|
from src.utils.typing_utils import * |
|
|
|
import trimesh |
|
import numpy as np |
|
from sklearn.neighbors import NearestNeighbors |
|
|
|
def sample_from_mesh( |
|
mesh: trimesh.Trimesh, |
|
num_samples: Optional[int] = 10000, |
|
): |
|
if num_samples is None: |
|
return mesh.vertices |
|
else: |
|
return mesh.sample(num_samples) |
|
|
|
def sample_two_meshes( |
|
mesh1: trimesh.Trimesh, |
|
mesh2: trimesh.Trimesh, |
|
num_samples: Optional[int] = 10000, |
|
): |
|
points1 = sample_from_mesh(mesh1, num_samples) |
|
points2 = sample_from_mesh(mesh2, num_samples) |
|
return points1, points2 |
|
|
|
def compute_nearest_distance( |
|
points1: np.ndarray, |
|
points2: np.ndarray, |
|
metric: str = 'l2' |
|
) -> np.ndarray: |
|
|
|
nn = NearestNeighbors(n_neighbors=1, leaf_size=30, algorithm='kd_tree', metric=metric).fit(points2) |
|
min_dist = nn.kneighbors(points1)[0] |
|
return min_dist |
|
|
|
def compute_mutual_nearest_distance( |
|
points1: np.ndarray, |
|
points2: np.ndarray, |
|
metric: str = 'l2' |
|
) -> np.ndarray: |
|
min_1_to_2 = compute_nearest_distance(points1, points2, metric=metric) |
|
min_2_to_1 = compute_nearest_distance(points2, points1, metric=metric) |
|
return min_1_to_2, min_2_to_1 |
|
|
|
def compute_mutual_nearest_distance_for_meshes( |
|
mesh1: trimesh.Trimesh, |
|
mesh2: trimesh.Trimesh, |
|
num_samples: Optional[int] = 10000, |
|
metric: str = 'l2' |
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
points1 = sample_from_mesh(mesh1, num_samples) |
|
points2 = sample_from_mesh(mesh2, num_samples) |
|
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance(points1, points2, metric=metric) |
|
return min_1_to_2, min_2_to_1 |
|
|
|
def compute_chamfer_distance( |
|
mesh1: trimesh.Trimesh, |
|
mesh2: trimesh.Trimesh, |
|
num_samples: int = 10000, |
|
metric: str = 'l2' |
|
): |
|
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric) |
|
chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2) |
|
return chamfer_dist |
|
|
|
def compute_f_score( |
|
mesh1: trimesh.Trimesh, |
|
mesh2: trimesh.Trimesh, |
|
num_samples: int = 10000, |
|
threshold: float = 0.1, |
|
metric: str = 'l2' |
|
): |
|
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric) |
|
precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32)) |
|
precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32)) |
|
fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2) |
|
return fscore |
|
|
|
def compute_cd_and_f_score( |
|
mesh1: trimesh.Trimesh, |
|
mesh2: trimesh.Trimesh, |
|
num_samples: Optional[int] = 10000, |
|
threshold: float = 0.1, |
|
metric: str = 'l2' |
|
): |
|
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric) |
|
chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2) |
|
precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32)) |
|
precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32)) |
|
fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2) |
|
return chamfer_dist, fscore |
|
|
|
def compute_cd_and_f_score_in_training( |
|
gt_surface: np.ndarray, |
|
pred_mesh: trimesh.Trimesh, |
|
num_samples: int = 204800, |
|
threshold: float = 0.1, |
|
metric: str = 'l2' |
|
): |
|
gt_points = gt_surface[:, :3] |
|
num_samples = max(num_samples, gt_points.shape[0]) |
|
gt_points = gt_points[np.random.choice(gt_points.shape[0], num_samples, replace=False)] |
|
pred_points = sample_from_mesh(pred_mesh, num_samples) |
|
min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance(gt_points, pred_points, metric=metric) |
|
chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2) |
|
precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32)) |
|
precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32)) |
|
fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2) |
|
return chamfer_dist, fscore |
|
|
|
def get_voxel_set( |
|
mesh: trimesh.Trimesh, |
|
num_grids: int = 64, |
|
scale: float = 2.0, |
|
): |
|
if not isinstance(mesh, trimesh.Trimesh): |
|
raise ValueError("mesh must be a trimesh.Trimesh object") |
|
pitch = scale / num_grids |
|
voxel_girds: trimesh.voxel.base.VoxelGrid = mesh.voxelized(pitch=pitch).fill() |
|
voxels = set(map(tuple, np.round(voxel_girds.points / pitch).astype(int))) |
|
return voxels |
|
|
|
def compute_IoU( |
|
mesh1: trimesh.Trimesh, |
|
mesh2: trimesh.Trimesh, |
|
num_grids: int = 64, |
|
scale: float = 2.0, |
|
): |
|
if not isinstance(mesh1, trimesh.Trimesh) or not isinstance(mesh2, trimesh.Trimesh): |
|
raise ValueError("mesh1 and mesh2 must be trimesh.Trimesh objects") |
|
voxels1 = get_voxel_set(mesh1, num_grids, scale) |
|
voxels2 = get_voxel_set(mesh2, num_grids, scale) |
|
intersection = voxels1 & voxels2 |
|
union = voxels1 | voxels2 |
|
iou = len(intersection) / len(union) if len(union) > 0 else 0.0 |
|
return iou |
|
|
|
def compute_IoU_for_scene( |
|
scene: Union[trimesh.Scene, List[trimesh.Trimesh]], |
|
num_grids: int = 64, |
|
scale: float = 2.0, |
|
return_type: Literal["iou", "iou_list"] = "iou", |
|
): |
|
if isinstance(scene, trimesh.Scene): |
|
scene = scene.dump() |
|
if isinstance(scene, list) and len(scene) > 1 and isinstance(scene[0], trimesh.Trimesh): |
|
meshes = scene |
|
else: |
|
raise ValueError("scene must be a trimesh.Scene object or a list of trimesh.Trimesh objects") |
|
ious = [] |
|
for i in range(len(meshes)): |
|
for j in range(i+1, len(meshes)): |
|
iou = compute_IoU(meshes[i], meshes[j], num_grids, scale) |
|
ious.append(iou) |
|
if return_type == "iou": |
|
return np.mean(ious) |
|
elif return_type == "iou_list": |
|
return ious |
|
else: |
|
raise ValueError("return_type must be 'iou' or 'iou_list'") |