|
|
|
import os |
|
from skimage.morphology import remove_small_objects |
|
from skimage.measure import label |
|
import numpy as np |
|
from PIL import Image |
|
import cv2 |
|
from torchvision import transforms |
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms.functional as TF |
|
|
|
def find_bounding_box(gray_image): |
|
_, binary_image = cv2.threshold(gray_image, 1, 255, cv2.THRESH_BINARY) |
|
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
max_contour = max(contours, key=cv2.contourArea) |
|
x, y, w, h = cv2.boundingRect(max_contour) |
|
return x, y, w, h |
|
|
|
def load_image(img_path, bg_color=None, rmbg_net=None, padding_ratio=0.1, device='cuda'): |
|
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) |
|
if img is None: |
|
return f"invalid image path {img_path}" |
|
|
|
def is_valid_alpha(alpha, min_ratio = 0.01): |
|
bins = 20 |
|
if isinstance(alpha, np.ndarray): |
|
hist = cv2.calcHist([alpha], [0], None, [bins], [0, 256]) |
|
else: |
|
hist = torch.histc(alpha, bins=bins, min=0, max=1) |
|
min_hist_val = alpha.shape[0] * alpha.shape[1] * min_ratio |
|
return hist[0] >= min_hist_val and hist[-1] >= min_hist_val |
|
|
|
def rmbg(image: torch.Tensor) -> torch.Tensor: |
|
image = TF.normalize(image, [0.5,0.5,0.5], [1.0,1.0,1.0]).unsqueeze(0) |
|
result=rmbg_net(image) |
|
return result[0][0] |
|
|
|
if len(img.shape) == 2: |
|
num_channels = 1 |
|
else: |
|
num_channels = img.shape[2] |
|
|
|
|
|
height, width = img.shape[:2] |
|
if height > width: |
|
scale = 2000 / height |
|
else: |
|
scale = 2000 / width |
|
if scale < 1: |
|
new_size = (int(width * scale), int(height * scale)) |
|
img = cv2.resize(img, new_size, interpolation=cv2.INTER_AREA) |
|
|
|
if img.dtype != 'uint8': |
|
img = (img * (255. / np.iinfo(img.dtype).max)).astype(np.uint8) |
|
|
|
rgb_image = None |
|
alpha = None |
|
|
|
if num_channels == 1: |
|
rgb_image = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) |
|
elif num_channels == 3: |
|
rgb_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
elif num_channels == 4: |
|
rgb_image = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB) |
|
|
|
b, g, r, alpha = cv2.split(img) |
|
if not is_valid_alpha(alpha): |
|
alpha = None |
|
else: |
|
alpha_gpu = torch.from_numpy(alpha).unsqueeze(0).to(device).float() / 255. |
|
else: |
|
return f"invalid image: channels {num_channels}" |
|
|
|
rgb_image_gpu = torch.from_numpy(rgb_image).to(device).float().permute(2, 0, 1) / 255. |
|
if alpha is None: |
|
resize_transform = transforms.Resize((384, 384), antialias=True) |
|
rgb_image_resized = resize_transform(rgb_image_gpu) |
|
normalize_image = rgb_image_resized * 2 - 1 |
|
|
|
mean_color = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1).to(device) |
|
resize_transform = transforms.Resize((1024, 1024), antialias=True) |
|
rgb_image_resized = resize_transform(rgb_image_gpu) |
|
max_value = rgb_image_resized.flatten().max() |
|
if max_value < 1e-3: |
|
return "invalid image: pure black image" |
|
normalize_image = rgb_image_resized / max_value - mean_color |
|
normalize_image = normalize_image.unsqueeze(0) |
|
resize_transform = transforms.Resize((rgb_image_gpu.shape[1], rgb_image_gpu.shape[2]), antialias=True) |
|
|
|
|
|
alpha_gpu_rmbg = rmbg(rgb_image_resized) |
|
alpha_gpu_rmbg = alpha_gpu_rmbg.squeeze(0) |
|
alpha_gpu_rmbg = resize_transform(alpha_gpu_rmbg) |
|
ma, mi = alpha_gpu_rmbg.max(), alpha_gpu_rmbg.min() |
|
alpha_gpu_rmbg = (alpha_gpu_rmbg - mi) / (ma - mi) |
|
|
|
alpha_gpu = alpha_gpu_rmbg |
|
|
|
alpha_gpu_tmp = alpha_gpu * 255 |
|
alpha = alpha_gpu_tmp.to(torch.uint8).squeeze().cpu().numpy() |
|
|
|
_, alpha = cv2.threshold(alpha, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) |
|
labeled_alpha = label(alpha) |
|
cleaned_alpha = remove_small_objects(labeled_alpha, min_size=200) |
|
cleaned_alpha = (cleaned_alpha > 0).astype(np.uint8) |
|
alpha = cleaned_alpha * 255 |
|
alpha_gpu = torch.from_numpy(cleaned_alpha).to(device).float().unsqueeze(0) |
|
x, y, w, h = find_bounding_box(alpha) |
|
|
|
|
|
else: |
|
rows, cols = np.where(alpha > 0) |
|
if rows.size > 0 and cols.size > 0: |
|
x_min = np.min(cols) |
|
y_min = np.min(rows) |
|
x_max = np.max(cols) |
|
y_max = np.max(rows) |
|
|
|
width = x_max - x_min + 1 |
|
height = y_max - y_min + 1 |
|
x, y, w, h = x_min, y_min, width, height |
|
|
|
if np.all(alpha==0): |
|
raise ValueError(f"input image too small") |
|
|
|
bg_gray = bg_color[0] |
|
bg_color = torch.from_numpy(bg_color).float().to(device).repeat(alpha_gpu.shape[1], alpha_gpu.shape[2], 1).permute(2, 0, 1) |
|
rgb_image_gpu = rgb_image_gpu * alpha_gpu + bg_color * (1 - alpha_gpu) |
|
padding_size = [0] * 6 |
|
if w > h: |
|
padding_size[0] = int(w * padding_ratio) |
|
padding_size[2] = int(padding_size[0] + (w - h) / 2) |
|
else: |
|
padding_size[2] = int(h * padding_ratio) |
|
padding_size[0] = int(padding_size[2] + (h - w) / 2) |
|
padding_size[1] = padding_size[0] |
|
padding_size[3] = padding_size[2] |
|
padded_tensor = F.pad(rgb_image_gpu[:, y:(y+h), x:(x+w)], pad=tuple(padding_size), mode='constant', value=bg_gray) |
|
|
|
return padded_tensor |
|
|
|
def prepare_image(image_path, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=None, padding_ratio=0.1, device='cuda'): |
|
if os.path.isfile(image_path): |
|
img_tensor = load_image(image_path, bg_color=bg_color, rmbg_net=rmbg_net, padding_ratio=padding_ratio, device=device) |
|
img_np = img_tensor.permute(1,2,0).cpu().numpy() |
|
img_pil = Image.fromarray((img_np*255).astype(np.uint8)) |
|
|
|
return img_pil |
|
else: |
|
raise ValueError(f"Invalid image path: {image_path}") |