endorexpress commited on
Commit
6ec40c2
·
verified ·
1 Parent(s): 05585e2

End of training

Browse files
README.md ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b0-finetuned-segments-sidewalk-2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b0-finetuned-segments-sidewalk-2
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6854
21
+ - Mean Iou: 0.2132
22
+ - Mean Accuracy: 0.2587
23
+ - Overall Accuracy: 0.8151
24
+ - Accuracy Unlabeled: nan
25
+ - Accuracy Flat-road: 0.8383
26
+ - Accuracy Flat-sidewalk: 0.9497
27
+ - Accuracy Flat-crosswalk: 0.0
28
+ - Accuracy Flat-cyclinglane: 0.8212
29
+ - Accuracy Flat-parkingdriveway: 0.3818
30
+ - Accuracy Flat-railtrack: nan
31
+ - Accuracy Flat-curb: 0.2786
32
+ - Accuracy Human-person: 0.0
33
+ - Accuracy Human-rider: 0.0
34
+ - Accuracy Vehicle-car: 0.9368
35
+ - Accuracy Vehicle-truck: 0.0
36
+ - Accuracy Vehicle-bus: 0.0
37
+ - Accuracy Vehicle-tramtrain: nan
38
+ - Accuracy Vehicle-motorcycle: 0.0
39
+ - Accuracy Vehicle-bicycle: 0.0
40
+ - Accuracy Vehicle-caravan: 0.0
41
+ - Accuracy Vehicle-cartrailer: 0.0
42
+ - Accuracy Construction-building: 0.9300
43
+ - Accuracy Construction-door: 0.0
44
+ - Accuracy Construction-wall: 0.0951
45
+ - Accuracy Construction-fenceguardrail: 0.0012
46
+ - Accuracy Construction-bridge: 0.0
47
+ - Accuracy Construction-tunnel: nan
48
+ - Accuracy Construction-stairs: 0.0
49
+ - Accuracy Object-pole: 0.0181
50
+ - Accuracy Object-trafficsign: 0.0
51
+ - Accuracy Object-trafficlight: 0.0
52
+ - Accuracy Nature-vegetation: 0.9377
53
+ - Accuracy Nature-terrain: 0.8734
54
+ - Accuracy Sky: 0.9576
55
+ - Accuracy Void-ground: 0.0
56
+ - Accuracy Void-dynamic: 0.0
57
+ - Accuracy Void-static: 0.0002
58
+ - Accuracy Void-unclear: 0.0
59
+ - Iou Unlabeled: nan
60
+ - Iou Flat-road: 0.6565
61
+ - Iou Flat-sidewalk: 0.8602
62
+ - Iou Flat-crosswalk: 0.0
63
+ - Iou Flat-cyclinglane: 0.7150
64
+ - Iou Flat-parkingdriveway: 0.2892
65
+ - Iou Flat-railtrack: nan
66
+ - Iou Flat-curb: 0.2447
67
+ - Iou Human-person: 0.0
68
+ - Iou Human-rider: 0.0
69
+ - Iou Vehicle-car: 0.7028
70
+ - Iou Vehicle-truck: 0.0
71
+ - Iou Vehicle-bus: 0.0
72
+ - Iou Vehicle-tramtrain: nan
73
+ - Iou Vehicle-motorcycle: 0.0
74
+ - Iou Vehicle-bicycle: 0.0
75
+ - Iou Vehicle-caravan: 0.0
76
+ - Iou Vehicle-cartrailer: 0.0
77
+ - Iou Construction-building: 0.6164
78
+ - Iou Construction-door: 0.0
79
+ - Iou Construction-wall: 0.0896
80
+ - Iou Construction-fenceguardrail: 0.0012
81
+ - Iou Construction-bridge: 0.0
82
+ - Iou Construction-tunnel: nan
83
+ - Iou Construction-stairs: 0.0
84
+ - Iou Object-pole: 0.0180
85
+ - Iou Object-trafficsign: 0.0
86
+ - Iou Object-trafficlight: 0.0
87
+ - Iou Nature-vegetation: 0.8065
