enlacinglines commited on
Commit
bd46e0a
1 Parent(s): c2c8305

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.46 +/- 0.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:beb2f74d388ed05b7a7438ebaf489b7f936265fb9643b66c0efda360b52dcb18
3
+ size 108146
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc2e0548a60>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fc2e05458a0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 569916,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677619899602190613,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcPZbP6CRtj9wZ6a/oemgPwqBdj0FEZm+X96FPyBUVr9m3mi/knSKv3ZQq79X1L89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAau6APyZszT9Uu6+/v1S2P+xlFj5E2a2+GDqfP2LJUr/auG2/WPeRv/qZtL+AnbI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABw9ls/oJG2P3Bnpr8Sv7a6MUAOvUUZ9r2h6aA/CoF2PQURmb5Q37c8WtXPvQsFGbZf3oU/IFRWv2beaL+OiHG9ahGevvEO4D2SdIq/dlCrv1fUvz2r8cs8JjFevc9GQj2UaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.8592291 1.4263191 -1.3000317 ]\n [ 1.2571298 0.06018165 -0.29895797]\n [ 1.0458487 -0.83722115 -0.90964353]\n [-1.0816824 -1.338393 0.09366672]]",
60
+ "desired_goal": "[[ 1.0072758 1.6048629 -1.3729043 ]\n [ 1.4244612 0.14687318 -0.33954823]\n [ 1.2439604 -0.82338536 -0.92860186]\n [-1.1403608 -1.410949 0.08721447]]",
61
+ "observation": "[[ 8.59229088e-01 1.42631912e+00 -1.30003166e+00 -1.39424414e-03\n -3.47291864e-02 -1.20165385e-01]\n [ 1.25712979e+00 6.01816550e-02 -2.98957974e-01 2.24453509e-02\n -1.01481155e-01 -2.28017120e-06]\n [ 1.04584873e+00 -8.37221146e-01 -9.09643531e-01 -5.89681193e-02\n -3.08726609e-01 1.09403498e-01]\n [-1.08168244e+00 -1.33839297e+00 9.36667249e-02 2.48955097e-02\n -5.42460904e-02 4.74308096e-02]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARTXVvciJFj4Any0+JbRmPXF84bzIJzg94z5IO/VuXj1AxF0+Ugb8vZwD573pMIk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.10410551 0.14700997 