Update README.md
Browse files
README.md
CHANGED
@@ -23,6 +23,7 @@ An example usage of the model is below.
|
|
23 |
|
24 |
```
|
25 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
26 |
|
27 |
tokenizer = AutoTokenizer.from_pretrained("emmatliu/language-agency-classifier")
|
28 |
model = AutoModelForSequenceClassification.from_pretrained("emmatliu/language-agency-classifier")
|
@@ -33,9 +34,14 @@ inputs = tokenizer(sentence, return_tensors="pt")
|
|
33 |
outputs = model(**inputs)
|
34 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
35 |
|
36 |
-
predicted_class = torch.argmax(probabilities)
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
```
|
40 |
|
41 |
### Model Sources
|
|
|
23 |
|
24 |
```
|
25 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
26 |
+
import torch
|
27 |
|
28 |
tokenizer = AutoTokenizer.from_pretrained("emmatliu/language-agency-classifier")
|
29 |
model = AutoModelForSequenceClassification.from_pretrained("emmatliu/language-agency-classifier")
|
|
|
34 |
outputs = model(**inputs)
|
35 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
36 |
|
37 |
+
predicted_class = torch.argmax(probabilities).item()
|
38 |
|
39 |
+
labels = {
|
40 |
+
1: 'agentic',
|
41 |
+
0: 'communal'
|
42 |
+
}
|
43 |
+
|
44 |
+
print(f"Predicted class: {labels[predicted_class]}")
|
45 |
```
|
46 |
|
47 |
### Model Sources
|