88
+ - Iou Nature-terrain: 0.7196
89
+ - Iou Sky: 0.8903
90
+ - Iou Void-ground: 0.0
91
+ - Iou Void-dynamic: 0.0
92
+ - Iou Void-static: 0.0002
93
+ - Iou Void-unclear: 0.0
94
+
95
+ ## Model description
96
+
97
+ More information needed
98
+
99
+ ## Intended uses & limitations
100
+
101
+ More information needed
102
+
103
+ ## Training and evaluation data
104
+
105
+ More information needed
106
+
107
+ ## Training procedure
108
+
109
+ ### Training hyperparameters
110
+
111
+ The following hyperparameters were used during training:
112
+ - learning_rate: 6e-05
113
+ - train_batch_size: 2
114
+ - eval_batch_size: 2
115
+ - seed: 42
116
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
117
+ - lr_scheduler_type: linear
118
+ - num_epochs: 1
119
+
120
+ ### Training results
121
+
122
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
123
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
124
+ | 1.133 | 0.05 | 20 | 0.8142 | 0.1927 | 0.2365 | 0.7919 | nan | 0.8488 | 0.9396 | 0.0 | 0.6154 | 0.3232 | nan | 0.0870 | 0.0 | 0.0 | 0.9079 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9091 | 0.0 | 0.0057 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9459 | 0.8075 | 0.9417 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.5996 | 0.8350 | 0.0 | 0.5839 | 0.2497 | nan | 0.0824 | 0.0 | 0.0 | 0.6972 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5834 | 0.0 | 0.0057 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7902 | 0.6980 | 0.8488 | 0.0 | 0.0 | 0.0000 | 0.0 |
125
+ | 0.6183 | 0.1 | 40 | 0.7929 | 0.1935 | 0.2387 | 0.7946 | nan | 0.8424 | 0.9426 | 0.0 | 0.6490 | 0.2786 | nan | 0.0932 | 0.0 | 0.0 | 0.9013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9355 | 0.0 | 0.0078 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9106 | 0.9015 | 0.9372 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.6021 | 0.8449 | 0.0 | 0.5861 | 0.2298 | nan | 0.0889 | 0.0 | 0.0 | 0.6913 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5851 | 0.0 | 0.0078 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7952 | 0.6890 | 0.8787 | 0.0 | 0.0 | 0.0000 | 0.0 |
126
+ | 0.7143 | 0.15 | 60 | 0.7832 | 0.1963 | 0.2407 | 0.7970 | nan | 0.8115 | 0.9508 | 0.0 | 0.6225 | 0.3488 | nan | 0.1208 | 0.0 | 0.0 | 0.9286 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9124 | 0.0 | 0.0163 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9415 | 0.8645 | 0.9439 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.6145 | 0.8356 | 0.0 | 0.5800 | 0.2642 | nan | 0.1131 | 0.0 | 0.0 | 0.6861 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6004 | 0.0 | 0.0161 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7914 | 0.7056 | 0.8799 | 0.0 | 0.0 | 0.0000 | 0.0 |