0.16955185]\n [ 0.05632414 -0.02752516 0.04495981]\n [ 0.00305551 0.05430504 0.21656895]\n [-0.12305893 -0.11279985 0.06698782]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.43010000000000004,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINlfNc0S+5r+UhpRSlIwBbJRLMowBdJRHQJtnzT3IuGt1fZQoaAZoCWgPQwga4e1BCIjxv5SGlFKUaBVLMmgWR0CbZyX3xnWbdX2UKGgGaAloD0MIr13acFga57+UhpRSlGgVSzJoFkdAm2ZzMNc4YXV9lChoBmgJaA9DCL73N2ivfvG/lIaUUpRoFUsyaBZHQJtl0bhm5Dt1fZQoaAZoCWgPQwjBOLh0zHnov5SGlFKUaBVLMmgWR0Cbahl+Vkc0dX2UKGgGaAloD0MITtU9srlq3r+UhpRSlGgVSzJoFkdAm2lyFj/dZnV9lChoBmgJaA9DCCp0XmOXqOa/lIaUUpRoFUsyaBZHQJtov06HTJB1fZQoaAZoCWgPQwijsIuiB77ov5SGlFKUaBVLMmgWR0CbaB3c580DdX2UKGgGaAloD0MIV0J3SZzV97+UhpRSlGgVSzJoFkdAm2yActGutHV9lChoBmgJaA9DCBKHbCBd7OO/lIaUUpRoFUsyaBZHQJtr2TLW7OF1fZQoaAZoCWgPQwhfYizTL5Hnv5SGlFKUaBVLMmgWR0Cbayaq0dBCdX2UKGgGaAloD0MIOzjYmxjS+L+UhpRSlGgVSzJoFkdAm2qFW4mTknV9lChoBmgJaA9DCHwsfeiCeu6/lIaUUpRoFUsyaBZHQJtu3JGOMl11fZQoaAZoCWgPQwhcPSe9b/zpv5SGlFKUaBVLMmgWR0CbbjUZNwirdX2UKGgGaAloD0MIajNOQ1Th7L+UhpRSlGgVSzJoFkdAm22B/3Fkx3V9lChoBmgJaA9DCBoVONkG7ve/lIaUUpRoFUsyaBZHQJts4Irvsqt1fZQoaAZoCWgPQwhI+Um1T0fov5SGlFKUaBVLMmgWR0CbcRKx9oexdX2UKGgGaAloD0MIQswlVdtN6r+UhpRSlGgVSzJoFkdAm3BrkXDWLHV9lChoBmgJaA9DCKhwBKkUe/m/lIaUUpRoFUsyaBZHQJtvuRFI/aB1fZQoaAZoCWgPQwhSX5Z2ai7rv5SGlFKUaBVLMmgWR0CbbxdYW+GodX2UKGgGaAloD0MItK88SE8R7b+UhpRSlGgVSzJoFkdAm3OwyIpH7XV9lChoBmgJaA9DCLpJDAIrB+2/lIaUUpRoFUsyaBZHQJtzCTot+Th1fZQoaAZoCWgPQwivmXyzzY3xv5SGlFKUaBVLMmgWR0Cbclguyu6mdX2UKGgGaAloD0MIW9JRDmaT7r+UhpRSlGgVSzJoFkdAm3G2vfTCtXV9lChoBmgJaA9DCOM3hZUKKuu/lIaUUpRoFUsyaBZHQJt2LUNKAax1fZQoaAZoCWgPQwhhHFw65rziv5SGlFKUaBVLMmgWR0CbdYW2w3YMdX2UKGgGaAloD0MIRdWvdD485b+UhpRSlGgVSzJoFkdAm3TS9du50HV9lChoBmgJaA9DCLudfeVBeuW/lIaUUpRoFUsyaBZHQJt0MWDYh+x1fZQoaAZoCWgPQwjU78LWbOXbv5SGlFKUaBVLMmgWR0CbeIC4SYgJdX2UKGgGaAloD0MICMcsexJY4r+UhpRSlGgVSzJoFkdAm3fZWvKU3XV9lChoBmgJaA9DCKPJxRhYx+u/lIaUUpRoFUsyaBZHQJt3Jun/DLt1fZQoaAZoCWgPQwgcBvNXyFzpv5SGlFKUaBVLMmgWR0CbdoW/rSmZdX2UKGgGaAloD0MI86s5QDBH3b+UhpRSlGgVSzJoFkdAm3rgPAfuC3V9lChoBmgJaA9DCDy+vWvQl+K/lIaUUpRoFUsyaBZHQJt6OLR8c+91fZQoaAZoCWgPQwjjjcwjfzDjv5SGlFKUaBVLMmgWR0CbeYWUKRdQdX2UKGgGaAloD0MIYVRSJ6CJ6L+UhpRSlGgVSzJoFkdAm3jj1oQFtHV9lChoBmgJaA9DCPz9YrZkVeG/lIaUUpRoFUsyaBZHQJt9LG5tm+V1fZQoaAZoCWgPQwhZ2qm53ODiv5SGlFKUaBVLMmgWR0CbfIT0QK8ddX2UKGgGaAloD0MI7pOjAFGw47+UhpRSlGgVSzJoFkdAm3vR/d69kHV9lChoBmgJaA9DCIjZy7bT1uK/lIaUUpRoFUsyaBZHQJt7MG1QZXN1fZQoaAZoCWgPQwhIT5FDxM3dv5SGlFKUaBVLMmgWR0Cbf43l0YCRdX2UKGgGaAloD0MINfEO8KSF5b+UhpRSlGgVSzJoFkdAm37nZbpu/HV9lChoBmgJaA9DCIOieQCLfOq/lIaUUpRoFUsyaBZHQJt+NKJ2t+11fZQoaAZoCWgPQwgwRiQKLevdv5SGlFKUaBVLMmgWR0CbfZL39JjEdX2UKGgGaAloD0MIDveRW5Pu4L+UhpRSlGgVSzJoFkdAm4HQnlXA/XV9lChoBmgJaA9DCDI7i96pgOm/lIaUUpRoFUsyaBZHQJuBKQ9zOop1fZQoaAZoCWgPQwhZFkz8UVTmv5SGlFKUaBVLMmgWR0CbgHZG8VYZdX2UKGgGaAloD0MIVrd6Tnpf4b+UhpRSlGgVSzJoFkdAm3/UmICU5nV9lChoBmgJaA9DCC8012mkJeG/lIaUUpRoFUsyaBZHQJuEEjOcDr91fZQoaAZoCWgPQwguqkVEMfniv5SGlFKUaBVLMmgWR0Cbg2qjafz0dX2UKGgGaAloD0MI2bJ8XYb/3b+UhpRSlGgVSzJoFkdAm4K3xOLzgHV9lChoBmgJaA9DCJ6zBYTWw9S/lIaUUpRoFUsyaBZHQJuCFhx5s0p1fZQoaAZoCWgPQwjou1tZorPYv5SGlFKUaBVLMmgWR0Cbhl0EHMUzdX2UKGgGaAloD0MIzEBl/PsM6L+UhpRSlGgVSzJoFkdAm4W1ZHNHH3V9lChoBmgJaA9DCIFB0qdV9Oa/lIaUUpRoFUsyaBZHQJuFAp+c6Nl1fZQoaAZoCWgPQwjLgR5q2zDav5SGlFKUaBVLMmgWR0CbhGGUOd5IdX2UKGgGaAloD0MI1GUxsfm437+UhpRSlGgVSzJoFkdAm4icrAgxJ3V9lChoBmgJaA9DCCBCXDl7Z9m/lIaUUpRoFUsyaBZHQJuH9RYRuj11fZQoaAZoCWgPQwgDX9Gt1/TTv5SGlFKUaBVLMmgWR0Cbh0Ijnmq6dX2UKGgGaAloD0MIU3jQ7Lo36L+UhpRSlGgVSzJoFkdAm4ahEjPfK3V9lChoBmgJaA9DCAq/1M+biui/lIaUUpRoFUsyaBZHQJuLifRNRFZ1fZQoaAZoCWgPQwgDQBU3bjHiv5SGlFKUaBVLMmgWR0CbiuQnQY1pdX2UKGgGaAloD0MIJGO1+X/V17+UhpRSlGgVSzJoFkdAm4ozAJswc3V9lChoBmgJaA9DCB9I3jmU4fO/lIaUUpRoFUsyaBZHQJuJkuoP07N1fZQoaAZoCWgPQwi62R8ot+3gv5SGlFKUaBVLMmgWR0Cbj2nDBMzudX2UKGgGaAloD0MIM4y7QbRW4L+UhpRSlGgVSzJoFkdAm47D4L1EmnV9lChoBmgJaA9DCOYeEr739/G/lIaUUpRoFUsyaBZHQJuOFTZQHiZ1fZQoaAZoCWgPQwg01ZP5R9/Zv5SGlFKUaBVLMmgWR0CbjXXr