Training in progress, step 6000
Browse files- config.json +1 -0
- e5_interleaving-cl.ipynb +59 -106
- push.py +758 -0
- pytorch_model.bin +1 -1
- run.sh +39 -0
- run_eval_whisper_streaming.py +150 -0
- run_interleave.py +1 -1
- run_speech_recognition_seq2seq_streaming.py +629 -0
- run_whisper-md-el-intlv-xs.sh +2 -2
- runs/Dec13_00-20-31_150-136-33-0/1670891059.409924/events.out.tfevents.1670891059.150-136-33-0.3897722.1 +3 -0
- runs/Dec13_00-20-31_150-136-33-0/events.out.tfevents.1670891059.150-136-33-0.3897722.0 +3 -0
- runs/Dec13_00-26-09_150-136-33-0/1670891185.5348835/events.out.tfevents.1670891185.150-136-33-0.3897722.3 +3 -0
- runs/Dec13_00-26-09_150-136-33-0/events.out.tfevents.1670891185.150-136-33-0.3897722.2 +3 -0
- runs/Dec13_00-29-21_150-136-33-0/1670891404.5181074/events.out.tfevents.1670891404.150-136-33-0.127865.1 +3 -0
- runs/Dec13_00-29-21_150-136-33-0/1670891530.7157552/events.out.tfevents.1670891530.150-136-33-0.127865.2 +3 -0
- runs/Dec13_00-29-21_150-136-33-0/events.out.tfevents.1670891404.150-136-33-0.127865.0 +3 -0
- runs/Dec13_00-33-53_150-136-33-0/1670891644.5885968/events.out.tfevents.1670891644.150-136-33-0.127865.4 +3 -0
- runs/Dec13_00-33-53_150-136-33-0/events.out.tfevents.1670891644.150-136-33-0.127865.3 +3 -0
- runs/Dec13_00-36-22_150-136-33-0/1670891797.5398705/events.out.tfevents.1670891797.150-136-33-0.152213.1 +3 -0
- runs/Dec13_00-36-22_150-136-33-0/events.out.tfevents.1670891797.150-136-33-0.152213.0 +3 -0
- training_args.bin +2 -2
config.json
CHANGED
@@ -34,6 +34,7 @@
|
|
34 |
"num_mel_bins": 80,
|
35 |
"pad_token_id": 50257,
|
36 |
"scale_embedding": false,
|
|
|
37 |
"torch_dtype": "float32",
|
38 |
"transformers_version": "4.26.0.dev0",
|
39 |
"use_cache": false,
|
|
|
34 |
"num_mel_bins": 80,
|
35 |
"pad_token_id": 50257,
|
36 |
"scale_embedding": false,
|
37 |
+
"suppress_tokens": [],
|
38 |
"torch_dtype": "float32",
|
39 |
"transformers_version": "4.26.0.dev0",
|
40 |
"use_cache": false,
|
e5_interleaving-cl.ipynb
CHANGED
@@ -92,8 +92,8 @@
|
|
92 |
"Building dependency tree \n",
|
93 |
"Reading state information... Done\n",
|
94 |
"git-lfs is already the newest version (2.9.2-1).\n",
|
95 |
-
"0 upgraded, 0 newly installed, 0 to remove and
|
96 |
-
"
|
97 |
"Git LFS initialized.\n"
|
98 |
]
|
99 |
}
|
@@ -341,7 +341,7 @@
|
|
341 |
},
|
342 |
{
|
343 |
"cell_type": "code",
|
344 |
-
"execution_count":
|
345 |
"id": "d74b38c5-a1fb-4214-b4f4-b5bf0869f169",
|
346 |
"metadata": {
|
347 |
"colab": {
|
@@ -356,7 +356,7 @@
|
|
356 |
"name": "stdout",
|
357 |
"output_type": "stream",
|
358 |
"text": [
|
359 |
-
"
|
360 |
"+-----------------------------------------------------------------------------+\n",
|
361 |
"| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7 |\n",
|
362 |
"|-------------------------------+----------------------+----------------------+\n",
|
@@ -365,7 +365,7 @@
|
|
365 |
"| | | MIG M. |\n",
|
366 |
"|===============================+======================+======================|\n",
|
367 |
"| 0 NVIDIA A100-SXM... On | 00000000:06:00.0 Off | 0 |\n",
|
368 |
-
"| N/A
|
369 |
"| | | Disabled |\n",
|
370 |
"+-------------------------------+----------------------+----------------------+\n",
|
371 |
" \n",
|
@@ -374,7 +374,7 @@
|
|
374 |
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
375 |
"| ID ID Usage |\n",
|
376 |
"|=============================================================================|\n",
|
377 |
-
"|
|
378 |
"+-----------------------------------------------------------------------------+\n"
|
379 |
]
|
380 |
}
|
@@ -735,7 +735,7 @@
|
|
735 |
},
|
736 |
{
|
737 |
"cell_type": "code",
|
738 |
-
"execution_count":
|
739 |
"id": "dff27c76-575c-432b-8916-b1b810efef4a",
|
740 |
"metadata": {
|
741 |
"colab": {
|
@@ -768,7 +768,7 @@
|
|
768 |
{
|
769 |
"data": {
|
770 |
"application/vnd.jupyter.widget-view+json": {
|
771 |
-
"model_id": "
|
772 |
"version_major": 2,
|
773 |
"version_minor": 0
|
774 |
},
|
@@ -850,7 +850,7 @@
|
|
850 |
},
|
851 |
{
|
852 |
"cell_type": "code",
|
853 |
-
"execution_count":
|
854 |
"id": "065a8cf7-e54f-4ac3-900e-609c80714fca",
|
855 |
"metadata": {
|
856 |
"id": "065a8cf7-e54f-4ac3-900e-609c80714fca"
|
@@ -898,7 +898,7 @@
|
|
898 |
},
|
899 |
{
|
900 |
"cell_type": "code",
|
901 |
-
"execution_count":
|
902 |
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44",
|
903 |
"metadata": {
|
904 |
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44",
|
@@ -960,7 +960,7 @@
|
|
960 |
},
|
961 |
{
|
962 |
"cell_type": "code",
|
963 |
-
"execution_count":
|
964 |
"id": "qOwlctMhNmCG",
|
965 |
"metadata": {
|
966 |
"id": "qOwlctMhNmCG",
|
@@ -984,7 +984,7 @@
|
|
984 |
},
|
985 |
{
|
986 |
"cell_type": "code",
|
987 |
-
"execution_count":
|
988 |
"id": "imRHJOpm4V_j",
|
989 |
"metadata": {
|
990 |
"id": "imRHJOpm4V_j"
|
@@ -1031,7 +1031,7 @@
|
|
1031 |
},
|
1032 |
{
|
1033 |
"cell_type": "code",
|
1034 |
-
"execution_count":
|
1035 |
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6",
|
1036 |
"metadata": {
|
1037 |
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6"
|
@@ -1066,7 +1066,7 @@
|
|
1066 |
},
|
1067 |
{
|
1068 |
"cell_type": "code",
|
1069 |
-
"execution_count":
|
1070 |
"id": "ab5a13b4-9bd4-4aa0-aef2-b3de9b762988",
|
1071 |
"metadata": {
|
1072 |
"colab": {
|
