Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1082.98 +/- 161.86
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49fde795535b1f9d6dd6661df6a93bf73edf9c5636e5ea9ce114fb7d4017a722
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1eeee9bca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1eeee9bd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1eeee9bdc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1eeee9be50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1eeee9bee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1eeee9bf70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1eeeea0040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1eeeea00d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1eeeea0160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1eeeea01f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1eeeea0280>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1eeeea0310>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f1eeee97840>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678002554065651914,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIbvhr/L6NA+k0u/Pl648D2htoS+gmRRv2fabD4tDFU/LUsQP+vpmz4pQOm+yb1OP1Rjeb/pBJm+pPaePuHY/z7Fq2Q/dSg7vxhk1D7ZmQdAV5Unv08cfj19+RO/1a+Zv+XzXz/m7DE/OvEEP7tqdT/diLe/KaagP66dHL+jxrS/02PavApaDr78AQc/Qd1mP8JKEz8mJCa9Tan1vpKdH79zE7C/lD8Av7akKD5UBf+/rf5KP+U5Ij9Db3c/e2KKP76FG7+pThw/9VtVvzYKEz3l818/xSq4vzrxBD+7anU/1cLmvgEe8D7E56k+a9xBP18X8z/Jos89EnSdPqURoz99chc/cIjgP4etHL9Xt8M8LqP+veEqEUBxgT+/xoDSveAejD9tozBA8K24PoJl8D4DYTe+GNy1P61r376rop09DFGSv+bsMT+ee/a/u2p1P8AV8TxYtNc/ueXdvwGjHD/e4JU+R/fHvUkCQT7TCYe/dx3/Ph9oIL+uPSU/lo+Dv2Hhg78MPmq/W147PhVAzr9zDB+/lP0IvyyZPT9X3sO+K4clv/n1jj0WbCG/Tz+NP+XzXz/FKri/OvEEPw2Fhb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADeDq62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5i6LPQAAAABvnuq/AAAAAMMxpb0AAAAAX6IAQAAAAAC9Omi9AAAAAKZC/j8AAAAAjT+rPAAAAABK3vG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuQ5sNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIFXbjwAAAAA7brwvwAAAADkDTE8AAAAAOVS9D8AAAAAl7poPQAAAACNY+g/AAAAAL621L0AAAAADvj7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonOTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDsgNa9AAAAABek5L8AAAAAJG5xPAAAAADsn+Q/AAAAACG6zL0AAAAAZXDgPwAAAAAy2NG9AAAAAILa6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIfMO0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYXivvQAAAAAmkOm/AAAAABHOEj0AAAAAmU32PwAAAAAfdcW9AAAAAPd66D8AAAAAQScjPQAAAAAPpve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyTUQcxTKmMAWyUTegDjAF0lEdArtJXjCHh0nV9lChoBkdAm7xT1wo9cWgHTegDaAhHQK7USYEW69V1fZQoaAZHQJYNAwi7kGRoB03oA2gIR0Cu1w4tYjjadX2UKGgGR0CcNVIvrWy1aAdN6ANoCEdArtpCEBbOeXV9lChoBkdAm5LKifxtpGgHTegDaAhHQK7lOMXrMTx1fZQoaAZHQJp3fSG8EmpoB03oA2gIR0Cu5lKHO8kEdX2UKGgGR0CWgtkNnXd1aAdN6ANoCEdArugBRTCLuXV9lChoBkdAmoAEbPyCnWgHTegDaAhHQK7qig7HQyB1fZQoaAZHQJmzbURWcSZoB03oA2gIR0Cu90Dua4MGdX2UKGgGR0CR4loYekpJaAdN6ANoCEdArvhrzCk43nV9lChoBkdAmysZFspG4WgHTegDaAhHQK76HBVuJk51fZQoaAZHQJlAattALRdoB03oA2gIR0Cu/D1h1DBudX2UKGgGR0CadvyVObiIaAdN6ANoCEdArwU9qHoHLXV9lChoBkdAldbhcu8K5WgHTegDaAhHQK8GXjm0VrR1fZQoaAZHQJqqHbblA/toB03oA2gIR0CvCEsSTQmedX2UKGgGR0CV3JDPnjhlaAdN6ANoCEdArwtz0Bfa6HV9lChoBkdAmzjRUm2LHmgHTegDaAhHQK8XIZBsyi51fZQoaAZHQJgVFDpkf9xoB03oA2gIR0CvGD7wBo25dX2UKGgGR0CZkggccU/OaAdN6ANoCEdArxnm4kNWl3V9lChoBkdAm05pXdTHbWgHTegDaAhHQK8b861b7j11fZQoaAZHQJaClREWqLloB03oA2gIR0CvJQ4Ia99MdX2UKGgGR0CYqloZQ53laAdN6ANoCEdAryYyiRGMGXV9lChoBkdAjCy5hKDkEWgHTegDaAhHQK8oixPfsNV1fZQoaAZHQJdkMc+7lJZoB03oA2gIR0CvK7YhEBsAdX2UKGgGR0CS68AKfFrEaAdN6ANoCEdArzcIKBun/HV9lChoBkdAhXx3Wvr4WWgHTegDaAhHQK84K/zJ6pp1fZQoaAZHQJdnO67NB4VoB03oA2gIR0CvOcsySFGodX2UKGgGR0CT82AiFCb+aAdN6ANoCEdArzvNLi++NHV9lChoBkdAku3rKJVKgGgHTegDaAhHQK9E4HCXQdF1fZQoaAZHQJL6tMZgogFoB03oA2gIR0CvRlw2uPmxdX2UKGgGR0CL8R2L5ylvaAdN6ANoCEdAr0kHIKc/dXV9lChoBkdAlZa2X5WRzWgHTegDaAhHQK9MXLGJemh1fZQoaAZHQI0RDvCuU2VoB03oA2gIR0CvVv30XgtOdX2UKGgGR0CSOY9gWrOraAdN6ANoCEdAr1gfF1jiGXV9lChoBkdAkB7yTdLxqmgHTegDaAhHQK9Z1tFa0Qd1fZQoaAZHQJCETNIK+i9oB03oA2gIR0CvW+DpTuOTdX2UKGgGR0CJFQSZjQRgaAdN6ANoCEdAr2Tqnzg/DHV9lChoBkdAl/riM1jy4GgHTegDaAhHQK9mu6ClJpZ1fZQoaAZHQJGxmMKkVN5oB03oA2gIR0CvaWq6WgOCdX2UKGgGR0CQQdO1OTJRaAdN6ANoCEdAr2zzmhdt23V9lChoBkdAkR1RTsIE82gHTegDaAhHQK93QLNOdoZ1fZQoaAZHQJDfYK4QSSNoB03oA2gIR0CveGsNUfgadX2UKGgGR0CRpYxwQ176aAdN6ANoCEdAr3oZ3NcGDHV9lChoBkdAj0mlvAGjbmgHTegDaAhHQK98Q6xPfsN1fZQoaAZHQI7jXhqCYkVoB03oA2gIR0CvhgqKP4mDdX2UKGgGR0CO3besPrfMaAdN6ANoCEdAr4fPmzSkTHV9lChoBkdAkUg9A1Nxl2gHTegDaAhHQK+Kkc/dIoV1fZQoaAZHQJF7QC1Z1V5oB03oA2gIR0CvjgGZE2HddX2UKGgGR0CRupXEqDsdaAdN6ANoCEdAr5cjch1TznV9lChoBkdAkEZkgGKQ72gHTegDaAhHQK+YShN/OMV1fZQoaAZHQJTN8fIS13NoB03oA2gIR0Cvmeq8UVSGdX2UKGgGR0CP5CoJAt4BaAdN6ANoCEdAr5v09nscAHV9lChoBkdAlkiegpSaVmgHTegDaAhHQK+l2MpgCwN1fZQoaAZHQJMmG3nZCfJoB03oA2gIR0Cvp5+2NNrTdX2UKGgGR0CTTM94/u9faAdN6ANoCEdAr6pbUTcqOXV9lChoBkdAjW0MpXp4bGgHTegDaAhHQK+tjSGahHt1fZQoaAZHQJH3eFpPAO9oB03oA2gIR0CvtlAP3BYWdX2UKGgGR0CTUBtrbg0kaAdN6ANoCEdAr7dmll9SdnV9lChoBkdAi9ZkZJkGzWgHTegDaAhHQK+5FKVY6n11fZQoaAZHQJW/O1eBxxVoB03oA2gIR0Cvux5JK8L8dX2UKGgGR0CShj0AcT8HaAdN6ANoCEdAr8Wr7sOXmnV9lChoBkdAk49Pq9oN/mgHTegDaAhHQK/Hl1Gsmv51fZQoaAZHQJZp9Rl6JIloB03oA2gIR0CvylfqgRK6dX2UKGgGR0CQSWha1TisaAdN6ANoCEdAr80WdVea8nV9lChoBkdAlSSfMSsbN2gHTegDaAhHQK/V1hm5Dqp1fZQoaAZHQJR5A5EMLF5oB03oA2gIR0Cv1wXNs3yadX2UKGgGR0CW09b7TDwZaAdN6ANoCEdAr9iqobXHznV9lChoBkdAlLXgGW2PUGgHTegDaAhHQK/aqT/yXld1fZQoaAZHQJNt4LCvX9RoB03oA2gIR0Cv5VsmOU+tdX2UKGgGR0CQtrb8WKuTaAdN6ANoCEdAr+dYYP5HmXV9lChoBkdAlB/cRYigTWgHTegDaAhHQK/qIOd5IH11fZQoaAZHQJX1Jc7hegNoB03oA2gIR0Cv7HwaR6njdX2UKGgGR0CUKX+9rXUZaAdN6ANoCEdAr/VZgmZ3LXV9lChoBkdAlS4YKUmlZWgHTegDaAhHQK/2jkDIRyx1fZQoaAZHQJVjfRc/t6ZoB03oA2gIR0Cv+E1Iy0rtdX2UKGgGR0CV5Tr3Cbc5aAdN6ANoCEdAr/pgUBXCCXV9lChoBkdAlFtFgc94eWgHTegDaAhHQLAC8aYeDFt1fZQoaAZHQJPS0iX6ZYxoB03oA2gIR0CwA+Sq+8GtdX2UKGgGR0CUC2PluFYdaAdN6ANoCEdAsAUgNutOmHV9lChoBkdAlEd4hUzbe2gHTegDaAhHQLAGIHzH0bt1fZQoaAZHQJWgizIFNcpoB03oA2gIR0CwCoz/dZaFdX2UKGgGR0CThcPqcEvCaAdN6ANoCEdAsAsc8q4H5nV9lChoBkdAlHWQmE4//2gHTegDaAhHQLAL74Otnwp1fZQoaAZHQJJ2nFR51NhoB03oA2gIR0CwDPIxtYSydX2UKGgGR0CTuFJ9RaX8aAdN6ANoCEdAsBOTXUYsNHV9lChoBkdAkyGT+BH09WgHTegDaAhHQLAUoDKYAsF1fZQoaAZHQJLZHIvJzT5oB03oA2gIR0CwFhawD/2kdX2UKGgGR0CUbtyzXz19aAdN6ANoCEdAsBfRP/JeV3V9lChoBkdAlQMqAFxGUmgHTegDaAhHQLAcruBtk4F1fZQoaAZHQJLp37hvR7ZoB03oA2gIR0CwHUjAzpHJdX2UKGgGR0CUey/NqxkeaAdN6ANoCEdAsB4rS6UaAHV9lChoBkdAlkiZxNqQBGgHTegDaAhHQLAfNInBtUJ1fZQoaAZHQJV/AsGxD9hoB03oA2gIR0CwJSlTm4iHdX2UKGgGR0CWld3Sa3I/aAdN6ANoCEdAsCYi6J66a3V9lChoBkdAh5grTYukDmgHTegDaAhHQLAnVlTm4iJ1fZQoaAZHQJdUJr8BMi9oB03oA2gIR0CwKGUJ8fFKdX2UKGgGR0CW52yQgcLjaAdN6ANoCEdAsCzpaRp1zXV9lChoBkdAl+sWac7Qs2gHTegDaAhHQLAteqyGBWh1fZQoaAZHQJI7xf1HvttoB03oA2gIR0CwLlKwMYuTdX2UKGgGR0CYBr/TspocaAdN6ANoCEdAsC9S5jH4oXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b19da97d28d3c9bf86f7109791d74423dd13e72fae3b150e1bc776375068cc0
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6164a2692f0c332f4a75905f115e43ce6c6f83942745454e143e2149f341ef06