+o9+dX2UKGgGaAloD0MIq+gPzTy55b+UhpRSlGgVSzJoFkdAm5MbUkOZs3V9lChoBmgJaA9DCAG+27xxUuC/lIaUUpRoFUsyaBZHQJuSdX/5tWN1fZQoaAZoCWgPQwjqeMxAZXzkv5SGlFKUaBVLMmgWR0CbkcR1oxpMdX2UKGgGaAloD0MIT5KumXyz37+UhpRSlGgVSzJoFkdAm5Ekj5bhWHV9lChoBmgJaA9DCMQFoFG69Ne/lIaUUpRoFUsyaBZHQJuXBAKOT7l1fZQoaAZoCWgPQwiLjXkdccjUv5SGlFKUaBVLMmgWR0Cbll5ZKWcCdX2UKGgGaAloD0MIz9kCQush8L+UhpRSlGgVSzJoFkdAm5WtahYeT3V9lChoBmgJaA9DCDc3pics8dG/lIaUUpRoFUsyaBZHQJuVDWRRuTB1fZQoaAZoCWgPQwid1QJ7TCTlv5SGlFKUaBVLMmgWR0CbmvOymhugdX2UKGgGaAloD0MIZYo5CDpa0L+UhpRSlGgVSzJoFkdAm5pN2X9it3V9lChoBmgJaA9DCBsRjINLR+a/lIaUUpRoFUsyaBZHQJuZnF85S3t1fZQoaAZoCWgPQwj7WpcaoZ/dv5SGlFKUaBVLMmgWR0CbmPygf2bodX2UKGgGaAloD0MIARQjS+bY4L+UhpRSlGgVSzJoFkdAm57V+EytWHV9lChoBmgJaA9DCPoMqDejZui/lIaUUpRoFUsyaBZHQJueMLQXyiF1fZQoaAZoCWgPQwjHL7yS5LnZv5SGlFKUaBVLMmgWR0CbnX/YraufdX2UKGgGaAloD0MIIsFUM2sp8b+UhpRSlGgVSzJoFkdAm5zig5BC2XV9lChoBmgJaA9DCIJxcOmYc+S/lIaUUpRoFUsyaBZHQJuhXGecx0x1fZQoaAZoCWgPQwhBf6FHjJ7ov5SGlFKUaBVLMmgWR0CboLTg2qDLdX2UKGgGaAloD0MIRfEqa5vi67+UhpRSlGgVSzJoFkdAm6ACGnGbTnV9lChoBmgJaA9DCO26tyIxQdq/lIaUUpRoFUsyaBZHQJufYHeJpFl1fZQoaAZoCWgPQwhRvwtbs5XRv5SGlFKUaBVLMmgWR0Cbo54JNTLodX2UKGgGaAloD0MIhxiveVVn4L+UhpRSlGgVSzJoFkdAm6L2orFwUHV9lChoBmgJaA9DCMFWCRaHM+q/lIaUUpRoFUsyaBZHQJuiQ/hVENR1fZQoaAZoCWgPQwjy07g3v2Hfv5SGlFKUaBVLMmgWR0CboaJaaCtjdX2UKGgGaAloD0MIB0FHq1pS5r+UhpRSlGgVSzJoFkdAm6XlzySV4XV9lChoBmgJaA9DCGvylNV0Pem/lIaUUpRoFUsyaBZHQJulPkeZG8V1fZQoaAZoCWgPQwh47dKGw1Lov5SGlFKUaBVLMmgWR0CbpItFa0QcdX2UKGgGaAloD0MIXMmOjUA847+UhpRSlGgVSzJoFkdAm6Ppl4C6pnV9lChoBmgJaA9DCHnr/NtlP+C/lIaUUpRoFUsyaBZHQJuoMqz7di51fZQoaAZoCWgPQwgGR8mrcwzfv5SGlFKUaBVLMmgWR0Cbp4tCAtnPdX2UKGgGaAloD0MIYd9OIsK/5b+UhpRSlGgVSzJoFkdAm6bYZydWhnV9lChoBmgJaA9DCCV5ru/DQd2/lIaUUpRoFUsyaBZHQJumNtKqXF91ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 28495,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4f08236f9f34c7b9aa28eb4844742de004bdb621077ab4a6705d6a589de1dc2
