Update README.md
Browse files
README.md
CHANGED
@@ -59,6 +59,25 @@ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
|
59 |
model = PeftModel.from_pretrained(model, peft_model_id, device_map={"":0})
|
60 |
model.eval()
|
61 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
## Training procedure
|
64 |
|
|
|
59 |
model = PeftModel.from_pretrained(model, peft_model_id, device_map={"":0})
|
60 |
model.eval()
|
61 |
```
|
62 |
+
2. Generating summaries
|
63 |
+
|
64 |
+
```python
|
65 |
+
text = "Your text goes here..."
|
66 |
+
|
67 |
+
# If you want to use CPU
|
68 |
+
input_ids = tokenizer(text, return_tensors="pt", truncation=True).input_ids
|
69 |
+
# Ir you want to use GPU
|
70 |
+
input_ids = tokenizer(text, return_tensors="pt", truncation=True).input_ids.cuda()
|
71 |
+
# Adjust max_new_tokens based on size. This is set up for articles of text
|
72 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=120, do_sample=False)
|
73 |
+
|
74 |
+
print(f"input sentence: {sample['article']}\n{'---'* 20}")
|
75 |
+
print(f"summary:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]}")
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
```
|
80 |
+
|
81 |
|
82 |
## Training procedure
|
83 |
|