127
+ | 0.7266 | 0.2 | 80 | 0.7789 | 0.1933 | 0.2380 | 0.7922 | nan | 0.8418 | 0.9346 | 0.0 | 0.6266 | 0.3044 | nan | 0.0522 | 0.0 | 0.0 | 0.9256 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9212 | 0.0 | 0.0297 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9329 | 0.8752 | 0.9345 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5945 | 0.8266 | 0.0 | 0.5830 | 0.2447 | nan | 0.0506 | 0.0 | 0.0 | 0.6819 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6030 | 0.0 | 0.0293 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7998 | 0.6952 | 0.8834 | 0.0 | 0.0 | 0.0 | 0.0 |
128
+ | 0.8732 | 0.25 | 100 | 0.7598 | 0.2025 | 0.2515 | 0.7986 | nan | 0.8657 | 0.9218 | 0.0 | 0.7984 | 0.3960 | nan | 0.1382 | 0.0 | 0.0 | 0.9323 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9264 | 0.0 | 0.0718 | 0.0 | 0.0 | nan | 0.0 | 0.0010 | 0.0 | 0.0 | 0.8819 | 0.9151 | 0.9484 | 0.0 | 0.0 | 0.0001 | 0.0 | nan | 0.6212 | 0.8387 | 0.0 | 0.7013 | 0.2830 | nan | 0.1285 | 0.0 | 0.0 | 0.6971 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6065 | 0.0 | 0.0696 | 0.0 | 0.0 | nan | 0.0 | 0.0010 | 0.0 | 0.0 | 0.7925 | 0.6575 | 0.8817 | 0.0 | 0.0 | 0.0001 | 0.0 |
129
+ | 1.0414 | 0.3 | 120 | 0.7519 | 0.2004 | 0.2426 | 0.8027 | nan | 0.7989 | 0.9643 | 0.0 | 0.7894 | 0.2927 | nan | 0.0920 | 0.0 | 0.0 | 0.9300 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9095 | 0.0 | 0.0169 | 0.0 | 0.0 | nan | 0.0 | 0.0012 | 0.0 | 0.0 | 0.9403 | 0.8354 | 0.9507 | 0.0 | 0.0 | 0.0003 | 0.0 | nan | 0.6503 | 0.8249 | 0.0 | 0.7135 | 0.2513 | nan | 0.0851 | 0.0 | 0.0 | 0.7073 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5968 | 0.0 | 0.0167 | 0.0 | 0.0 | nan | 0.0 | 0.0012 | 0.0 | 0.0 | 0.7986 | 0.6976 | 0.8675 | 0.0 | 0.0 | 0.0003 | 0.0 |
130
+ | 0.7812 | 0.35 | 140 | 0.7660 | 0.2004 | 0.2433 | 0.8008 | nan | 0.7714 | 0.9656 | 0.0 | 0.8225 | 0.2306 | nan | 0.1649 | 0.0 | 0.0 | 0.9393 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9225 | 0.0 | 0.0362 | 0.0 | 0.0 | nan | 0.0 | 0.0003 | 0.0 | 0.0 | 0.9328 | 0.8450 | 0.9101 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.6427 | 0.8220 | 0.0 | 0.7043 | 0.2006 | nan | 0.1508 | 0.0 | 0.0 | 0.6825 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5969 | 0.0 | 0.0354 | 0.0 | 0.0 | nan | 0.0 | 0.0003 | 0.0 | 0.0 | 0.8031 | 0.7024 | 0.8709 | 0.0 | 0.0 | 0.0000 | 0.0 |
131
+ | 0.6117 | 0.4 | 160 | 0.7395 | 0.2078 | 0.2505 | 0.8074 | nan | 0.8021 | 0.9599 | 0.0 | 0.7951 | 0.3092 | nan | 0.2320 | 0.0 | 0.0 | 0.9291 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9184 | 0.0 | 0.0807 | 0.0001 | 0.0 | nan | 0.0 | 0.0031 | 0.0 | 0.0 | 0.9379 | 0.8574 | 0.9416 | 0.0 | 0.0 | 0.0001 | 0.0 | nan | 0.6450 | 0.8340 | 0.0 | 0.7138 | 0.2435 | nan | 0.2008 | 0.0 | 0.0 | 0.7102 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6146 | 0.0 | 0.0776 | 0.0001 | 0.0 | nan | 0.0 | 0.0031 | 0.0 | 0.0 | 0.8047 | 0.7070 | 0.8874 | 0.0 | 0.0 | 0.0001 | 0.0 |