@@ -1083,7 +1083,7 @@
|
|
1083 |
" 'sentence': Value(dtype='string', id=None)}"
|
1084 |
]
|
1085 |
},
|
1086 |
-
"execution_count":
|
1087 |
"metadata": {},
|
1088 |
"output_type": "execute_result"
|
1089 |
}
|
@@ -1111,7 +1111,7 @@
|
|
1111 |
},
|
1112 |
{
|
1113 |
"cell_type": "code",
|
1114 |
-
"execution_count":
|
1115 |
"id": "3ab6a724-3d1e-478b-a9e9-d2f85feb6c39",
|
1116 |
"metadata": {
|
1117 |
"id": "3ab6a724-3d1e-478b-a9e9-d2f85feb6c39"
|
@@ -1135,7 +1135,7 @@
|
|
1135 |
},
|
1136 |
{
|
1137 |
"cell_type": "code",
|
1138 |
-
"execution_count":
|
1139 |
"id": "d041650e-1c48-4439-87b3-5b6f4a514107",
|
1140 |
"metadata": {
|
1141 |
"id": "d041650e-1c48-4439-87b3-5b6f4a514107"
|
@@ -1145,7 +1145,7 @@
|
|
1145 |
"import string\n",
|
1146 |
"import re\n",
|
1147 |
"\n",
|
1148 |
-
"do_lower_case =
|
1149 |
"do_remove_punctuation = False\n",
|
1150 |
"\n",
|
1151 |
"punctuation_to_remove = string.punctuation.replace(\"'\", \"\") # don't remove apostrophes\n",
|
@@ -1171,7 +1171,7 @@
|
|
1171 |
},
|
1172 |
{
|
1173 |
"cell_type": "code",
|
1174 |
-
"execution_count":
|
1175 |
"id": "c085911c-a10a-41ef-8874-306e0503e9bb",
|
1176 |
"metadata": {
|
1177 |
"id": "c085911c-a10a-41ef-8874-306e0503e9bb"
|
@@ -1212,7 +1212,7 @@
|
|
1212 |
},
|
1213 |
{
|
1214 |
"cell_type": "code",
|
1215 |
-
"execution_count":
|
1216 |
"id": "a37a7cdb-9013-427f-8de9-6a8d0e9dc684",
|
1217 |
"metadata": {
|
1218 |
"id": "a37a7cdb-9013-427f-8de9-6a8d0e9dc684"
|
@@ -1234,7 +1234,7 @@
|
|
1234 |
},
|
1235 |
{
|
1236 |
"cell_type": "code",
|
1237 |
-
"execution_count":
|
1238 |
"id": "1b145699-acfc-4b1d-93a2-a2ad3d62674c",
|
1239 |
"metadata": {
|
1240 |
"id": "1b145699-acfc-4b1d-93a2-a2ad3d62674c"
|
@@ -1259,7 +1259,7 @@
|
|
1259 |
},
|
1260 |
{
|
1261 |
"cell_type": "code",
|
1262 |
-
"execution_count":
|
1263 |
"id": "01cb25ef-4bb0-4325-9461-f59198acadf6",
|
1264 |
"metadata": {
|
1265 |
"id": "01cb25ef-4bb0-4325-9461-f59198acadf6"
|
@@ -1284,7 +1284,7 @@
|
|
1284 |
},
|
1285 |
{
|
1286 |
"cell_type": "code",
|
1287 |
-
"execution_count":
|
1288 |
"id": "333f7f6e-6053-4d3b-8924-c733c79b82ac",
|
1289 |
"metadata": {
|
1290 |
"id": "333f7f6e-6053-4d3b-8924-c733c79b82ac"
|
@@ -1364,7 +1364,7 @@
|
|
1364 |
},
|
1365 |
{
|
1366 |
"cell_type": "code",
|
1367 |
-
"execution_count":
|
1368 |
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5",
|
1369 |
"metadata": {
|
1370 |
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5"
|
@@ -1416,7 +1416,7 @@
|
|
1416 |
},
|
1417 |
{
|
1418 |
"cell_type": "code",
|
1419 |
-
"execution_count":
|
1420 |
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42",
|
1421 |
"metadata": {
|
1422 |
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42"
|
@@ -1449,7 +1449,7 @@
|
|
1449 |
},
|
1450 |
{
|
1451 |
"cell_type": "code",
|
1452 |
-
"execution_count":
|
1453 |
"id": "b22b4011-f31f-4b57-b684-c52332f92890",
|
1454 |
"metadata": {
|
1455 |
"colab": {
|
@@ -1500,7 +1500,7 @@
|
|
1500 |
},
|
1501 |
{
|
1502 |
"cell_type": "code",
|
1503 |
-
"execution_count":
|
1504 |
"id": "a11d1bfc-9e28-460f-a287-72d8f7bc1acb",
|
1505 |
"metadata": {
|
1506 |
"id": "a11d1bfc-9e28-460f-a287-72d8f7bc1acb"
|
@@ -1549,7 +1549,7 @@
|
|
1549 |
},
|
1550 |
{
|
1551 |
"cell_type": "code",
|
1552 |
-
"execution_count":
|
1553 |
"id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f",
|
1554 |
"metadata": {
|
1555 |
"colab": {
|
@@ -1605,7 +1605,7 @@
|
|
1605 |
},
|
1606 |
{
|
1607 |
"cell_type": "code",
|
1608 |
-
"execution_count":
|
1609 |
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f",
|
1610 |
"metadata": {
|
1611 |
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f"
|
@@ -1614,7 +1614,10 @@
|
|
1614 |
"source": [
|
1615 |
"model.config.forced_decoder_ids = None\n",
|
1616 |
"model.config.suppress_tokens = []\n",
|
1617 |
-
"model.config.use_cache = False"
|
|
|
|
|
|
|
1618 |
]
|
1619 |
},
|
1620 |
{
|
@@ -1639,7 +1642,7 @@
|
|
1639 |
},
|
1640 |
{
|
1641 |
"cell_type": "code",
|
1642 |
-
"execution_count":
|
1643 |
"id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a",
|
1644 |
"metadata": {
|
1645 |
"colab": {
|
@@ -1659,8 +1662,11 @@
|
|
1659 |
" gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n",
|
1660 |
" learning_rate=1e-5,\n",
|
1661 |
" warmup_steps=500,\n",
|
1662 |
-
" max_steps=
|
1663 |
" gradient_checkpointing=True,\n",
|
|
|
|
|
|
|
1664 |
" fp16=True,\n",
|
1665 |
" evaluation_strategy=\"steps\",\n",
|
1666 |
" per_device_eval_batch_size=16,\n",
|
@@ -1680,7 +1686,7 @@
|
|
1680 |
},
|
1681 |
{
|
1682 |
"cell_type": "code",
|
1683 |
-
"execution_count":
|
1684 |
"id": "o72eOpGzD_sK",
|
1685 |
"metadata": {
|
1686 |
"colab": {
|
@@ -1694,7 +1700,7 @@
|
|
1694 |
"name": "stdout",
|
1695 |
"output_type": "stream",
|
1696 |
"text": [
|
1697 |
-
"
|
1698 |
"+-----------------------------------------------------------------------------+\n",
|
1699 |
"| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7 |\n",
|
1700 |
"|-------------------------------+----------------------+----------------------+\n",
|
@@ -1744,7 +1750,7 @@
|
|
1744 |
},
|
1745 |
{
|
1746 |
"cell_type": "code",
|
1747 |
-
"execution_count":
|
1748 |
"id": "3ac16b62-b3c0-4c68-8f3d-9ecf471534b2",
|
1749 |
"metadata": {
|
1750 |
"id": "3ac16b62-b3c0-4c68-8f3d-9ecf471534b2"
|
