXVsldX2UKGgGR0ByAAAAAAAAaAdNIAFoCEdAY4liwSrYG3V9lChoBkdAZeAAAAAAAGgHS69oCEdAY4nWFvhqCnV9lChoBkdAZ8AAAAAAAGgHS75oCEdAY4pHmRvFWHV9lChoBkdAS4AAAAAAAGgHSzdoCEdAY4s9Zid8RnV9lChoBkdAV4AAAAAAAGgHS15oCEdAY4uNyYG+snV9lChoBkdAakAAAAAAAGgHS9JoCEdAY4xRXOnl4nV9lChoBkdAWEAAAAAAAGgHS2FoCEdAY4wuxKQJX3V9lChoBkdAagAAAAAAAGgHS9BoCEdAY4zjVhCtzXV9lChoBkdATQAAAAAAAGgHSzpoCEdAY49pJPIn0HV9lChoBkdAckAAAAAAAGgHTSQBaAhHQGORFcpsoDx1fZQoaAZHQFvAAAAAAABoB0tvaAhHQGORoEr5IpZ1fZQoaAZHQGtAAAAAAABoB0vaaAhHQGOSy9ugpSd1fZQoaAZHQGUAAAAAAABoB0uoaAhHQGOS0mUnogV1fZQoaAZHQGuAAAAAAABoB0vcaAhHQGOT57XxvvV1fZQoaAZHQGEgAAAAAABoB0uJaAhHQGOWu8CgbqB1fZQoaAZHQGugAAAAAABoB0vdaAhHQGOY8vEjxCp1fZQoaAZHQGjAAAAAAABoB0vGaAhHQGOZaQV9F4N1fZQoaAZHQHEgAAAAAABoB00SAWgIR0BjmlpqREF4dX2UKGgGR0BwkAAAAAAAaAdNCQFoCEdAY5p5bhWHUXV9lChoBkdAchAAAAAAAGgHTSEBaAhHQGOa0RFqi491ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 40,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}