132
+ | 1.1176 | 0.45 | 180 | 0.7283 | 0.2088 | 0.2543 | 0.8066 | nan | 0.7949 | 0.9620 | 0.0 | 0.7781 | 0.3479 | nan | 0.2238 | 0.0 | 0.0 | 0.9365 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8798 | 0.0 | 0.1794 | 0.0000 | 0.0 | nan | 0.0 | 0.0070 | 0.0 | 0.0 | 0.9212 | 0.8978 | 0.9546 | 0.0 | 0.0 | 0.0004 | 0.0 | nan | 0.6398 | 0.8361 | 0.0 | 0.7046 | 0.2608 | nan | 0.1909 | 0.0 | 0.0 | 0.6770 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6329 | 0.0 | 0.1669 | 0.0000 | 0.0 | nan | 0.0 | 0.0070 | 0.0 | 0.0 | 0.7940 | 0.6798 | 0.8840 | 0.0 | 0.0 | 0.0004 | 0.0 |
133
+ | 1.0874 | 0.5 | 200 | 0.7138 | 0.2074 | 0.2497 | 0.8093 | nan | 0.8548 | 0.9534 | 0.0 | 0.7502 | 0.3509 | nan | 0.2045 | 0.0 | 0.0 | 0.9139 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9440 | 0.0 | 0.0572 | 0.0 | 0.0 | nan | 0.0 | 0.0022 | 0.0 | 0.0 | 0.9277 | 0.8297 | 0.9518 | 0.0 | 0.0 | 0.0003 | 0.0 | nan | 0.6508 | 0.8521 | 0.0 | 0.6877 | 0.2737 | nan | 0.1824 | 0.0 | 0.0 | 0.7291 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5955 | 0.0 | 0.0551 | 0.0 | 0.0 | nan | 0.0 | 0.0022 | 0.0 | 0.0 | 0.8090 | 0.7067 | 0.8854 | 0.0 | 0.0 | 0.0003 | 0.0 |
134
+ | 1.1744 | 0.55 | 220 | 0.7095 | 0.2072 | 0.2491 | 0.8070 | nan | 0.8193 | 0.9577 | 0.0 | 0.7556 | 0.3430 | nan | 0.2271 | 0.0 | 0.0 | 0.9157 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9490 | 0.0 | 0.0440 | 0.0000 | 0.0 | nan | 0.0 | 0.0031 | 0.0 | 0.0 | 0.9225 | 0.8357 | 0.9500 | 0.0 | 0.0 | 0.0004 | 0.0 | nan | 0.6459 | 0.8463 | 0.0 | 0.7019 | 0.2733 | nan | 0.1944 | 0.0 | 0.0 | 0.7281 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5841 | 0.0 | 0.0412 | 0.0000 | 0.0 | nan | 0.0 | 0.0031 | 0.0 | 0.0 | 0.8140 | 0.7022 | 0.8892 | 0.0 | 0.0 | 0.0004 | 0.0 |
135
+ | 0.8371 | 0.6 | 240 | 0.7224 | 0.2081 | 0.2506 | 0.8073 | nan | 0.8102 | 0.9614 | 0.0 | 0.7220 | 0.3368 | nan | 0.2390 | 0.0 | 0.0 | 0.9278 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9066 | 0.0 | 0.1151 | 0.0001 | 0.0 | nan | 0.0 | 0.0039 | 0.0 | 0.0 | 0.9439 | 0.8466 | 0.9542 | 0.0 | 0.0 | 0.0005 | 0.0 | nan | 0.6394 | 0.8393 | 0.0 | 0.6850 | 0.2629 | nan | 0.2099 | 0.0 | 0.0 | 0.7123 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6215 | 0.0 | 0.1074 | 0.0001 | 0.0 | nan | 0.0 | 0.0039 | 0.0 | 0.0 | 0.7932 | 0.6883 | 0.8870 | 0.0 | 0.0 | 0.0005 | 0.0 |
136