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1eeee9bca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1eeee9bd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1eeee9bdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1eeee9be50>", "_build": "<function ActorCriticPolicy._build at 0x7f1eeee9bee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1eeee9bf70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1eeeea0040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1eeeea00d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1eeeea0160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1eeeea01f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1eeeea0280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1eeeea0310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1eeee97840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678002554065651914, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIbvhr/L6NA+k0u/Pl648D2htoS+gmRRv2fabD4tDFU/LUsQP+vpmz4pQOm+yb1OP1Rjeb/pBJm+pPaePuHY/z7Fq2Q/dSg7vxhk1D7ZmQdAV5Unv08cfj19+RO/1a+Zv+XzXz/m7DE/OvEEP7tqdT/diLe/KaagP66dHL+jxrS/02PavApaDr78AQc/Qd1mP8JKEz8mJCa9Tan1vpKdH79zE7C/lD8Av7akKD5UBf+/rf5KP+U5Ij9Db3c/e2KKP76FG7+pThw/9VtVvzYKEz3l818/xSq4vzrxBD+7anU/1cLmvgEe8D7E56k+a9xBP18X8z/Jos89EnSdPqURoz99chc/cIjgP4etHL9Xt8M8LqP+veEqEUBxgT+/xoDSveAejD9tozBA8K24PoJl8D4DYTe+GNy1P61r376rop09DFGSv+bsMT+ee/a/u2p1P8AV8TxYtNc/ueXdvwGjHD/e4JU+R/fHvUkCQT7TCYe/dx3/Ph9oIL+uPSU/lo+Dv2Hhg78MPmq/W147PhVAzr9zDB+/lP0IvyyZPT9X3sO+K4clv/n1jj0WbCG/Tz+NP+XzXz/FKri/OvEEPw2Fhb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADeDq62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5i6LPQAAAABvnuq/AAAAAMMxpb0AAAAAX6IAQAAAAAC9Omi9AAAAAKZC/j8AAAAAjT+rPAAAAABK3vG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuQ5sNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIFXbjwAAAAA7brwvwAAAADkDTE8AAAAAOVS9D8AAAAAl7poPQAAAACNY+g/AAAAAL621L0AAAAADvj7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonOTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDsgNa9AAAAABek5L8AAAAAJG5xPAAAAADsn+Q/AAAAACG6zL0AAAAAZXDgPwAAAAAy2NG9AAAAAILa6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIfMO0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYXivvQAAAAAmkOm/AAAAABHOEj0AAAAAmU32PwAAAAAfdcW