emylrahim commited on
Commit
7cb70cd
1 Parent(s): 73443fc

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1082.98 +/- 161.86
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49fde795535b1f9d6dd6661df6a93bf73edf9c5636e5ea9ce114fb7d4017a722
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1eeee9bca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1eeee9bd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1eeee9bdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1eeee9be50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1eeee9bee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1eeee9bf70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1eeeea0040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1eeeea00d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1eeeea0160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1eeeea01f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1eeeea0280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1eeeea0310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f1eeee97840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678002554065651914,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIbvhr/L6NA+k0u/Pl648D2htoS+gmRRv2fabD4tDFU/LUsQP+vpmz4pQOm+yb1OP1Rjeb/pBJm+pPaePuHY/z7Fq2Q/dSg7vxhk1D7ZmQdAV5Unv08cfj19+RO/1a+Zv+XzXz/m7DE/OvEEP7tqdT/diLe/KaagP66dHL+jxrS/02PavApaDr78AQc/Qd1mP8JKEz8mJCa9Tan1vpKdH79zE7C/lD8Av7akKD5UBf+/rf5KP+U5Ij9Db3c/e2KKP76FG7+pThw/9VtVvzYKEz3l818/xSq4vzrxBD+7anU/1cLmvgEe8D7E56k+a9xBP18X8z/Jos89EnSdPqURoz99chc/cIjgP4etHL9Xt8M8LqP+veEqEUBxgT+/xoDSveAejD9tozBA8K24PoJl8D4DYTe+GNy1P61r376rop09DFGSv+bsMT+ee/a/u2p1P8AV8TxYtNc/ueXdvwGjHD/e4JU+R/fHvUkCQT7TCYe/dx3/Ph9oIL+uPSU/lo+Dv2Hhg78MPmq/W147PhVAzr9zDB+/lP0IvyyZPT9X3sO+K4clv/n1jj0WbCG/Tz+NP+XzXz/FKri/OvEEPw2Fhb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADeDq62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5i6LPQAAAABvnuq/AAAAAMMxpb0AAAAAX6IAQAAAAAC9Omi9AAAAAKZC/j8AAAAAjT+rPAAAAABK3vG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuQ5sNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIFXbjwAAAAA7brwvwAAAADkDTE8AAAAAOVS9D8AAAAAl7poPQAAAACNY+g/AAAAAL621L0AAAAADvj7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonOTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDsgNa9AAAAABek5L8AAAAAJG5xPAAAAADsn+Q/AAAAACG6zL0AAAAAZXDgPwAAAAAy2NG9AAAAAILa6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIfMO0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYXivvQAAAAAmkOm/AAAAABHOEj0AAAAAmU32PwAAAAAfdcW9AAAAAPd66D8AAAAAQScjPQAAAAAPpve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyTUQcxTKmMAWyUTegDjAF0lEdArtJXjCHh0nV9lChoBkdAm7xT1wo9cWgHTegDaAhHQK7USYEW69V1fZQoaAZHQJYNAwi7kGRoB03oA2gIR0Cu1w4tYjjadX2UKGgGR0CcNVIvrWy1aAdN6ANoCEdArtpCEBbOeXV9lChoBkdAm5LKifxtpGgHTegDaAhHQK7lOMXrMTx1fZQoaAZHQJp3fSG8EmpoB03oA2gIR0Cu5lKHO8kEdX2UKGgGR0CWgtkNnXd1aAdN6ANoCEdArugBRTCLuXV9lChoBkdAmoAEbPyCnWgHTegDaAhHQK7qig7HQyB1fZQoaAZHQJmzbURWcSZoB03oA2gIR0Cu90Dua4MGdX2UKGgGR0CR4loYekpJaAdN6ANoCEdArvhrzCk43nV9lChoBkdAmysZFspG4WgHTegDaAhHQK76HBVuJk51fZQoaAZHQJlAattALRdoB03oA2gIR0Cu/D1h1DBudX2UKGgGR0CadvyVObiIaAdN6ANoCEdArwU9qHoHLXV9lChoBkdAldbhcu8K5WgHTegDaAhHQK8GXjm0VrR1fZQoaAZHQJqqHbblA/toB03oA2gIR0CvCEsSTQmedX2UKGgGR0CV3JDPnjhlaAdN6ANoCEdArwtz0Bfa6HV9lChoBkdAmzjRUm2LHmgHTegDaAhHQK8XIZBsyi51fZQoaAZHQJgVFDpkf9xoB03oA2gIR0CvGD7wBo25dX2UKGgGR0CZkggccU/OaAdN6ANoCEdArxnm4kNWl3V9lChoBkdAm05pXdTHbWgHTegDaAhHQK8b861b7j11fZQoaAZHQJaClREWqLloB03oA2gIR0CvJQ4Ia99MdX2UKGgGR0CYqloZQ53laAdN6ANoCEdAryYyiRGMGXV9lChoBkdAjCy5hKDkEWgHTegDaAhHQK8oixPfsNV1fZQoaAZHQJdkMc+7lJZoB03oA2gIR0CvK7YhEBsAdX2UKGgGR0CS68AKfFrEaAdN6ANoCEdArzcIKBun/HV9lChoBkdAhXx3Wvr4WWgHTegDaAhHQK84K/zJ6pp1fZQoaAZHQJdnO67NB4VoB03oA2gIR0CvOcsySFGodX2UKGgGR0CT82AiFCb+aAdN6ANoCEdArzvNLi++NHV9lChoBkdAku3rKJVKgGgHTegDaAhHQK9E4HCXQdF1fZQoaAZHQJL6tMZgogFoB03oA2gIR0CvRlw2uPmxdX2UKGgGR0CL8R2L5ylvaAdN6ANoCEdAr0kHIKc/dXV9lChoBkdAlZa2X5WRzWgHTegDaAhHQK9MXLGJemh1fZQoaAZHQI0RDvCuU2VoB03oA2gIR0CvVv30XgtOdX2UKGgGR0CSOY9gWrOraAdN6ANoCEdAr1gfF1jiGXV9lChoBkdAkB7yTdLxqmgHTegDaAhHQK9Z1tFa0Qd1fZQoaAZHQJCETNIK+i9oB03oA2gIR0CvW+DpTuOTdX2UKGgGR0CJFQSZjQRgaAdN6ANoCEdAr2Tqnzg/DHV9lChoBkdAl/riM1jy4GgHTegDaAhHQK9mu6ClJpZ1fZQoaAZHQJGxmMKkVN5oB03oA2gIR0CvaWq6WgOCdX2UKGgGR0CQQdO1OTJRaAdN6ANoCEdAr2zzmhdt23V9lChoBkdAkR1RTsIE82gHTegDaAhHQK93QLNOdoZ1fZQoaAZHQJDfYK4QSSNoB03oA2gIR0CveGsNUfgadX2UKGgGR0CRpYxwQ176aAdN6ANoCEdAr3oZ3NcGDHV9lChoBkdAj0mlvAGjbmgHTegDaAhHQK98Q6xPfsN1fZQoaAZHQI7jXhqCYkVoB03oA2gIR0CvhgqKP4mDdX2UKGgGR0CO3besPrfMaAdN6ANoCEdAr4fPmzSkTHV9lChoBkdAkUg9A1Nxl2gHTegDaAhHQK+Kkc/dIoV1fZQoaAZHQJF7QC1Z1V5oB03oA2gIR0CvjgGZE2HddX2UKGgGR0CRupXEqDsdaAdN6ANoCEdAr5cjch1TznV9lChoBkdAkEZkgGKQ72gHTegDaAhHQK+YShN/OMV1fZQoaAZHQJTN8fIS13NoB03oA2gIR0Cvmeq8UVSGdX2UKGgGR0CP5CoJAt4BaAdN6ANoCEdAr5v09nscAHV9lChoBkdAlkiegpSaVmgHTegDaAhHQK+l2MpgCwN1fZQoaAZHQJMmG3nZCfJoB03oA2gIR0Cvp5+2NNrTdX2UKGgGR0CTTM94/u9faAdN6ANoCEdAr6pbUTcqOXV9lChoBkdAjW0MpXp4bGgHTegDaAhHQK+tjSGahHt1fZQoaAZHQJH3eFpPAO9oB03oA2gIR0CvtlAP3BYWdX2UKGgGR0CTUBtrbg0kaAdN6ANoCEdAr7dmll9SdnV9lChoBkdAi9ZkZJkGzWgHTegDaAhHQK+5FKVY6n11fZQoaAZHQJW/O1eBxxVoB03oA2gIR0Cvux5JK8L8dX2UKGgGR0CShj0AcT8HaAdN6ANoCEdAr8Wr7sOXmnV9lChoBkdAk49Pq9oN/mgHTegDaAhHQK/Hl1Gsmv51fZQoaAZHQJZp9Rl6JIloB03oA2gIR0CvylfqgRK6dX2UKGgGR0CQSWha1TisaAdN6ANoCEdAr80WdVea8nV9lChoBkdAlSSfMSsbN2gHTegDaAhHQK/V1hm5Dqp1fZQoaAZHQJR5A5EMLF5oB03oA2gIR0Cv1wXNs3yadX2UKGgGR0CW09b7TDwZaAdN6ANoCEdAr9iqobXHznV9lChoBkdAlLXgGW2PUGgHTegDaAhHQK/aqT/yXld1fZQoaAZHQJNt4LCvX9RoB03oA2gIR0Cv5VsmOU+tdX2UKGgGR0CQtrb8WKuTaAdN6ANoCEdAr+dYYP5HmXV9lChoBkdAlB/cRYigTWgHTegDaAhHQK/qIOd5IH11fZQoaAZHQJX1Jc7hegNoB03oA2gIR0Cv7HwaR6njdX2UKGgGR0CUKX+9rXUZaAdN6ANoCEdAr/VZgmZ3LXV9lChoBkdAlS4YKUmlZWgHTegDaAhHQK/2jkDIRyx1fZQoaAZHQJVjfRc/t6ZoB03oA2gIR0Cv+E1Iy0rtdX2UKGgGR0CV5Tr3Cbc5aAdN6ANoCEdAr/pgUBXCCXV9lChoBkdAlFtFgc94eWgHTegDaAhHQLAC8aYeDFt1fZQoaAZHQJPS0iX6ZYxoB03oA2gIR0CwA+Sq+8GtdX2UKGgGR0CUC2PluFYdaAdN6ANoCEdAsAUgNutOmHV9lChoBkdAlEd4hUzbe2gHTegDaAhHQLAGIHzH0bt1fZQoaAZHQJWgizIFNcpoB03oA2gIR0CwCoz/dZaFdX2UKGgGR0CThcPqcEvCaAdN6ANoCEdAsAsc8q4H5nV9lChoBkdAlHWQmE4//2gHTegDaAhHQLAL74Otnwp1fZQoaAZHQJJ2nFR51NhoB03oA2gIR0CwDPIxtYSydX2UKGgGR0CTuFJ9RaX8aAdN6ANoCEdAsBOTXUYsNHV9lChoBkdAkyGT+BH09WgHTegDaAhHQLAUoDKYAsF1fZQoaAZHQJLZHIvJzT5oB03oA2gIR0CwFhawD/2kdX2UKGgGR0CUbtyzXz19aAdN6ANoCEdAsBfRP/JeV3V9lChoBkdAlQMqAFxGUmgHTegDaAhHQLAcruBtk4F1fZQoaAZHQJLp37hvR7ZoB03oA2gIR0CwHUjAzpHJdX2UKGgGR0CUey/NqxkeaAdN6ANoCEdAsB4rS6UaAHV9lChoBkdAlkiZxNqQBGgHTegDaAhHQLAfNInBtUJ1fZQoaAZHQJV/AsGxD9hoB03oA2gIR0CwJSlTm4iHdX2UKGgGR0CWld3Sa3I/aAdN6ANoCEdAsCYi6J66a3V9lChoBkdAh5grTYukDmgHTegDaAhHQLAnVlTm4iJ1fZQoaAZHQJdUJr8BMi9oB03oA2gIR0CwKGUJ8fFKdX2UKGgGR0CW52yQgcLjaAdN6ANoCEdAsCzpaRp1zXV9lChoBkdAl+sWac7Qs2gHTegDaAhHQLAteqyGBWh1fZQoaAZHQJI7xf1HvttoB03oA2gIR0CwLlKwMYuTdX2UKGgGR0CYBr/TspocaAdN6ANoCEdAsC9S5jH4oXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b19da97d28d3c9bf86f7109791d74423dd13e72fae3b150e1bc776375068cc0
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6164a2692f0c332f4a75905f115e43ce6c6f83942745454e143e2149f341ef06