+ | 1.0493 | 0.65 | 260 | 0.7100 | 0.2093 | 0.2505 | 0.8086 | nan | 0.8021 | 0.9639 | 0.0 | 0.7634 | 0.3138 | nan | 0.2254 | 0.0 | 0.0 | 0.9232 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9235 | 0.0 | 0.0942 | 0.0011 | 0.0 | nan | 0.0 | 0.0041 | 0.0 | 0.0 | 0.9356 | 0.8677 | 0.9456 | 0.0 | 0.0 | 0.0004 | 0.0 | nan | 0.6457 | 0.8343 | 0.0 | 0.7131 | 0.2547 | nan | 0.1979 | 0.0 | 0.0 | 0.7253 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6121 | 0.0 | 0.0881 | 0.0011 | 0.0 | nan | 0.0 | 0.0041 | 0.0 | 0.0 | 0.8033 | 0.7173 | 0.8899 | 0.0 | 0.0 | 0.0004 | 0.0 |
137
+ | 0.4048 | 0.7 | 280 | 0.7147 | 0.2112 | 0.2566 | 0.8087 | nan | 0.7952 | 0.9466 | 0.0 | 0.7771 | 0.4525 | nan | 0.3231 | 0.0 | 0.0 | 0.9329 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9329 | 0.0 | 0.0638 | 0.0 | 0.0 | nan | 0.0 | 0.0058 | 0.0 | 0.0 | 0.9506 | 0.8326 | 0.9420 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.6491 | 0.8535 | 0.0 | 0.7154 | 0.2954 | nan | 0.2641 | 0.0 | 0.0 | 0.7080 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5986 | 0.0 | 0.0604 | 0.0 | 0.0 | nan | 0.0 | 0.0058 | 0.0 | 0.0 | 0.7988 | 0.7070 | 0.8915 | 0.0 | 0.0 | 0.0002 | 0.0 |
138
+ | 0.5975 | 0.75 | 300 | 0.7049 | 0.2116 | 0.2572 | 0.8123 | nan | 0.8359 | 0.9476 | 0.0 | 0.7908 | 0.4403 | nan | 0.2551 | 0.0 | 0.0 | 0.9417 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9331 | 0.0 | 0.0776 | 0.0008 | 0.0 | nan | 0.0 | 0.0070 | 0.0 | 0.0 | 0.9270 | 0.8649 | 0.9522 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.6454 | 0.8593 | 0.0 | 0.7080 | 0.3010 | nan | 0.2257 | 0.0 | 0.0 | 0.6990 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6080 | 0.0 | 0.0732 | 0.0008 | 0.0 | nan | 0.0 | 0.0070 | 0.0 | 0.0 | 0.8192 | 0.7197 | 0.8919 | 0.0 | 0.0 | 0.0002 | 0.0 |
139
+ | 0.655 | 0.8 | 320 | 0.6919 | 0.2109 | 0.2554 | 0.8130 | nan | 0.8424 | 0.9520 | 0.0 | 0.8082 | 0.3620 | nan | 0.2336 | 0.0 | 0.0 | 0.9297 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9246 | 0.0 | 0.0843 | 0.0011 | 0.0 | nan | 0.0 | 0.0133 | 0.0 | 0.0 | 0.9332 | 0.8843 | 0.9474 | 0.0 | 0.0 | 0.0005 | 0.0 | nan | 0.6512 | 0.8564 | 0.0 | 0.7108 | 0.2799 | nan | 0.2115 | 0.0 | 0.0 | 0.7167 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6164 | 0.0 | 0.0790 | 0.0011 | 0.0 | nan | 0.0 | 0.0132 | 0.0 | 0.0 | 0.8027 | 0.7060 | 0.8923 | 0.0 | 0.0 | 0.0005 | 0.0 |
140
+ | 0.766 | 0.85 | 340 | 0.6983 | 0.2094 | 0.2539 | 0.8097 | nan | 0.8143 | 0.9616 | 0.0 | 0.8042 | 0.3275 | nan | 0.2248 | 0.0000 | 0.0 | 0.9255 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9310 | 0.0 | 0.1054 | 0.0003 | 0.0 | nan | 0.0 | 0.0160 | 0.0 | 0.0 | 0.8967 | 0.9101 | 0.9536 | 0.0 | 0.0 | 0.0007 | 0.0 | nan | 0.6514 | 0.8454 | 0.0 | 0.7168 | 0.2643 | nan | 0.2028 | 0.0000 | 0.0 | 0.7219 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6178 | 0.0 | 0.0986 | 0.0003 | 0.0 | nan | 0.0 | 0.0159 | 0.0 | 0.0 | 0.7980 | 0.6668 | 0.8919 | 0.0 | 0.0 | 0.0007 | 0.0 |