9AAAAAPd66D8AAAAAQScjPQAAAAAPpve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyTUQcxTKmMAWyUTegDjAF0lEdArtJXjCHh0nV9lChoBkdAm7xT1wo9cWgHTegDaAhHQK7USYEW69V1fZQoaAZHQJYNAwi7kGRoB03oA2gIR0Cu1w4tYjjadX2UKGgGR0CcNVIvrWy1aAdN6ANoCEdArtpCEBbOeXV9lChoBkdAm5LKifxtpGgHTegDaAhHQK7lOMXrMTx1fZQoaAZHQJp3fSG8EmpoB03oA2gIR0Cu5lKHO8kEdX2UKGgGR0CWgtkNnXd1aAdN6ANoCEdArugBRTCLuXV9lChoBkdAmoAEbPyCnWgHTegDaAhHQK7qig7HQyB1fZQoaAZHQJmzbURWcSZoB03oA2gIR0Cu90Dua4MGdX2UKGgGR0CR4loYekpJaAdN6ANoCEdArvhrzCk43nV9lChoBkdAmysZFspG4WgHTegDaAhHQK76HBVuJk51fZQoaAZHQJlAattALRdoB03oA2gIR0Cu/D1h1DBudX2UKGgGR0CadvyVObiIaAdN6ANoCEdArwU9qHoHLXV9lChoBkdAldbhcu8K5WgHTegDaAhHQK8GXjm0VrR1fZQoaAZHQJqqHbblA/toB03oA2gIR0CvCEsSTQmedX2UKGgGR0CV3JDPnjhlaAdN6ANoCEdArwtz0Bfa6HV9lChoBkdAmzjRUm2LHmgHTegDaAhHQK8XIZBsyi51fZQoaAZHQJgVFDpkf9xoB03oA2gIR0CvGD7wBo25dX2UKGgGR0CZkggccU/OaAdN6ANoCEdArxnm4kNWl3V9lChoBkdAm05pXdTHbWgHTegDaAhHQK8b861b7j11fZQoaAZHQJaClREWqLloB03oA2gIR0CvJQ4Ia99MdX2UKGgGR0CYqloZQ53laAdN6ANoCEdAryYyiRGMGXV9lChoBkdAjCy5hKDkEWgHTegDaAhHQK8oixPfsNV1fZQoaAZHQJdkMc+7lJZoB03oA2gIR0CvK7YhEBsAdX2UKGgGR0CS68AKfFrEaAdN6ANoCEdArzcIKBun/HV9lChoBkdAhXx3Wvr4WWgHTegDaAhHQK84K/zJ6pp1fZQoaAZHQJdnO67NB4VoB03oA2gIR0CvOcsySFGodX2UKGgGR0CT82AiFCb+aAdN6ANoCEdArzvNLi++NHV9lChoBkdAku3rKJVKgGgHTegDaAhHQK9E4HCXQdF1fZQoaAZHQJL6tMZgogFoB03oA2gIR0CvRlw2uPmxdX2UKGgGR0CL8R2L5ylvaAdN6ANoCEdAr0kHIKc/dXV9lChoBkdAlZa2X5WRzWgHTegDaAhHQK9MXLGJemh1fZQoaAZHQI0RDvCuU2VoB03oA2gIR0CvVv30XgtOdX2UKGgGR0CSOY9gWrOraAdN6ANoCEdAr1gfF1jiGXV9lChoBkdAkB7yTdLxqmgHTegDaAhHQK9Z1tFa0Qd1fZQoaAZHQJCETNIK+i9oB03oA2gIR0CvW+DpTuOTdX2UKGgGR0CJFQSZjQRgaAdN6ANoCEdAr2Tqnzg/DHV9lChoBkdAl/riM1jy4GgHTegDaAhHQK9mu6ClJpZ1fZQoaAZHQJGxmMKkVN5oB03oA2gIR0CvaWq6WgOCdX2UKGgGR0CQQdO1OTJRaAdN6ANoCEdAr2zzmhdt23V9lChoBkdAkR1RTsIE82gHTegDaAhHQK93QLNOdoZ1fZQoaAZHQJDfYK4QSSNoB03oA2gIR0CveGsNUfgadX2UKGgGR0CRpYxwQ176aAdN6ANoCEdAr3oZ3NcGDHV9lChoBkdAj0mlvAGjbmgHTegDaAhHQK98Q6xPfsN1fZQoaAZHQI7jXhqCYkVoB03oA2gIR0CvhgqKP4mDdX2UKGgGR0CO3besPrfMaAdN6ANoCEdAr4fPmzSkTHV9lChoBkdAkUg9A1Nxl2gHTegDaAhHQK+Kkc/dIoV1fZQoaAZHQJF7QC1Z1V5oB03oA2gIR0CvjgGZE2HddX2UKGgGR0CRupXEqDsdaAdN6ANoCEdAr5cjch1TznV9lChoBkdAkEZkgGKQ72gHTegDaAhHQK+YShN/OMV1fZQoaAZHQJTN8fIS13NoB03oA2gIR0Cvmeq8UVSGdX2UKGgGR0CP5CoJAt4BaAdN6ANoCEdAr5v09nscAHV9lChoBkdAlkiegpSaVmgHTegDaAhHQK+l2MpgCwN1fZQoaAZHQJMmG3nZCfJoB