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:640ded24e753f155a989a9b97827cda9c8786a656bb14b449c344851410b6975
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc2e0548a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc2e05458a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 569916, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677619899602190613, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcPZbP6CRtj9wZ6a/oemgPwqBdj0FEZm+X96FPyBUVr9m3mi/knSKv3ZQq79X1L89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAau6APyZszT9Uu6+/v1S2P+xlFj5E2a2+GDqfP2LJUr/auG2/WPeRv/qZtL+AnbI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABw9ls/oJG2P3Bnpr8Sv7a6MUAOvUUZ9r2h6aA/CoF2PQURmb5Q37c8WtXPvQsFGbZf3oU/IFRWv2beaL+OiHG9ahGevvEO4D2SdIq/dlCrv1fUvz2r8cs8JjFevc9GQj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.8592291 1.4263191 -1.3000317 ]\n [ 1.2571298 0.06018165 -0.29895797]\n [ 1.0458487 -0.83722115 -0.90964353]\n [-1.0816824 -1.338393 0.09366672]]", "desired_goal": "[[ 1.0072758 1.6048629 -1.3729043 ]\n [ 1.4244612 0.14687318 -0.33954823]\n [ 1.2439604 -0.82338536 -0.92860186]\n [-1.1403608 -1.410949 0.08721447]]", "observation": "[[ 8.59229088e-01 1.42631912e+00 -1.30003166e+00 -1.39424414e-03\n -3.47291864e-02 -1.20165385e-01]\n [ 1.25712979e+00 6.01816550e-02 -2.98957974e-01 2.24453509e-02\n -1.01481155e-01 -2.28017120e-06]\n [ 1.04584873e+00 -8.37221146e-01 -9.09643531e-01 -5.89681193e-02\n -3.08726609e-01 1.09403498e-01]\n [-1.08168244e+00 -1.33839297e+00 9.36667249e-02 2.48955097e-02\n -5.42460904e-02 4.74308096e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARTXVvciJFj4Any0+JbRmPXF84bzIJzg94z5IO/VuXj1AxF0+Ugb8vZwD573pMIk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10410551 0.14700997 0.16955185]\n [ 0.05632414 -0.02752516 0.04495981]\n [ 0.00305551 0.05430504 0.21656895]\n [-0.12305893 -0.11279985 