141
+ | 0.4367 | 0.9 | 360 | 0.6955 | 0.2123 | 0.2566 | 0.8128 | nan | 0.8090 | 0.9580 | 0.0 | 0.8199 | 0.3753 | nan | 0.2754 | 0.0 | 0.0 | 0.9210 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9402 | 0.0 | 0.0790 | 0.0010 | 0.0 | nan | 0.0 | 0.0143 | 0.0 | 0.0 | 0.9208 | 0.8883 | 0.9510 | 0.0 | 0.0 | 0.0006 | 0.0 | nan | 0.6541 | 0.8514 | 0.0 | 0.7174 | 0.2862 | nan | 0.2401 | 0.0 | 0.0 | 0.7243 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6082 | 0.0 | 0.0741 | 0.0010 | 0.0 | nan | 0.0 | 0.0143 | 0.0 | 0.0 | 0.8106 | 0.7056 | 0.8928 | 0.0 | 0.0 | 0.0006 | 0.0 |
142
+ | 0.4969 | 0.95 | 380 | 0.6997 | 0.2123 | 0.2559 | 0.8125 | nan | 0.7947 | 0.9629 | 0.0 | 0.8125 | 0.3625 | nan | 0.2558 | 0.0001 | 0.0 | 0.9276 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9267 | 0.0 | 0.1071 | 0.0005 | 0.0 | nan | 0.0 | 0.0181 | 0.0 | 0.0 | 0.9333 | 0.8808 | 0.9485 | 0.0 | 0.0 | 0.0008 | 0.0 | nan | 0.6540 | 0.8439 | 0.0 | 0.7167 | 0.2790 | nan | 0.2245 | 0.0001 | 0.0 | 0.7203 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6212 | 0.0 | 0.1010 | 0.0005 | 0.0 | nan | 0.0 | 0.0180 | 0.0 | 0.0 | 0.8060 | 0.7023 | 0.8932 | 0.0 | 0.0 | 0.0008 | 0.0 |
143
+ | 0.7571 | 1.0 | 400 | 0.6854 | 0.2132 | 0.2587 | 0.8151 | nan | 0.8383 | 0.9497 | 0.0 | 0.8212 | 0.3818 | nan | 0.2786 | 0.0 | 0.0 | 0.9368 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9300 | 0.0 | 0.0951 | 0.0012 | 0.0 | nan | 0.0 | 0.0181 | 0.0 | 0.0 | 0.9377 | 0.8734 | 0.9576 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.6565 | 0.8602 | 0.0 | 0.7150 | 0.2892 | nan | 0.2447 | 0.0 | 0.0 | 0.7028 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6164 | 0.0 | 0.0896 | 0.0012 | 0.0 | nan | 0.0 | 0.0180 | 0.0 | 0.0 | 0.8065 | 0.7196 | 0.8903 | 0.0 | 0.0 | 0.0002 | 0.0 |
144
+
145
+
146
+ ### Framework versions
147
+
148
+ - Transformers 4.38.2
149
+ - Pytorch 2.1.0+cu121
150
+ - Datasets 2.18.0
151
+ - Tokenizers 0.15.2
config.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b0",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "flat-road",
33
+ "2": "flat-sidewalk",
34
+ "3": "flat-crosswalk",
35
+ "4": "flat-cyclinglane",
36
+ "5": "flat-parkingdriveway",
37
+ "6": "flat-railtrack",
38
+ "7": "flat-curb",
39
+ "8": "human-person",
40
+ "9": "human-rider",
41
+ "10": "vehicle-car",
42
+ "11": "vehicle-truck",
43
+ "12": "vehicle-bus",
44
+ "13": "vehicle-tramtrain",
45
+ "14": "vehicle-motorcycle",
46
+ "15": "vehicle-bicycle",
47
+ "16": "vehicle-caravan",
48
+ "17": "vehicle-cartrailer",
49
+ "18": "construction-building",
50
+ "19": "construction-door",
51
+ "20": "construction-wall",
52
+ "21": "construction-fenceguardrail",
53