03oA2gIR0Cvp5+2NNrTdX2UKGgGR0CTTM94/u9faAdN6ANoCEdAr6pbUTcqOXV9lChoBkdAjW0MpXp4bGgHTegDaAhHQK+tjSGahHt1fZQoaAZHQJH3eFpPAO9oB03oA2gIR0CvtlAP3BYWdX2UKGgGR0CTUBtrbg0kaAdN6ANoCEdAr7dmll9SdnV9lChoBkdAi9ZkZJkGzWgHTegDaAhHQK+5FKVY6n11fZQoaAZHQJW/O1eBxxVoB03oA2gIR0Cvux5JK8L8dX2UKGgGR0CShj0AcT8HaAdN6ANoCEdAr8Wr7sOXmnV9lChoBkdAk49Pq9oN/mgHTegDaAhHQK/Hl1Gsmv51fZQoaAZHQJZp9Rl6JIloB03oA2gIR0CvylfqgRK6dX2UKGgGR0CQSWha1TisaAdN6ANoCEdAr80WdVea8nV9lChoBkdAlSSfMSsbN2gHTegDaAhHQK/V1hm5Dqp1fZQoaAZHQJR5A5EMLF5oB03oA2gIR0Cv1wXNs3yadX2UKGgGR0CW09b7TDwZaAdN6ANoCEdAr9iqobXHznV9lChoBkdAlLXgGW2PUGgHTegDaAhHQK/aqT/yXld1fZQoaAZHQJNt4LCvX9RoB03oA2gIR0Cv5VsmOU+tdX2UKGgGR0CQtrb8WKuTaAdN6ANoCEdAr+dYYP5HmXV9lChoBkdAlB/cRYigTWgHTegDaAhHQK/qIOd5IH11fZQoaAZHQJX1Jc7hegNoB03oA2gIR0Cv7HwaR6njdX2UKGgGR0CUKX+9rXUZaAdN6ANoCEdAr/VZgmZ3LXV9lChoBkdAlS4YKUmlZWgHTegDaAhHQK/2jkDIRyx1fZQoaAZHQJVjfRc/t6ZoB03oA2gIR0Cv+E1Iy0rtdX2UKGgGR0CV5Tr3Cbc5aAdN6ANoCEdAr/pgUBXCCXV9lChoBkdAlFtFgc94eWgHTegDaAhHQLAC8aYeDFt1fZQoaAZHQJPS0iX6ZYxoB03oA2gIR0CwA+Sq+8GtdX2UKGgGR0CUC2PluFYdaAdN6ANoCEdAsAUgNutOmHV9lChoBkdAlEd4hUzbe2gHTegDaAhHQLAGIHzH0bt1fZQoaAZHQJWgizIFNcpoB03oA2gIR0CwCoz/dZaFdX2UKGgGR0CThcPqcEvCaAdN6ANoCEdAsAsc8q4H5nV9lChoBkdAlHWQmE4//2gHTegDaAhHQLAL74Otnwp1fZQoaAZHQJJ2nFR51NhoB03oA2gIR0CwDPIxtYSydX2UKGgGR0CTuFJ9RaX8aAdN6ANoCEdAsBOTXUYsNHV9lChoBkdAkyGT+BH09WgHTegDaAhHQLAUoDKYAsF1fZQoaAZHQJLZHIvJzT5oB03oA2gIR0CwFhawD/2kdX2UKGgGR0CUbtyzXz19aAdN6ANoCEdAsBfRP/JeV3V9lChoBkdAlQMqAFxGUmgHTegDaAhHQLAcruBtk4F1fZQoaAZHQJLp37hvR7ZoB03oA2gIR0CwHUjAzpHJdX2UKGgGR0CUey/NqxkeaAdN6ANoCEdAsB4rS6UaAHV9lChoBkdAlkiZxNqQBGgHTegDaAhHQLAfNInBtUJ1fZQoaAZHQJV/AsGxD9hoB03oA2gIR0CwJSlTm4iHdX2UKGgGR0CWld3Sa3I/aAdN6ANoCEdAsCYi6J66a3V9lChoBkdAh5grTYukDmgHTegDaAhHQLAnVlTm4iJ1fZQoaAZHQJdUJr8BMi9oB03oA2gIR0CwKGUJ8fFKdX2UKGgGR0CW52yQgcLjaAdN6ANoCEdAsCzpaRp1zXV9lChoBkdAl+sWac7Qs2gHTegDaAhHQLAteqyGBWh1fZQoaAZHQJI7xf1HvttoB03oA2gIR0CwLlKwMYuTdX2UKGgGR0CYBr/TspocaAdN6ANoCEdAsC9S5jH4oXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (935 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1082.9757691755076, "std_reward": 161.86462089306272, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T09:25:06.735641"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:977ca86d693bd23b1f3585a79febc7835ea39889aee5030a354b19dbf126e589
|
3 |
+
size 2136
|