0.06698782]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.43010000000000004, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINlfNc0S+5r+UhpRSlIwBbJRLMowBdJRHQJtnzT3IuGt1fZQoaAZoCWgPQwga4e1BCIjxv5SGlFKUaBVLMmgWR0CbZyX3xnWbdX2UKGgGaAloD0MIr13acFga57+UhpRSlGgVSzJoFkdAm2ZzMNc4YXV9lChoBmgJaA9DCL73N2ivfvG/lIaUUpRoFUsyaBZHQJtl0bhm5Dt1fZQoaAZoCWgPQwjBOLh0zHnov5SGlFKUaBVLMmgWR0Cbahl+Vkc0dX2UKGgGaAloD0MITtU9srlq3r+UhpRSlGgVSzJoFkdAm2lyFj/dZnV9lChoBmgJaA9DCCp0XmOXqOa/lIaUUpRoFUsyaBZHQJtov06HTJB1fZQoaAZoCWgPQwijsIuiB77ov5SGlFKUaBVLMmgWR0CbaB3c580DdX2UKGgGaAloD0MIV0J3SZzV97+UhpRSlGgVSzJoFkdAm2yActGutHV9lChoBmgJaA9DCBKHbCBd7OO/lIaUUpRoFUsyaBZHQJtr2TLW7OF1fZQoaAZoCWgPQwhfYizTL5Hnv5SGlFKUaBVLMmgWR0Cbayaq0dBCdX2UKGgGaAloD0MIOzjYmxjS+L+UhpRSlGgVSzJoFkdAm2qFW4mTknV9lChoBmgJaA9DCHwsfeiCeu6/lIaUUpRoFUsyaBZHQJtu3JGOMl11fZQoaAZoCWgPQwhcPSe9b/zpv5SGlFKUaBVLMmgWR0CbbjUZNwirdX2UKGgGaAloD0MIajNOQ1Th7L+UhpRSlGgVSzJoFkdAm22B/3Fkx3V9lChoBmgJaA9DCBoVONkG7ve/lIaUUpRoFUsyaBZHQJts4Irvsqt1fZQoaAZoCWgPQwhI+Um1T0fov5SGlFKUaBVLMmgWR0CbcRKx9oexdX2UKGgGaAloD0MIQswlVdtN6r+UhpRSlGgVSzJoFkdAm3BrkXDWLHV9lChoBmgJaA9DCKhwBKkUe/m/lIaUUpRoFUsyaBZHQJtvuRFI/aB1fZQoaAZoCWgPQwhSX5Z2ai7rv5SGlFKUaBVLMmgWR0CbbxdYW+GodX2UKGgGaAloD0MItK88SE8R7b+UhpRSlGgVSzJoFkdAm3OwyIpH7XV9lChoBmgJaA9DCLpJDAIrB+2/lIaUUpRoFUsyaBZHQJtzCTot+Th1fZQoaAZoCWgPQwivmXyzzY3xv5SGlFKUaBVLMmgWR0Cbclguyu6mdX2UKGgGaAloD0MIW9JRDmaT7r+UhpRSlGgVSzJoFkdAm3G2vfTCtXV9lChoBmgJaA9DCOM3hZUKKuu/lIaUUpRoFUsyaBZHQJt2LUNKAax1fZQoaAZoCWgPQwhhHFw65rziv5SGlFKUaBVLMmgWR0CbdYW2w3YMdX2UKGgGaAloD0MIRdWvdD485b+UhpRSlGgVSzJoFkdAm3TS9du50HV9lChoBmgJaA9DCLudfeVBeuW/lIaUUpRoFUsyaBZHQJt0MWDYh+x1fZQoaAZoCWgPQwjU78LWbOXbv5SGlFKUaBVLMmgWR0CbeIC4SYgJdX2UKGgGaAloD0MICMcsexJY4r+UhpRSlGgVSzJoFkdAm3fZWvKU3XV9lChoBmgJaA9DCKPJxRhYx+u/lIaUUpRoFUsyaBZHQJt3Jun/DLt1fZQoaAZoCWgPQwgcBvNXyFzpv5SGlFKUaBVLMmgWR0CbdoW/rSmZdX2UKGgGaAloD0MI86s5QDBH3b+UhpRSlGgVSzJoFkdAm3rgPAfuC3V9lChoBmgJaA9DCDy+vWvQl+K/lIaUUpRoFUsyaBZHQJt6OLR8c+91fZQoaAZoCWgPQwjjjcwjfzDjv5SGlFKUaBVLMmgWR0CbeYWUKRdQdX2UKGgGaAloD0MIYVRSJ6CJ6L+UhpRSlGgVSzJoFkdAm3jj1oQFtHV9lChoBmgJaA9DCPz9YrZkVeG/lIaUUpRoFUsyaBZHQJt9LG5tm+V1fZQoaAZoCWgPQwhZ2qm53ODiv5SGlFKUaBVLMmgWR0CbfIT0QK8ddX2UKGgGaAloD0MI7pOjAFGw47+UhpRSlGgVSzJoFkdAm3vR/d69kHV9lChoBmgJaA9DCIjZy7bT1uK/lIaUUpRoFUsyaBZHQJt7MG1QZXN1fZQoaAZoCWgPQwhIT5FDxM3dv5SGlFKUaBVLMmgWR0Cbf43l0YCRdX2UKGgGaAloD0MINfEO8KSF5b+UhpRSlGgVSzJoFkdAm37nZbpu/HV9lChoBmgJaA9DCIOieQCLfOq/lIaUUpRoFUsyaBZHQJt+NKJ2t+11fZQoaAZoCWgPQwgwRiQKLevdv5SGlFKUaBVLMmgWR0CbfZL39JjEdX2UKGgGaAloD0MIDveRW5Pu4L+UhpRSlGgVSzJoFkdAm4HQnlXA/XV9lChoBmgJaA9DCDI7i96pgOm/lIaUUpRoFUsyaBZHQJuBKQ9zOop1fZQoaAZoCWgPQwhZFkz8UVTmv5SGlFKUaBVLMmgWR0CbgHZG8VYZdX2UKGgGaAloD0MIVrd6Tnpf4b+UhpRSlGgVSzJoFkdAm3/UmICU5nV9lChoBmgJaA9DCC8012mkJeG/lIaUUpRoFUsyaBZHQJuEEjOcDr91fZQoaAZoCWgPQwguqkVEMfniv5SGlFKUaBVLMmgWR0Cbg2qjafz0dX2UKGgGaAloD0MI2bJ8XYb/3b+UhpRSlGgVSzJoFkdAm4K3xOLzgHV9lChoBmgJaA9DCJ6zBYTWw9S/lIaUUpRoFUsyaBZHQJuCFhx5s0p1fZQoaAZoCWgPQwjou1tZorPYv5SGlFKUaBVLMmgWR0Cbhl0EHMUzdX2UKGgGaAloD0MIzEBl/PsM6L+UhpRSlGgVSzJoFkdAm4W1ZHNHH3V9lChoBmgJaA9DCIFB0qdV9Oa/lIaUUpRoFUsyaBZHQJuFAp+c6Nl1fZQoaAZoCWgPQwjLgR5q2zDav5SGlFKUaBVLMmgWR0CbhGGUOd5IdX2UKGgGaAloD0MI1GUxsfm437+UhpRSlGgVSzJoFkdAm4icrAgxJ3V9lChoBmgJaA9DCCBCXDl7Z9m/lIaUUpRoFUsyaBZHQJuH9RYRuj11fZQoaAZoCWgPQwgDX9Gt1/TTv5SGlFKUaBVLMmgWR0Cbh0Ijnmq6dX2UKGgGaAloD0MIU3jQ7Lo36L+UhpRSlGgVSzJoFkdAm4ahEjPfK3V9lChoBmgJaA9DCAq/1M+biui/lIaUUpRoFUsyaBZHQJuLifRNRFZ1fZQoaAZoCWgPQwgDQBU3bjHiv5SGlFKUaBVLMmgWR0CbiuQnQY1pdX2UKGgGaAloD0MIJGO1+X/V17+UhpRSlGgVSzJoFkdAm4ozAJswc3V9lChoBmgJaA9DCB9I3jmU4fO/lIaUUpRoFUsyaBZHQJuJkuoP07N1fZQoaAZoCWgPQwi62R8ot+3gv5SGlFKUaBVLMmgWR0Cbj2nDBMzudX2UKGgGaAloD0MIM4y7QbRW4L+UhpRSlGgVSzJoFkdAm47D4L1EmnV9lChoBmgJaA9DCOYeEr739/G/lIaUUpRoFUsyaBZHQJuOFTZQHiZ1fZQoaAZoCWgPQwg01ZP5R9/Zv5SGlFKUaBVLMmgWR0CbjXXr+o9+dX2UKGgGaAloD0MIq+gPzTy55b+UhpRSlGgVSzJoFkdAm5MbUkOZs3V9lChoBmgJaA9DCAG+27xxUuC/lIaUUpRoFUsyaBZHQJuSdX/5tWN1fZQoaAZoCWgPQwjqeMxAZXzkv5SGlFKUaBVLMmgWR0CbkcR1oxpMdX2UKGgGaAloD0MIT5KumXyz37+UhpRSlGgVSzJoFkdAm5Ekj5bhWHV9lChoBmgJaA9DCMQFoFG69Ne/lIaUUpRoFUsyaBZHQJuXBAKOT7l1fZQoaAZoCWgPQwiLjXkdccjUv5SGlFKUaBVLMmgWR0Cbll5ZKWcCdX2UKGgGaAloD0MIz9kCQush8L+UhpRSlGgVSzJoFkdAm5WtahYeT3V9lChoBmgJaA9DCDc3pics8dG/lIaUUpRoFUsyaBZHQJuVDWRRuTB1fZQoaAZoCWgPQwid1QJ7TCTlv5SGlFKUaBVLMmgWR0CbmvOymhugdX2UKGgGaAloD0MIZYo5CDpa0L+UhpRSlGgVSzJoFkdAm5pN2X9it3V9lChoBmgJaA9DCBsRjINLR+a/lIaUUpRoFUsyaBZHQJuZnF85S3t1fZQoaAZoCWgPQwj7WpcaoZ/dv5SGlFKUaBVLMmgWR0CbmPygf2bodX2UKGgGaAloD0MIARQjS+bY4L+UhpRSlGgVSzJoFkdAm57V+EytWHV9lChoBmgJaA9DCPoMqDejZui/lIaUUpRoFUsyaBZHQJueMLQXyiF1fZQoaAZoCWgPQwjHL7yS5LnZv5SGlFKUaBVLMmgWR0CbnX/YraufdX2UKGgGaAloD0MIIsFUM2sp8b+UhpRSlGgVSzJoFkdAm5zig5BC2XV9lChoBmgJaA9DCIJxcOmYc+S/lIaUUpRoFUsyaBZHQJuhXGecx0x1fZQoaAZoCWgPQwhBf6FHjJ7ov5SGlFKUaBVLMmgWR0CboLTg2qDLdX2UKGgGaAloD0MIRfEqa5vi67+UhpRSlGgVSzJoFkdAm6ACGnGbTnV9lChoBmgJaA9DCO26tyIxQdq/lIaUUpRoFUsyaBZHQJufYHeJpFl1fZQoaAZoCWgPQwhRvwtbs5XRv5SGlFKUaBVLMmgWR0Cbo54JNTLodX2UKGgGaAloD0MIhxiveVVn4L+UhpRSlGgVSzJoFkdAm6L2orFwUHV9lChoBmgJaA9DCMFWCRaHM+q/lIaUUpRoFUsyaBZHQJuiQ/hVENR1fZQoaAZoCWgPQwjy07g3v2Hfv5SGlFKUaBVLMmgWR0CboaJaaCtjdX2UKGgGaAloD0MIB0FHq1pS5r+UhpRSlGgVSzJoFkdAm6XlzySV4XV9lChoBmgJaA9DCGvylNV0Pem/lIaUUpRoFUsyaBZHQJulPkeZG8V1fZQoaAZoCWgPQwh47dKGw1Lov5SGlFKUaBVLMmgWR0CbpItFa0QcdX2UKGgGaAloD0MIXMmOjUA847+UhpRSlGgVSzJoFkdAm6Ppl4C6pnV9lChoBmgJaA9DCHnr/NtlP+C/lIaUUpRoFUsyaBZHQJuoMqz7di51fZQoaAZoCWgPQwgGR8mrcwzfv5SGlFKUaBVLMmgWR0Cbp4tCAtnPdX2UKGgGaAloD0MIYd9OIsK/5b+UhpRSlGgVSzJoFkdAm6bYZydWhnV9lChoBmgJaA9DCCV5ru/DQd2/lIaUUpRoFUsyaBZHQJumNtKqXF91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28495, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (286 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.45757226444547994, "std_reward": 0.1362730027950788, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T22:01:17.670461"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eff44bdbb69d88235c649da33d1a9bf2cc9992fc824945d72ac201118876c63e
3
+ size 3056