@@ -1777,7 +1783,7 @@
|
|
1777 |
},
|
1778 |
{
|
1779 |
"cell_type": "code",
|
1780 |
-
"execution_count":
|
1781 |
"id": "d546d7fe-0543-479a-b708-2ebabec19493",
|
1782 |
"metadata": {
|
1783 |
"colab": {
|
@@ -2355,7 +2361,7 @@
|
|
2355 |
"name": "stderr",
|
2356 |
"output_type": "stream",
|
2357 |
"text": [
|
2358 |
-
"/home/ubuntu/./whisper-medium-el is already a clone of https://huggingface.co/emilios/whisper-medium-el. Make sure you pull the latest changes with `repo.git_pull()`.\n",
|
2359 |
"max_steps is given, it will override any value given in num_train_epochs\n",
|
2360 |
"Using cuda_amp half precision backend\n"
|
2361 |
]
|
@@ -2391,7 +2397,7 @@
|
|
2391 |
},
|
2392 |
{
|
2393 |
"cell_type": "code",
|
2394 |
-
"execution_count":
|
2395 |
"id": "a1ccb9ed-cbc8-4419-91c0-651e9424b672",
|
2396 |
"metadata": {
|
2397 |
"id": "a1ccb9ed-cbc8-4419-91c0-651e9424b672"
|
@@ -2401,12 +2407,7 @@
|
|
2401 |
"name": "stderr",
|
2402 |
"output_type": "stream",
|
2403 |
"text": [
|
2404 |
-
"Configuration saved in ./whisper-medium-el/config.json\n"
|
2405 |
-
"Model weights saved in ./whisper-medium-el/pytorch_model.bin\n",
|
2406 |
-
"Feature extractor saved in ./whisper-medium-el/preprocessor_config.json\n",
|
2407 |
-
"tokenizer config file saved in ./whisper-medium-el/tokenizer_config.json\n",
|
2408 |
-
"Special tokens file saved in ./whisper-medium-el/special_tokens_map.json\n",
|
2409 |
-
"added tokens file saved in ./whisper-medium-el/added_tokens.json\n"
|
2410 |
]
|
2411 |
}
|
2412 |
],
|
@@ -2479,67 +2480,10 @@
|
|
2479 |
"metadata": {
|
2480 |
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de"
|
2481 |
},
|
2482 |
-
"outputs": [
|
2483 |
-
{
|
2484 |
-
"name": "stderr",
|
2485 |
-
"output_type": "stream",
|
2486 |
-
"text": [
|
2487 |
-
"/home/ubuntu/.local/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
2488 |
-
" warnings.warn(\n",
|
2489 |
-
"***** Running training *****\n",
|
2490 |
-
" Num examples = 160000\n",
|
2491 |
-
" Num Epochs = 9223372036854775807\n",
|
2492 |
-
" Instantaneous batch size per device = 32\n",
|
2493 |
-
" Total train batch size (w. parallel, distributed & accumulation) = 32\n",
|
2494 |
-
" Gradient Accumulation steps = 1\n",
|
2495 |
-
" Total optimization steps = 5000\n",
|
2496 |
-
" Number of trainable parameters = 763857920\n",
|
2497 |
-
"Reading metadata...: 1914it [00:00, 58899.17it/s]\n",
|
2498 |
-
"The following columns in the training set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n"
|
2499 |
-
]
|
2500 |
-
},
|
2501 |
-
{
|
2502 |
-
"data": {
|
2503 |
-
"text/html": [
|
2504 |
-
"\n",
|
2505 |
-
" <div>\n",
|
2506 |
-
" \n",
|
2507 |
-
" <progress value='21' max='5000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
2508 |
-
" [ 21/5000 02:01 < 8:48:39, 0.16 it/s, Epoch 0.00/9223372036854775807]\n",
|
2509 |
-
" </div>\n",
|
2510 |
-
" <table border=\"1\" class=\"dataframe\">\n",
|
2511 |
-
" <thead>\n",
|
2512 |
-
" <tr style=\"text-align: left;\">\n",
|
2513 |
-
" <th>Step</th>\n",
|
2514 |
-
" <th>Training Loss</th>\n",
|
2515 |
-
" <th>Validation Loss</th>\n",
|
2516 |
-
" </tr>\n",
|
2517 |
-
" </thead>\n",
|
2518 |
-
" <tbody>\n",
|
2519 |
-
" </tbody>\n",
|
2520 |
-
"</table><p>"
|
2521 |
-
],
|
2522 |
-
"text/plain": [
|
2523 |
-
"<IPython.core.display.HTML object>"
|
2524 |
-
]
|
2525 |
-
},
|
2526 |
-
"metadata": {},
|
2527 |
-
"output_type": "display_data"
|
2528 |
-
},
|
2529 |
-
{
|
2530 |
-
"name": "stderr",
|
2531 |
-
"output_type": "stream",
|
2532 |
-
"text": [
|
2533 |
-
"***** Running Evaluation *****\n",
|
2534 |
-
" Num examples: Unknown\n",
|
2535 |
-
" Batch size = 16\n",
|
2536 |
-
"Reading metadata...: 1696it [00:00, 51485.08it/s]\n",
|
2537 |
-
"The following columns in the evaluation set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: path, accent, down_votes, age, gender, segment, up_votes, input_length, locale, client_id. If path, accent, down_votes, age, gender, segment, up_votes, input_length, locale, client_id are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n"
|
2538 |
-
]
|
2539 |
-
}
|
2540 |
-
],
|
2541 |
"source": [
|
2542 |
-
"trainer.train()"
|
|
|
2543 |
]
|
2544 |
},
|
2545 |
{
|
@@ -2580,10 +2524,11 @@
|
|
2580 |
" \"dataset\": \"Common Voice 11.0\", # a 'pretty' name for the training dataset\n",
|
2581 |
" #\"dataset\": \"Google FLEURS\", # a 'pretty' name for the training dataset\n",
|
2582 |
" \"language\": \"el\",\n",
|
2583 |
-
" \"model_name\": \"Whisper Medium El Greco
|
2584 |
" \"finetuned_from\": \"openai/whisper-medium\",\n",
|
2585 |
" \"tasks\": \"automatic-speech-recognition\",\n",
|
2586 |
-
" \"tags\": \"hf-asr-leaderboard
|
|
|
2587 |
"}"
|
2588 |
]
|
2589 |
},
|
@@ -2608,6 +2553,14 @@
|
|
2608 |
"source": [
|
2609 |
"trainer.push_to_hub(**kwargs)"
|
2610 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2611 |
}
|
2612 |
],
|
2613 |
"metadata": {
|
|
|
92 |
"Building dependency tree \n",
|
93 |
"Reading state information... Done\n",
|
94 |
"git-lfs is already the newest version (2.9.2-1).\n",
|
95 |
+
"0 upgraded, 0 newly installed, 0 to remove and 155 not upgraded.\n",
|
96 |
+
"Updated git hooks.\n",
|
97 |
"Git LFS initialized.\n"
|
98 |
]
|
99 |
}
|
|
|
341 |
},
|
342 |
{
|
343 |
"cell_type": "code",
|
344 |
+
"execution_count": 2,
|