+ "22": "construction-bridge",
54
+ "23": "construction-tunnel",
55
+ "24": "construction-stairs",
56
+ "25": "object-pole",
57
+ "26": "object-trafficsign",
58
+ "27": "object-trafficlight",
59
+ "28": "nature-vegetation",
60
+ "29": "nature-terrain",
61
+ "30": "sky",
62
+ "31": "void-ground",
63
+ "32": "void-dynamic",
64
+ "33": "void-static",
65
+ "34": "void-unclear"
66
+ },
67
+ "image_size": 224,
68
+ "initializer_range": 0.02,
69
+ "label2id": {
70
+ "construction-bridge": 22,
71
+ "construction-building": 18,
72
+ "construction-door": 19,
73
+ "construction-fenceguardrail": 21,
74
+ "construction-stairs": 24,
75
+ "construction-tunnel": 23,
76
+ "construction-wall": 20,
77
+ "flat-crosswalk": 3,
78
+ "flat-curb": 7,
79
+ "flat-cyclinglane": 4,
80
+ "flat-parkingdriveway": 5,
81
+ "flat-railtrack": 6,
82
+ "flat-road": 1,
83
+ "flat-sidewalk": 2,
84
+ "human-person": 8,
85
+ "human-rider": 9,
86
+ "nature-terrain": 29,
87
+ "nature-vegetation": 28,
88
+ "object-pole": 25,
89
+ "object-trafficlight": 27,
90
+ "object-trafficsign": 26,
91
+ "sky": 30,
92
+ "unlabeled": 0,
93
+ "vehicle-bicycle": 15,
94
+ "vehicle-bus": 12,
95
+ "vehicle-car": 10,
96
+ "vehicle-caravan": 16,
97
+ "vehicle-cartrailer": 17,
98
+ "vehicle-motorcycle": 14,
99
+ "vehicle-tramtrain": 13,
100
+ "vehicle-truck": 11,
101
+ "void-dynamic": 32,
102
+ "void-ground": 31,
103
+ "void-static": 33,
104
+ "void-unclear": 34
105
+ },
106
+ "layer_norm_eps": 1e-06,
107
+ "mlp_ratios": [
108
+ 4,
109
+ 4,
110
+ 4,
111
+ 4
112
+ ],
113
+ "model_type": "segformer",
114
+ "num_attention_heads": [
115
+ 1,
116
+ 2,
117
+ 5,
118
+ 8
119
+ ],
120
+ "num_channels": 3,
121
+ "num_encoder_blocks": 4,
122
+ "patch_sizes": [
123
+ 7,
124
+ 3,
125
+ 3,
126
+ 3
127
+ ],
128
+ "reshape_last_stage": true,
129
+ "semantic_loss_ignore_index": 255,
130
+ "sr_ratios": [
131
+ 8,
132
+ 4,
133
+ 2,
134
+ 1
135
+ ],
136
+ "strides": [
137
+ 4,
138
+ 2,
139
+ 2,
140
+ 2
141
+ ],
142
+ "torch_dtype": "float32",
143
+ "transformers_version": "4.38.2"
144
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f9fe4765d89c8f2b66c67e280fecdf14c7e949f99aff6b1ea81d1308cbbedd0
3
+ size 14918708
runs/Mar04_14-58-27_67c2eaf55f1b/events.out.tfevents.1709565209.67c2eaf55f1b.20288.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1ec7de37587dc90259e9ad4b7f8e115802210c01387860c9116c340dabaaead
3
+ size 268357
runs/Mar04_15-29-33_67c2eaf55f1b/events.out.tfevents.1709566184.67c2eaf55f1b.20288.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bab718d0845e1735c2f508bae41fb50c45f828d6968e7bd5f3cb5cda463f8edb
3
+ size 190739
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad8a493bafbc5ced5f2001672b1934ad7228c99be992f75e3e9e992346a6bb7b
3
+ size 4984