emilys commited on
Commit
423522f
1 Parent(s): 9c40ca0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +138 -0
README.md ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - conll2003
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: hmBERT-CoNLL-cp3
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: conll2003
20
+ type: conll2003
21
+ args: conll2003
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.9180518617021277
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.9294850218781555
29
+ - name: F1
30
+ type: f1
31
+ value: 0.9237330657300552
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9873057902729645
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # hmBERT-CoNLL-cp3
41
+
42
+ This model is a fine-tuned version of [dbmdz/bert-base-historic-multilingual-cased](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) on the conll2003 dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.0563
45
+ - Precision: 0.9181
46
+ - Recall: 0.9295
47
+ - F1: 0.9237
48
+ - Accuracy: 0.9873
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 5e-05
68
+ - train_batch_size: 32
69
+ - eval_batch_size: 32
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 3
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | No log | 0.06 | 25 | 0.4115 | 0.3643 | 0.3728 | 0.3685 | 0.9007 |
80
+ | No log | 0.11 | 50 | 0.2243 | 0.6393 | 0.6908 | 0.6641 | 0.9460 |
81
+ | No log | 0.17 | 75 | 0.1617 | 0.7319 | 0.7637 | 0.7475 | 0.9580 |
82
+ | No log | 0.23 | 100 | 0.1544 | 0.7282 | 0.7637 | 0.7455 | 0.9585 |
83
+ | No log | 0.28 | 125 | 0.1341 | 0.7595 | 0.8117 | 0.7847 | 0.9644 |
84
+ | No log | 0.34 | 150 | 0.1221 | 0.7980 | 0.8251 | 0.8114 | 0.9693 |
85
+ | No log | 0.4 | 175 | 0.1013 | 0.7968 | 0.8344 | 0.8152 | 0.9719 |
86
+ | No log | 0.46 | 200 | 0.1076 | 0.8265 | 0.8403 | 0.8333 | 0.9732 |
87
+ | No log | 0.51 | 225 | 0.0883 | 0.8453 | 0.8635 | 0.8543 | 0.9763 |
88
+ | No log | 0.57 | 250 | 0.0973 | 0.8439 | 0.8633 | 0.8535 | 0.9763 |
89
+ | No log | 0.63 | 275 | 0.0883 | 0.8497 | 0.8655 | 0.8575 | 0.9765 |
90
+ | No log | 0.68 | 300 | 0.0879 | 0.8462 | 0.8642 | 0.8551 | 0.9766 |
91
+ | No log | 0.74 | 325 | 0.0781 | 0.8592 | 0.8834 | 0.8711 | 0.9787 |
92
+ | No log | 0.8 | 350 | 0.0725 | 0.8697 | 0.8928 | 0.8811 | 0.9803 |
93
+ | No log | 0.85 | 375 | 0.0755 | 0.8687 | 0.8943 | 0.8813 | 0.9807 |
94
+ | No log | 0.91 | 400 | 0.0666 | 0.8781 | 0.9004 | 0.8891 | 0.9822 |
95
+ | No log | 0.97 | 425 | 0.0658 | 0.8877 | 0.8995 | 0.8936 | 0.9823 |
96
+ | No log | 1.03 | 450 | 0.0645 | 0.8951 | 0.9036 | 0.8993 | 0.9837 |
97
+ | No log | 1.08 | 475 | 0.0697 | 0.8864 | 0.9039 | 0.8951 | 0.9831 |
98
+ | 0.1392 | 1.14 | 500 | 0.0688 | 0.8824 | 0.8994 | 0.8908 | 0.9824 |
99
+ | 0.1392 | 1.2 | 525 | 0.0681 | 0.8950 | 0.9049 | 0.8999 | 0.9827 |
100
+ | 0.1392 | 1.25 | 550 | 0.0676 | 0.8855 | 0.8977 | 0.8915 | 0.9823 |
101
+ | 0.1392 | 1.31 | 575 | 0.0618 | 0.8940 | 0.9088 | 0.9014 | 0.9842 |
102
+ | 0.1392 | 1.37 | 600 | 0.0644 | 0.8945 | 0.9076 | 0.9010 | 0.9840 |
103
+ | 0.1392 | 1.42 | 625 | 0.0641 | 0.8936 | 0.9086 | 0.9010 | 0.9837 |
104
+ | 0.1392 | 1.48 | 650 | 0.0619 | 0.8969 | 0.9120 | 0.9044 | 0.9846 |
105
+ | 0.1392 | 1.54 | 675 | 0.0608 | 0.9045 | 0.9105 | 0.9075 | 0.9848 |
106
+ | 0.1392 | 1.59 | 700 | 0.0624 | 0.9038 | 0.9143 | 0.9091 | 0.9851 |
107
+ | 0.1392 | 1.65 | 725 | 0.0596 | 0.9062 | 0.9170 | 0.9116 | 0.9852 |
108
+ | 0.1392 | 1.71 | 750 | 0.0580 | 0.8995 | 0.9143 | 0.9069 | 0.9848 |
109
+ | 0.1392 | 1.77 | 775 | 0.0582 | 0.9082 | 0.9172 | 0.9127 | 0.9858 |
110
+ | 0.1392 | 1.82 | 800 | 0.0588 | 0.9024 | 0.9179 | 0.9101 | 0.9852 |
111
+ | 0.1392 | 1.88 | 825 | 0.0592 | 0.9020 | 0.9219 | 0.9119 | 0.9856 |
112
+ | 0.1392 | 1.94 | 850 | 0.0600 | 0.9054 | 0.9182 | 0.9118 | 0.9852 |
113
+ | 0.1392 | 1.99 | 875 | 0.0568 | 0.9068 | 0.9202 | 0.9135 | 0.9861 |
114
+ | 0.1392 | 2.05 | 900 | 0.0571 | 0.9131 | 0.9212 | 0.9171 | 0.9861 |
115
+ | 0.1392 | 2.11 | 925 | 0.0577 | 0.9110 | 0.9204 | 0.9157 | 0.9858 |
116
+ | 0.1392 | 2.16 | 950 | 0.0605 | 0.9127 | 0.9243 | 0.9185 | 0.9860 |
117
+ | 0.1392 | 2.22 | 975 | 0.0575 | 0.9109 | 0.9224 | 0.9166 | 0.9867 |
118
+ | 0.0392 | 2.28 | 1000 | 0.0572 | 0.9121 | 0.9243 | 0.9182 | 0.9862 |
119
+ | 0.0392 | 2.33 | 1025 | 0.0567 | 0.9171 | 0.9253 | 0.9212 | 0.9870 |
120
+ | 0.0392 | 2.39 | 1050 | 0.0570 | 0.9193 | 0.9295 | 0.9244 | 0.9871 |
121
+ | 0.0392 | 2.45 | 1075 | 0.0584 | 0.9155 | 0.9276 | 0.9215 | 0.9867 |
122
+ | 0.0392 | 2.51 | 1100 | 0.0591 | 0.9168 | 0.9286 | 0.9227 | 0.9867 |
123
+ | 0.0392 | 2.56 | 1125 | 0.0577 | 0.9182 | 0.9312 | 0.9246 | 0.9874 |
124
+ | 0.0392 | 2.62 | 1150 | 0.0570 | 0.9184 | 0.9283 | 0.9233 | 0.9870 |
125
+ | 0.0392 | 2.68 | 1175 | 0.0563 | 0.9191 | 0.9298 | 0.9245 | 0.9872 |
126
+ | 0.0392 | 2.73 | 1200 | 0.0565 | 0.9180 | 0.9313 | 0.9246 | 0.9872 |
127
+ | 0.0392 | 2.79 | 1225 | 0.0559 | 0.9190 | 0.9298 | 0.9244 | 0.9873 |
128
+ | 0.0392 | 2.85 | 1250 | 0.0562 | 0.9185 | 0.9293 | 0.9239 | 0.9873 |
129
+ | 0.0392 | 2.9 | 1275 | 0.0564 | 0.9175 | 0.9285 | 0.9230 | 0.9872 |
130
+ | 0.0392 | 2.96 | 1300 | 0.0563 | 0.9181 | 0.9295 | 0.9237 | 0.9873 |
131
+
132
+
133
+ ### Framework versions
134
+
135
+ - Transformers 4.20.1
136
+ - Pytorch 1.12.0
137
+ - Datasets 2.4.0
138
+ - Tokenizers 0.12.1