345 |
"id": "d74b38c5-a1fb-4214-b4f4-b5bf0869f169",
|
346 |
"metadata": {
|
347 |
"colab": {
|
|
|
356 |
"name": "stdout",
|
357 |
"output_type": "stream",
|
358 |
"text": [
|
359 |
+
"Mon Dec 12 18:05:43 2022 \n",
|
360 |
"+-----------------------------------------------------------------------------+\n",
|
361 |
"| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7 |\n",
|
362 |
"|-------------------------------+----------------------+----------------------+\n",
|
|
|
365 |
"| | | MIG M. |\n",
|
366 |
"|===============================+======================+======================|\n",
|
367 |
"| 0 NVIDIA A100-SXM... On | 00000000:06:00.0 Off | 0 |\n",
|
368 |
+
"| N/A 74C P0 350W / 400W | 36965MiB / 40960MiB | 100% Default |\n",
|
369 |
"| | | Disabled |\n",
|
370 |
"+-------------------------------+----------------------+----------------------+\n",
|
371 |
" \n",
|
|
|
374 |
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
375 |
"| ID ID Usage |\n",
|
376 |
"|=============================================================================|\n",
|
377 |
+
"| 0 N/A N/A 3651714 C python 36963MiB |\n",
|
378 |
"+-----------------------------------------------------------------------------+\n"
|
379 |
]
|
380 |
}
|
|
|
735 |
},
|
736 |
{
|
737 |
"cell_type": "code",
|
738 |
+
"execution_count": 1,
|
739 |
"id": "dff27c76-575c-432b-8916-b1b810efef4a",
|
740 |
"metadata": {
|
741 |
"colab": {
|
|
|
768 |
{
|
769 |
"data": {
|
770 |
"application/vnd.jupyter.widget-view+json": {
|
771 |
+
"model_id": "6a2bfa275b6f4cdba66b6abdab11e859",
|
772 |
"version_major": 2,
|
773 |
"version_minor": 0
|
774 |
},
|
|
|
850 |
},
|
851 |
{
|
852 |
"cell_type": "code",
|
853 |
+
"execution_count": 1,
|
854 |
"id": "065a8cf7-e54f-4ac3-900e-609c80714fca",
|
855 |
"metadata": {
|
856 |
"id": "065a8cf7-e54f-4ac3-900e-609c80714fca"
|
|
|
898 |
},
|
899 |
{
|
900 |
"cell_type": "code",
|
901 |
+
"execution_count": 2,
|
902 |
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44",
|
903 |
"metadata": {
|
904 |
"id": "a2787582-554f-44ce-9f38-4180a5ed6b44",
|
|
|
960 |
},
|
961 |
{
|
962 |
"cell_type": "code",
|
963 |
+
"execution_count": 3,
|
964 |
"id": "qOwlctMhNmCG",
|
965 |
"metadata": {
|
966 |
"id": "qOwlctMhNmCG",
|
|
|
984 |
},
|
985 |
{
|
986 |
"cell_type": "code",
|
987 |
+
"execution_count": 4,
|
988 |
"id": "imRHJOpm4V_j",
|
989 |
"metadata": {
|
990 |
"id": "imRHJOpm4V_j"
|
|
|
1031 |
},
|
1032 |
{
|
1033 |
"cell_type": "code",
|
1034 |
+
"execution_count": 5,
|
1035 |
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6",
|
1036 |
"metadata": {
|
1037 |
"id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6"
|
|
|
1066 |
},
|
1067 |
{
|
1068 |
"cell_type": "code",
|
1069 |
+
"execution_count": 6,
|
1070 |
"id": "ab5a13b4-9bd4-4aa0-aef2-b3de9b762988",
|
1071 |
"metadata": {
|
1072 |
"colab": {
|
|
|
1083 |
" 'sentence': Value(dtype='string', id=None)}"
|
1084 |
]
|
1085 |
},
|
1086 |
+
"execution_count": 6,
|
1087 |
"metadata": {},
|
1088 |
"output_type": "execute_result"
|
1089 |
}
|
|
|
1111 |
},
|
1112 |
{
|
1113 |
"cell_type": "code",
|
1114 |
+
"execution_count": 7,
|
1115 |
"id": "3ab6a724-3d1e-478b-a9e9-d2f85feb6c39",
|
1116 |
"metadata": {
|
1117 |
"id": "3ab6a724-3d1e-478b-a9e9-d2f85feb6c39"
|
|
|
1135 |
},
|
1136 |
{
|
1137 |
"cell_type": "code",
|
1138 |
+
"execution_count": 8,
|
1139 |
"id": "d041650e-1c48-4439-87b3-5b6f4a514107",
|
1140 |
"metadata": {
|
1141 |
"id": "d041650e-1c48-4439-87b3-5b6f4a514107"
|
|
|
1145 |
"import string\n",
|
1146 |
"import re\n",
|
1147 |
"\n",
|
1148 |
+
"do_lower_case = False\n",
|
1149 |
"do_remove_punctuation = False\n",
|
1150 |
"\n",
|
1151 |
"punctuation_to_remove = string.punctuation.replace(\"'\", \"\") # don't remove apostrophes\n",
|
|
|
1171 |
},
|
1172 |
{
|
1173 |
"cell_type": "code",
|
1174 |
+
"execution_count": 9,
|
1175 |
"id": "c085911c-a10a-41ef-8874-306e0503e9bb",
|
1176 |
"metadata": {
|
1177 |
"id": "c085911c-a10a-41ef-8874-306e0503e9bb"
|
|
|
1212 |
},
|
1213 |
{
|
1214 |
"cell_type": "code",
|
1215 |
+
"execution_count": 10,
|
1216 |
"id": "a37a7cdb-9013-427f-8de9-6a8d0e9dc684",
|
1217 |
"metadata": {
|
1218 |
"id": "a37a7cdb-9013-427f-8de9-6a8d0e9dc684"
|
|
|
1234 |
},
|
1235 |
{
|
1236 |
"cell_type": "code",
|
1237 |
+
"execution_count": 11,
|
1238 |
"id": "1b145699-acfc-4b1d-93a2-a2ad3d62674c",
|
1239 |
"metadata": {
|
1240 |
"id": "1b145699-acfc-4b1d-93a2-a2ad3d62674c"
|
|
|
1259 |
},
|
1260 |
{
|
1261 |
"cell_type": "code",
|
1262 |
+
"execution_count": 12,
|
1263 |
"id": "01cb25ef-4bb0-4325-9461-f59198acadf6",
|
1264 |
"metadata": {
|
1265 |
"id": "01cb25ef-4bb0-4325-9461-f59198acadf6"
|
|
|
1284 |
},
|
1285 |
{
|
1286 |
"cell_type": "code",
|
1287 |
+
"execution_count": 13,
|
1288 |
"id": "333f7f6e-6053-4d3b-8924-c733c79b82ac",
|
1289 |
"metadata": {
|
1290 |
"id": "333f7f6e-6053-4d3b-8924-c733c79b82ac"
|
|
|
1364 |
},
|
1365 |
{
|
1366 |
"cell_type": "code",
|
1367 |
+
"execution_count": 14,
|
1368 |
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5",
|
1369 |
"metadata": {
|
1370 |
"id": "8326221e-ec13-4731-bb4e-51e5fc1486c5"
|
|
|
1416 |
},
|
1417 |
{
|
1418 |
"cell_type": "code",
|
1419 |
+
"execution_count": 15,
|
1420 |
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42",
|
1421 |
"metadata": {