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1eeee9bca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1eeee9bd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1eeee9bdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1eeee9be50>", "_build": "<function ActorCriticPolicy._build at 0x7f1eeee9bee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1eeee9bf70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1eeeea0040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1eeeea00d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1eeeea0160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1eeeea01f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1eeeea0280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1eeeea0310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1eeee97840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678002554065651914, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIbvhr/L6NA+k0u/Pl648D2htoS+gmRRv2fabD4tDFU/LUsQP+vpmz4pQOm+yb1OP1Rjeb/pBJm+pPaePuHY/z7Fq2Q/dSg7vxhk1D7ZmQdAV5Unv08cfj19+RO/1a+Zv+XzXz/m7DE/OvEEP7tqdT/diLe/KaagP66dHL+jxrS/02PavApaDr78AQc/Qd1mP8JKEz8mJCa9Tan1vpKdH79zE7C/lD8Av7akKD5UBf+/rf5KP+U5Ij9Db3c/e2KKP76FG7+pThw/9VtVvzYKEz3l818/xSq4vzrxBD+7anU/1cLmvgEe8D7E56k+a9xBP18X8z/Jos89EnSdPqURoz99chc/cIjgP4etHL9Xt8M8LqP+veEqEUBxgT+/xoDSveAejD9tozBA8K24PoJl8D4DYTe+GNy1P61r376rop09DFGSv+bsMT+ee/a/u2p1P8AV8TxYtNc/ueXdvwGjHD/e4JU+R/fHvUkCQT7TCYe/dx3/Ph9oIL+uPSU/lo+Dv2Hhg78MPmq/W147PhVAzr9zDB+/lP0IvyyZPT9X3sO+K4clv/n1jj0WbCG/Tz+NP+XzXz/FKri/OvEEPw2Fhb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADeDq62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5i6LPQAAAABvnuq/AAAAAMMxpb0AAAAAX6IAQAAAAAC9Omi9AAAAAKZC/j8AAAAAjT+rPAAAAABK3vG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuQ5sNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIFXbjwAAAAA7brwvwAAAADkDTE8AAAAAOVS9D8AAAAAl7poPQAAAACNY+g/AAAAAL621L0AAAAADvj7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonOTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDsgNa9AAAAABek5L8AAAAAJG5xPAAAAADsn+Q/AAAAACG6zL0AAAAAZXDgPwAAAAAy2NG9AAAAAILa6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIfMO0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYXivvQAAAAAmkOm/AAAAABHOEj0AAAAAmU32PwAAAAAfdcW9AAAAAPd66D8AAAAAQScjPQAAAAAPpve/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyTUQcxTKmMAWyUTegDjAF0lEdArtJXjCHh0nV9lChoBkdAm7xT1wo9cWgHTegDaAhHQK7USYEW69V1fZQoaAZHQJYNAwi7kGRoB03oA2gIR0Cu1w4tYjjadX2UKGgGR0CcNVIvrWy1aAdN6ANoCEdArtpCEBbOeXV9lChoBkdAm5LKifxtpGgHTegDaAhHQK7lOMXrMTx1fZQoaAZHQJp3fSG8EmpoB03oA2gIR0Cu5lKHO8kEdX2UKGgGR0CWgtkNnXd1aAdN6ANoCEdArugBRTCLuXV9lChoBkdAmoAEbPyCnWgHTegDaAhHQK7qig7HQyB1fZQoaAZHQJmzbURWcSZoB03oA2gIR0Cu90Dua4MGdX2UKGgGR0CR4loYekpJaAdN6ANoCEdArvhrzCk43nV9lChoBkdAmysZFspG4WgHTegDaAhHQK76HBVuJk51fZQoaAZHQJlAattALRdoB03oA2gIR0Cu/D1h1DBudX2UKGgGR0CadvyVObiIaAdN6ANoCEdArwU9qHoHLXV9lChoBkdAldbhcu8K5WgHTegDaAhHQK8GXjm0VrR1fZQoaAZHQJqqHbblA/toB03oA2gIR0CvCEsSTQmedX2UKGgGR0CV3JDPnjhlaAdN6ANoCEdArwtz0Bfa6HV9lChoBkdAmzjRUm2LHmgHTegDaAhHQK8XIZBsyi51fZQoaAZHQJgVFDpkf9xoB03oA2gIR0CvGD7wBo25dX2UKGgGR0CZkggccU/OaAdN6ANoCEdArxnm4kNWl3V9lChoBkdAm05pXdTHbWgHTegDaAhHQK8b861b7j11fZQoaAZHQJaClREWqLloB03oA2gIR0CvJQ4Ia99MdX2UKGgGR0CYqloZQ53laAdN6ANoCEdAryYyiRGMGXV9lChoBkdAjCy5hKDkEWgHTegDaAhHQK8oixPfsNV1fZQoaAZHQJdkMc+7lJZoB03oA2gIR0CvK7YhEBsAdX2UKGgGR0CS68AKfFrEaAdN6ANoCEdArzcIKBun/HV9lChoBkdAhXx3Wvr4WWgHTegDaAhHQK84K/zJ6pp1fZQoaAZHQJdnO67NB4VoB03oA2gIR0CvOcsySFGodX2UKGgGR0CT82AiFCb+aAdN6ANoCEdArzvNLi++NHV9lChoBkdAku3rKJVKgGgHTegDaAhHQK9E4HCXQdF1fZQoaAZHQJL6tMZgogFoB03oA2gIR0CvRlw2uPmxdX2UKGgGR0CL8R2L5ylvaAdN6ANoCEdAr0kHIKc/dXV9lChoBkdAlZa2X5WRzWgHTegDaAhHQK9MXLGJemh1fZQoaAZHQI0RDvCuU2VoB03oA2gIR0CvVv30XgtOdX2UKGgGR0CSOY9gWrOraAdN6ANoCEdAr1gfF1jiGXV9lChoBkdAkB7yTdLxqmgHTegDaAhHQK9Z1tFa0Qd1fZQoaAZHQJCETNIK+i9oB03oA2gIR0CvW+DpTuOTdX2UKGgGR0CJFQSZjQRgaAdN6ANoCEdAr2Tqnzg/DHV9lChoBkdAl/riM1jy4GgHTegDaAhHQK9mu6ClJpZ1fZQoaAZHQJGxmMKkVN5oB03oA2gIR0CvaWq6WgOCdX2UKGgGR0CQQdO1OTJRaAdN6ANoCEdAr2zzmhdt23V9lChoBkdAkR1RTsIE82gHTegDaAhHQK93QLNOdoZ1fZQoaAZHQJDfYK4QSSNoB03oA2gIR0CveGsNUfgadX2UKGgGR0CRpYxwQ176aAdN6ANoCEdAr3oZ3NcGDHV9lChoBkdAj0mlvAGjbmgHTegDaAhHQK98Q6xPfsN1fZQoaAZHQI7jXhqCYkVoB03oA2gIR0CvhgqKP4mDdX2UKGgGR0CO3besPrfMaAdN6ANoCEdAr4fPmzSkTHV9lChoBkdAkUg9A1Nxl2gHTegDaAhHQK+Kkc/dIoV1fZQoaAZHQJF7QC1Z1V5oB03oA2gIR0CvjgGZE2HddX2UKGgGR0CRupXEqDsdaAdN6ANoCEdAr5cjch1TznV9lChoBkdAkEZkgGKQ72gHTegDaAhHQK+YShN/OMV1fZQoaAZHQJTN8fIS13NoB03oA2gIR0Cvmeq8UVSGdX2UKGgGR0CP5CoJAt4BaAdN6ANoCEdAr5v09nscAHV9lChoBkdAlkiegpSaVmgHTegDaAhHQK+l2MpgCwN1fZQoaAZHQJMmG3nZCfJoB03oA2gIR0Cvp5+2NNrTdX2UKGgGR0CTTM94/u9faAdN6ANoCEdAr6pbUTcqOXV9lChoBkdAjW0MpXp4bGgHTegDaAhHQK+tjSGahHt1fZQoaAZHQJH3eFpPAO9oB03oA2gIR0CvtlAP3BYWdX2UKGgGR0CTUBtrbg0kaAdN6ANoCEdAr7dmll9SdnV9lChoBkdAi9ZkZJkGzWgHTegDaAhHQK+5FKVY6n11fZQoaAZHQJW/O1eBxxVoB03oA2gIR0Cvux5JK8L8dX2UKGgGR0CShj0AcT8HaAdN6ANoCEdAr8Wr7sOXmnV9lChoBkdAk49Pq9oN/mgHTegDaAhHQK/Hl1Gsmv51fZQoaAZHQJZp9Rl6JIloB03oA2gIR0CvylfqgRK6dX2UKGgGR0CQSWha1TisaAdN6ANoCEdAr80WdVea8nV9lChoBkdAlSSfMSsbN2gHTegDaAhHQK/V1hm5Dqp1fZQoaAZHQJR5A5EMLF5oB03oA2gIR0Cv1wXNs3yadX2UKGgGR0CW09b7TDwZaAdN6ANoCEdAr9iqobXHznV9lChoBkdAlLXgGW2PUGgHTegDaAhHQK/aqT/yXld1fZQoaAZHQJNt4LCvX9RoB03oA2gIR0Cv5VsmOU+tdX2UKGgGR0CQtrb8WKuTaAdN6ANoCEdAr+dYYP5HmXV9lChoBkdAlB/cRYigTWgHTegDaAhHQK/qIOd5IH11fZQoaAZHQJX1Jc7hegNoB03oA2gIR0Cv7HwaR6njdX2UKGgGR0CUKX+9rXUZaAdN6ANoCEdAr/VZgmZ3LXV9lChoBkdAlS4YKUmlZWgHTegDaAhHQK/2jkDIRyx1fZQoaAZHQJVjfRc/t6ZoB03oA2gIR0Cv+E1Iy0rtdX2UKGgGR0CV5Tr3Cbc5aAdN6ANoCEdAr/pgUBXCCXV9lChoBkdAlFtFgc94eWgHTegDaAhHQLAC8aYeDFt1fZQoaAZHQJPS0iX6ZYxoB03oA2gIR0CwA+Sq+8GtdX2UKGgGR0CUC2PluFYdaAdN6ANoCEdAsAUgNutOmHV9lChoBkdAlEd4hUzbe2gHTegDaAhHQLAGIHzH0bt1fZQoaAZHQJWgizIFNcpoB03oA2gIR0CwCoz/dZaFdX2UKGgGR0CThcPqcEvCaAdN6ANoCEdAsAsc8q4H5nV9lChoBkdAlHWQmE4//2gHTegDaAhHQLAL74Otnwp1fZQoaAZHQJJ2nFR51NhoB03oA2gIR0CwDPIxtYSydX2UKGgGR0CTuFJ9RaX8aAdN6ANoCEdAsBOTXUYsNHV9lChoBkdAkyGT+BH09WgHTegDaAhHQLAUoDKYAsF1fZQoaAZHQJLZHIvJzT5oB03oA2gIR0CwFhawD/2kdX2UKGgGR0CUbtyzXz19aAdN6ANoCEdAsBfRP/JeV3V9lChoBkdAlQMqAFxGUmgHTegDaAhHQLAcruBtk4F1fZQoaAZHQJLp37hvR7ZoB03oA2gIR0CwHUjAzpHJdX2UKGgGR0CUey/NqxkeaAdN6ANoCEdAsB4rS6UaAHV9lChoBkdAlkiZxNqQBGgHTegDaAhHQLAfNInBtUJ1fZQoaAZHQJV/AsGxD9hoB03oA2gIR0CwJSlTm4iHdX2UKGgGR0CWld3Sa3I/aAdN6ANoCEdAsCYi6J66a3V9lChoBkdAh5grTYukDmgHTegDaAhHQLAnVlTm4iJ1fZQoaAZHQJdUJr8BMi9oB03oA2gIR0CwKGUJ8fFKdX2UKGgGR0CW52yQgcLjaAdN6ANoCEdAsCzpaRp1zXV9lChoBkdAl+sWac7Qs2gHTegDaAhHQLAteqyGBWh1fZQoaAZHQJI7xf1HvttoB03oA2gIR0CwLlKwMYuTdX2UKGgGR0CYBr/TspocaAdN6ANoCEdAsC9S5jH4oXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (935 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1082.9757691755076, "std_reward": 161.86462089306272, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T09:25:06.735641"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:977ca86d693bd23b1f3585a79febc7835ea39889aee5030a354b19dbf126e589
3
+ size 2136