emmatliu commited on
Commit
fa85673
·
verified ·
1 Parent(s): f8f02f0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -2
README.md CHANGED
@@ -23,6 +23,7 @@ An example usage of the model is below.
23
 
24
  ```
25
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
26
 
27
  tokenizer = AutoTokenizer.from_pretrained("emmatliu/language-agency-classifier")
28
  model = AutoModelForSequenceClassification.from_pretrained("emmatliu/language-agency-classifier")
@@ -33,9 +34,14 @@ inputs = tokenizer(sentence, return_tensors="pt")
33
  outputs = model(**inputs)
34
  probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
35
 
36
- predicted_class = torch.argmax(probabilities)
37
 
38
- print(f"Predicted class: {predicted_class}")
 
 
 
 
 
39
  ```
40
 
41
  ### Model Sources
 
23
 
24
  ```
25
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
26
+ import torch
27
 
28
  tokenizer = AutoTokenizer.from_pretrained("emmatliu/language-agency-classifier")
29
  model = AutoModelForSequenceClassification.from_pretrained("emmatliu/language-agency-classifier")
 
34
  outputs = model(**inputs)
35
  probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
36
 
37
+ predicted_class = torch.argmax(probabilities).item()
38
 
39
+ labels = {
40
+ 1: 'agentic',
41
+ 0: 'communal'
42
+ }
43
+
44
+ print(f"Predicted class: {labels[predicted_class]}")
45
  ```
46
 
47
  ### Model Sources