|
1422 |
"id": "fc834702-c0d3-4a96-b101-7b87be32bf42"
|
|
|
1449 |
},
|
1450 |
{
|
1451 |
"cell_type": "code",
|
1452 |
+
"execution_count": 16,
|
1453 |
"id": "b22b4011-f31f-4b57-b684-c52332f92890",
|
1454 |
"metadata": {
|
1455 |
"colab": {
|
|
|
1500 |
},
|
1501 |
{
|
1502 |
"cell_type": "code",
|
1503 |
+
"execution_count": 17,
|
1504 |
"id": "a11d1bfc-9e28-460f-a287-72d8f7bc1acb",
|
1505 |
"metadata": {
|
1506 |
"id": "a11d1bfc-9e28-460f-a287-72d8f7bc1acb"
|
|
|
1549 |
},
|
1550 |
{
|
1551 |
"cell_type": "code",
|
1552 |
+
"execution_count": 18,
|
1553 |
"id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f",
|
1554 |
"metadata": {
|
1555 |
"colab": {
|
|
|
1605 |
},
|
1606 |
{
|
1607 |
"cell_type": "code",
|
1608 |
+
"execution_count": 19,
|
1609 |
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f",
|
1610 |
"metadata": {
|
1611 |
"id": "62038ba3-88ed-4fce-84db-338f50dcd04f"
|
|
|
1614 |
"source": [
|
1615 |
"model.config.forced_decoder_ids = None\n",
|
1616 |
"model.config.suppress_tokens = []\n",
|
1617 |
+
"model.config.use_cache = False\n",
|
1618 |
+
"model.config.dropout=0.1\n",
|
1619 |
+
"#model.config.dropout=0.05\n",
|
1620 |
+
"#model.config.dropout = model.config.attention_dropout = 0.05"
|
1621 |
]
|
1622 |
},
|
1623 |
{
|
|
|
1642 |
},
|
1643 |
{
|
1644 |
"cell_type": "code",
|
1645 |
+
"execution_count": 20,
|
1646 |
"id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a",
|
1647 |
"metadata": {
|
1648 |
"colab": {
|
|
|
1662 |
" gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n",
|
1663 |
" learning_rate=1e-5,\n",
|
1664 |
" warmup_steps=500,\n",
|
1665 |
+
" max_steps=7000,\n",
|
1666 |
" gradient_checkpointing=True,\n",
|
1667 |
+
" resume_from_checkpoint=5000,\n",
|
1668 |
+
" #resume_from_checkpoint=\"checkpoint-4000\"\n",
|
1669 |
+
" ignore_data_skip=True,\n",
|
1670 |
" fp16=True,\n",
|
1671 |
" evaluation_strategy=\"steps\",\n",
|
1672 |
" per_device_eval_batch_size=16,\n",
|
|
|
1686 |
},
|
1687 |
{
|
1688 |
"cell_type": "code",
|
1689 |
+
"execution_count": 21,
|
1690 |
"id": "o72eOpGzD_sK",
|
1691 |
"metadata": {
|
1692 |
"colab": {
|
|
|
1700 |
"name": "stdout",
|
1701 |
"output_type": "stream",
|
1702 |
"text": [
|
1703 |
+
"Tue Dec 13 00:36:23 2022 \n",
|
1704 |
"+-----------------------------------------------------------------------------+\n",
|
1705 |
"| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7 |\n",
|
1706 |
"|-------------------------------+----------------------+----------------------+\n",
|
|
|
1750 |
},
|
1751 |
{
|
1752 |
"cell_type": "code",
|
1753 |
+
"execution_count": 22,
|
1754 |
"id": "3ac16b62-b3c0-4c68-8f3d-9ecf471534b2",
|
1755 |
"metadata": {
|
1756 |
"id": "3ac16b62-b3c0-4c68-8f3d-9ecf471534b2"
|
|
|
1783 |
},
|
1784 |
{
|
1785 |
"cell_type": "code",
|
1786 |
+
"execution_count": 23,
|
1787 |
"id": "d546d7fe-0543-479a-b708-2ebabec19493",
|
1788 |
"metadata": {
|
1789 |
"colab": {
|
|
|
2361 |
"name": "stderr",
|
2362 |
"output_type": "stream",
|
2363 |
"text": [
|
2364 |
+
"/home/ubuntu/whisper-medium-el/./whisper-medium-el is already a clone of https://huggingface.co/emilios/whisper-medium-el. Make sure you pull the latest changes with `repo.git_pull()`.\n",
|
2365 |
"max_steps is given, it will override any value given in num_train_epochs\n",
|
2366 |
"Using cuda_amp half precision backend\n"
|
2367 |
]
|
|
|
2397 |
},
|
2398 |
{
|
2399 |
"cell_type": "code",
|
2400 |
+
"execution_count": null,
|
2401 |
"id": "a1ccb9ed-cbc8-4419-91c0-651e9424b672",
|
2402 |
"metadata": {
|
2403 |
"id": "a1ccb9ed-cbc8-4419-91c0-651e9424b672"
|
|
|
2407 |
"name": "stderr",
|
2408 |
"output_type": "stream",
|
2409 |
"text": [
|
2410 |
+
"Configuration saved in ./whisper-medium-el/config.json\n"
|
|
|
|
|
|
|
|
|
|
|
2411 |
]
|
2412 |
}
|
2413 |
],
|
|
|
2480 |
"metadata": {
|
2481 |
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de"
|
2482 |
},
|
2483 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2484 |
"source": [
|
2485 |
+
"#trainer.train()\n",
|
2486 |
+
"trainer.train(resume_from_checkpoint = True)\n"
|
2487 |
]
|
2488 |
},
|
2489 |
{
|
|
|
2524 |
" \"dataset\": \"Common Voice 11.0\", # a 'pretty' name for the training dataset\n",
|
2525 |
" #\"dataset\": \"Google FLEURS\", # a 'pretty' name for the training dataset\n",
|
2526 |
" \"language\": \"el\",\n",
|
2527 |
+
" \"model_name\": \"Whisper Medium El Greco\", # a 'pretty' name for your model\n",
|
2528 |
" \"finetuned_from\": \"openai/whisper-medium\",\n",
|
2529 |
" \"tasks\": \"automatic-speech-recognition\",\n",
|
2530 |
+
" \"tags\": \"hf-asr-leaderboard\",\n",
|
2531 |
+
" #\"tags\": \"hf-asr-leaderboard, whisper-medium, mozilla-foundation/common_voice_11_0, greek, whisper-event\",\n",
|
2532 |
"}"
|
2533 |
]
|
2534 |
},
|
|
|
2553 |
"source": [
|
2554 |
"trainer.push_to_hub(**kwargs)"
|
2555 |
]
|
2556 |
+
},
|
2557 |
+
{
|
2558 |
+
"cell_type": "code",
|
2559 |
+
"execution_count": null,
|
2560 |
+
"id": "afa8a29a-59ab-463f-b2bf-2fbf2bae9b82",
|
2561 |
+
"metadata": {},
|
2562 |
+
"outputs": [],
|
2563 |
+
"source": []
|
2564 |
}
|
2565 |
],
|
2566 |
"metadata": {
|
push.py
ADDED
@@ -0,0 +1,758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for sequence to sequence speech recognition
|
18 |
+
with 🤗 Datasets' streaming mode.
|
19 |
+
"""
|
20 |
+
# This progam was modified by Michael Kamfonas (mkamfonas@infokarta.com) on Dec 11 2022
|
21 |
+
# - added options for drpout, gradient_checkpointing, use_cache, stopping_strategy and streaming
|
22 |
+
# - restructured it to enable both streaming and non-streaming modes
|
23 |
+
# - allows concatenation of mutiple datasets (single-string comma-separated) for interleaving
|
24 |
+
# The following params must have the same number of comma-separated (,) elements:
|
25 |
+
# dataset_name,
|
26 |
+
# dataset_config_name,
|
27 |
+
# train_split_name and eval_split_name (each element plus-separated (+) for multiple splits),
|
28 |
+
# text_column_name and audio_column_name
|
29 |
+
|
30 |
+
|
31 |
+
import logging
|
32 |
+
import os
|
33 |
+
import sys
|
34 |
+
from dataclasses import dataclass, field
|
35 |
+
from typing import Any, Dict, List, Optional, Union
|
36 |
+
|
37 |
+
import datasets
|
38 |
+
import torch
|
39 |
+
from datasets import Audio, DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset
|
40 |
+
from torch.utils.data import IterableDataset
|
41 |
+
|
42 |
+
import evaluate
|
43 |
+
import transformers
|
44 |
+
from transformers import (
|
45 |
+
AutoConfig,
|
46 |
+
AutoFeatureExtractor,
|
47 |
+
AutoModelForSpeechSeq2Seq,
|
48 |
+
AutoProcessor,
|
49 |
+
AutoTokenizer,
|
50 |
+
HfArgumentParser,
|
51 |
+
Seq2SeqTrainer,
|
52 |
+
Seq2SeqTrainingArguments,
|
53 |
+
TrainerCallback,
|
54 |
+
set_seed,
|
55 |
+
)
|
56 |
+
from transformers.trainer_pt_utils import IterableDatasetShard
|
57 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
58 |
+
from transformers.utils import check_min_version, send_example_telemetry
|
59 |
+
from transformers.utils.versions import require_version
|
60 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
61 |
+
|
62 |
+
#TEXT_COL_NAME="text"
|
63 |
+
TEXT_COL_NAME="sentence,transcription"
|
64 |
+
AUDIO_COL_NAME="audio"
|
65 |
+
|
66 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
67 |
+
check_min_version("4.25.0.dev0")
|
68 |
+
|
69 |
+
require_version("datasets>=1.18.2", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
70 |
+
|
71 |
+
logger = logging.getLogger(__name__)
|
72 |
+
|
73 |
+
|
74 |
+
@dataclass
|
75 |
+
class ModelArguments:
|
76 |
+
"""
|
77 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
78 |
+
"""
|
79 |
+
|
80 |
+
model_name_or_path: str = field(
|
81 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
82 |
+
)
|
83 |
+
config_name: Optional[str] = field(
|
84 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
85 |
+
)
|
86 |
+
tokenizer_name: Optional[str] = field(
|
87 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
88 |
+
)
|
89 |
+
feature_extractor_name: Optional[str] = field(
|
90 |
+
default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
|
91 |
+
)
|
92 |
+
cache_dir: Optional[str] = field(
|
93 |
+
default=None,
|
94 |
+
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
95 |
+
)
|
96 |
+
use_fast_tokenizer: bool = field(
|
97 |
+
default=True,
|
98 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
99 |
+
)
|
100 |
+
model_revision: str = field(
|
101 |
+
default="main",
|
102 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
103 |
+
)
|
104 |
+
use_auth_token: bool = field(
|
105 |
+
default=False,
|
106 |
+
metadata={
|
107 |
+
"help": (
|
108 |
+
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
109 |
+
"with private models)."
|
110 |
+
)
|
111 |
+
},
|
112 |
+
)
|
113 |
+
freeze_feature_encoder: bool = field(
|
114 |
+
default=True, metadata={"help": "Deprecated - Whether to freeze the feature encoder layers of the model."}
|
115 |
+
)
|
116 |
+
freeze_encoder: bool = field(
|
117 |
+
default=False, metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."}
|
118 |
+
)
|
119 |
+
forced_decoder_ids: List[List[int]] = field(
|
120 |
+
default=None,
|
121 |
+
metadata={
|
122 |
+
"help": (
|
123 |
+
"A list of pairs of integers which indicates a mapping from generation indices to token indices "
|
124 |
+
"that will be forced before sampling. For example, [[0, 123]] means the first generated token "
|
125 |
+
"will always be a token of index 123."
|
126 |
+
)
|
127 |
+
},
|
128 |
+
)
|
129 |
+
suppress_tokens: List[int] = field(
|
130 |
+
default=None, metadata={"help": "A list of tokens that will be suppressed at generation."}
|
131 |
+
)
|
132 |
+
model_index_name: str = field(default=None, metadata={"help": "Pretty name for the model card."})
|
133 |
+
|
134 |
+
## added by Michael Kamfonas
|
135 |
+
use_cache: bool = field(
|
136 |
+
default=False, metadata={"help": "Whether to use cache."}
|
137 |
+
)
|
138 |
+
|
139 |
+
dropout: float = field(
|
140 |
+
default = 0.0, metadata = {"help": "dropout probability."}
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
@dataclass
|
145 |
+
class DataTrainingArguments:
|
146 |
+
"""
|
147 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
148 |
+
"""
|
149 |
+
|
150 |
+
dataset_name: str = field(
|
151 |
+
default=None,
|
152 |
+
metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
153 |
+
)
|
154 |
+
dataset_config_name: Optional[str] = field(
|
155 |
+
default=None,
|
156 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
157 |
+
)
|
158 |
+
text_column: Optional[str] = field(
|
159 |
+
default=None,
|
160 |
+
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
|
161 |
+
)
|
162 |
+
max_train_samples: Optional[int] = field(
|
163 |
+
default=None,
|
164 |
+
metadata={
|
165 |
+
"help": (
|
166 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
167 |
+
"value if set."
|
168 |
+
)
|
169 |
+
},
|
170 |
+
)
|
171 |
+
max_eval_samples: Optional[int] = field(
|
172 |
+
default=None,
|
173 |
+
metadata={
|
174 |
+
"help": (
|
175 |
+
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
176 |
+
"value if set."
|
177 |
+
)
|
178 |
+
},
|
179 |
+
)
|
180 |
+
audio_column_name: str = field(
|
181 |
+
default="audio",
|
182 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
183 |
+
)
|
184 |
+
text_column_name: str = field(
|
185 |
+
default="text",
|
186 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
187 |
+
)
|
188 |
+
max_duration_in_seconds: float = field(
|
189 |
+
default=20.0,
|
190 |
+
metadata={
|
191 |
+
"help": (
|
192 |
+
"Truncate audio files that are longer than `max_duration_in_seconds` seconds to"
|
193 |
+
" 'max_duration_in_seconds`"
|
194 |
+
)
|
195 |
+
},
|
196 |
+
)
|
197 |
+
min_duration_in_seconds: float = field(
|
198 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
199 |
+
)
|
200 |
+
train_split_name: str = field(
|
201 |
+
default="train",
|
202 |
+
metadata={
|
203 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
204 |
+
},
|
205 |
+
)
|
206 |
+
eval_split_name: str = field(
|
207 |
+
default="test",
|
208 |
+
metadata={
|
209 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
210 |
+
},
|
211 |
+
)
|
212 |
+
do_lower_case: bool = field(
|
213 |
+
default=False,
|
214 |
+
metadata={"help": "Whether the target text should be lower cased."},
|
215 |
+
)
|
216 |
+
do_remove_punctuation: bool = field(
|
217 |
+
default=False,
|
218 |
+
metadata={"help": "Whether the target text should be striped of punctuation."},
|
219 |
+
)
|
220 |
+
do_normalize_eval: bool = field(
|
221 |
+
default=True,
|
222 |
+
metadata={"help": "Whether to normalise the references and predictions in the eval WER calculation."},
|
223 |
+
)
|
224 |
+
language: str = field(
|
225 |
+
default=None,
|
226 |
+
metadata={
|
227 |
+
"help": (
|
228 |
+
"Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
|
229 |
+
"only. For English speech recognition, it should be set to `None`."
|
230 |
+
)
|
231 |
+
},
|
232 |
+
)
|
233 |
+
task: str = field(
|
234 |
+
default="transcribe",
|
235 |
+
metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."},
|
236 |
+
)
|
237 |
+
shuffle_buffer_size: Optional[int] = field(
|
238 |
+
default=500,
|
239 |
+
metadata={
|
240 |
+
"help": (
|
241 |
+
"The number of streamed examples to download before shuffling them. The large the buffer, "
|
242 |
+
"the closer it is to real offline shuffling."
|
243 |
+
)
|
244 |
+
},
|
245 |
+
)
|
246 |
+
stopping_strategy: Optional[str] = field(
|
247 |
+
default="all_exhausted",
|
248 |
+
metadata={
|
249 |
+
"help": "Strategy used to consume interleaved data. Default = 'all_exhausted'"
|
250 |
+
}
|
251 |
+
)
|
252 |
+
streaming: bool = field(
|
253 |
+
default=True,
|
254 |
+
metadata={"help": "Whether to use streaming mode to load and pre-process the data."},
|
255 |
+
)
|
256 |
+
|
257 |
+
@dataclass
|
258 |
+
class DataCollatorSpeechSeq2SeqWithPadding:
|
259 |
+
"""
|
260 |
+
Data collator that will dynamically pad the inputs received.
|
261 |
+
Args:
|
262 |
+
processor ([`WhisperProcessor`])
|
263 |
+
The processor used for processing the data.
|
264 |
+
decoder_start_token_id (`int`)
|
265 |
+
The begin-of-sentence of the decoder.
|
266 |
+
"""
|
267 |
+
|
268 |
+
processor: Any
|
269 |
+
decoder_start_token_id: int
|
270 |
+
|
271 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
272 |
+
# split inputs and labels since they have to be of different lengths and need
|
273 |
+
# different padding methods
|
274 |
+
model_input_name = self.processor.model_input_names[0]
|
275 |
+
input_features = [{model_input_name: feature[model_input_name]} for feature in features]
|
276 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
277 |
+
|
278 |
+
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
|
279 |
+
|
280 |
+
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
|
281 |
+
|
282 |
+
# replace padding with -100 to ignore loss correctly
|
283 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
284 |
+
|
285 |
+
# if bos token is appended in previous tokenization step,
|
286 |
+
# cut bos token here as it's append later anyways
|
287 |
+
if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
|
288 |
+
labels = labels[:, 1:]
|
289 |
+
|
290 |
+
batch["labels"] = labels
|
291 |
+
|
292 |
+
return batch
|
293 |
+
|
294 |
+
|
295 |
+
def load_streaming_dataset(dataset_name, dataset_config_name, split="train", **kwargs):
|
296 |
+
"""
|
297 |
+
Utility function to load a dataset in streaming mode. For datasets with multiple splits,
|
298 |
+
each split is loaded individually and then splits combined by taking alternating examples from
|
299 |
+
each (interleaving).
|
300 |
+
"""
|
301 |
+
if "+" in split:
|
302 |
+
# load multiple splits separated by the `+` symbol with streaming mode
|
303 |
+
dataset_splits = [
|
304 |
+
load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=True, **kwargs)
|
305 |
+
for split_name in split.split("+")
|
306 |
+
]
|
307 |
+
# interleave multiple splits to form one dataset
|
308 |
+
interleaved_dataset = interleave_datasets(dataset_splits)
|
309 |
+
return interleaved_dataset
|
310 |
+
else:
|
311 |
+
# load a single split *with* streaming mode
|
312 |
+
dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=True, **kwargs)
|
313 |
+
return dataset
|
314 |
+
|
315 |
+
def load_multiple_streaming_datasets(
|
316 |
+
dataset_names: List,
|
317 |
+
dataset_config_names: List,
|
318 |
+
splits: Optional[List] = None,
|
319 |
+
text_column_names: Optional[List] = None,
|
320 |
+
audio_column_names: Optional[List] = None,
|
321 |
+
sampling_rate: Optional[int] = 16000,
|
322 |
+
stopping_strategy: Optional[str] = "all_exhausted",
|
323 |
+
streaming = True,
|
324 |
+
**kwargs
|
325 |
+
):
|
326 |
+
|
327 |
+
if len(dataset_names) != len(dataset_config_names):
|
328 |
+
raise ValueError(
|
329 |
+
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
|
330 |
+
f" {len(dataset_config_names)} configs."
|
331 |
+
)
|
332 |
+
|
333 |
+
if splits is not None and len(splits) != len(dataset_names):
|
334 |
+
raise ValueError(
|
335 |
+
f"Ensure one train_split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
|
336 |
+
)
|
337 |
+
|
338 |
+
if text_column_names is not None and len(text_column_names) != len(dataset_names):
|
339 |
+
raise ValueError(
|
340 |
+
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
|
341 |
+
f" {len(text_column_names)} text column names."
|
342 |
+
)
|
343 |
+
|
344 |
+
if audio_column_names is not None and len(audio_column_names) != len(dataset_names):
|
345 |
+
raise ValueError(
|
346 |
+
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
|
347 |
+
f" {len(audio_column_names)} text column names."
|
348 |
+
)
|
349 |
+
|
350 |
+
splits = splits if splits is not None \
|
351 |
+
else ["train" for i in range(len(dataset_names))]
|
352 |
+
|
353 |
+
text_column_names = (
|
354 |
+
text_column_names if text_column_names is not None \
|
355 |
+
else [TEXT_COL_NAME for i in range(len(dataset_names))]
|
356 |
+
)
|
357 |
+
|
358 |
+
audio_column_names = (
|
359 |
+
audio_column_names if audio_column_names is not None \
|
360 |
+
else [AUDIO_COL_NAME for i in range(len(dataset_names))]
|
361 |
+
)
|
362 |
+
|
363 |
+
all_data_splits = []
|
364 |
+
# iterate over the datasets we want to interleave
|
365 |
+
for dset, cfgNm, splt, txtColNm, audColNm in zip(dataset_names,dataset_config_names,\
|
366 |
+
splits,text_column_names, audio_column_names):
|
367 |
+
|
368 |
+
dset_splits = [load_dataset(dset, cfgNm, split=c, streaming=streaming, **kwargs) \
|
369 |
+
for c in splt.split('+') if c != '-']
|
370 |
+
|
371 |
+
if streaming:
|
372 |
+
dset_splits = [ds if TEXT_COL_NAME in ds.features else ds.rename_column(txtColNm, TEXT_COL_NAME) \
|
373 |
+
for ds in dset_splits ]
|
374 |
+
dset_splits = [ds if AUDIO_COL_NAME in ds.features else ds.rename_column(audColNm, AUDIO_COL_NAME) \
|
375 |
+
for ds in dset_splits]
|
376 |
+
|
377 |
+
if len(dset_splits)>0 and sampling_rate != next(iter(dset_splits[0]))[AUDIO_COL_NAME]['sampling_rate']:
|
378 |
+
dset_splits = [ds.cast_column(AUDIO_COL_NAME, Audio(sampling_rate)) for ds in dset_splits]
|
379 |
+
else:
|
380 |
+
|
381 |
+
dset_splits = [ds if TEXT_COL_NAME in ds.column_names else ds.rename_column(txtColNm, TEXT_COL_NAME) \
|
382 |
+
for ds in dset_splits ]
|
383 |
+
dset_splits = [ds if AUDIO_COL_NAME in ds.column_names else ds.rename_column(audColNm, AUDIO_COL_NAME) \
|
384 |
+
for ds in dset_splits]
|
385 |
+
|
386 |
+
if len(dset_splits)>0 and sampling_rate != next(iter(dset_splits[0]))[AUDIO_COL_NAME]['sampling_rate']:
|
387 |
+
dset_splits = [ds.cast_column(AUDIO_COL_NAME, Audio(sampling_rate)) for ds in dset_splits]
|
388 |
+
|
389 |
+
cols2keep = set([AUDIO_COL_NAME, TEXT_COL_NAME])
|
390 |
+
|
391 |
+
dset_splits = [ds.remove_columns(set(ds.features.keys()) - cols2keep) for ds in dset_splits]
|
392 |
+
|
393 |
+
all_data_splits += dset_splits
|
394 |
+
|
395 |
+
return interleave_datasets(all_data_splits, stopping_strategy=stopping_strategy)
|
396 |
+
|
397 |
+
def main():
|
398 |
+
# 1. Parse input arguments
|
399 |
+
# See all possible arguments in src/transformers/training_args.py
|
400 |
+
# or by passing the --help flag to this script.
|
401 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
402 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
403 |
+
|
404 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
405 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
406 |
+
# let's parse it to get our arguments.
|
407 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
408 |
+
else:
|
409 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
410 |
+
|
411 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
412 |
+
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
413 |
+
send_example_telemetry("run_speech_recognition_seq2seq_streaming", model_args, data_args)
|
414 |
+
|
415 |
+
# 2. Setup logging
|
416 |
+
logging.basicConfig(
|
417 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
418 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
419 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
420 |
+
)
|
421 |
+
log_level = training_args.get_process_log_level()
|
422 |
+
logger.setLevel(log_level)
|
423 |
+
datasets.utils.logging.set_verbosity(log_level)
|
424 |
+
transformers.utils.logging.set_verbosity(log_level)
|
425 |
+
transformers.utils.logging.enable_default_handler()
|
426 |
+
transformers.utils.logging.enable_explicit_format()
|
427 |
+
|
428 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
429 |
+
|
430 |
+
# Log on each process the small summary:
|
431 |
+
logger.warning(
|
432 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
433 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
434 |
+
)
|
435 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
436 |
+
|
437 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
438 |
+
if is_main_process(training_args.local_rank):
|
439 |
+
transformers.utils.logging.set_verbosity_info()
|
440 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
441 |
+
|
442 |
+
# 3. Detecting last checkpoint and eventually continue from last checkpoint
|
443 |
+
last_checkpoint = None
|
444 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
445 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
446 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
447 |
+
raise ValueError(
|
448 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
449 |
+
"Use --overwrite_output_dir to overcome."
|
450 |
+
)
|
451 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
452 |
+
logger.info(
|
453 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
454 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
455 |
+
)
|
456 |
+
|
457 |
+
# Set seed before initializing model.
|
458 |
+
set_seed(training_args.seed)
|
459 |
+
|
460 |
+
# 5. Load pretrained model, tokenizer, and feature extractor
|
461 |
+
#
|
462 |
+
# Distributed training:
|
463 |
+
# The .from_pretrained methods guarantee that only one local process can concurrently
|
464 |
+
config = AutoConfig.from_pretrained(
|
465 |
+
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
466 |
+
cache_dir=model_args.cache_dir,
|
467 |
+
revision=model_args.model_revision,
|
468 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
469 |
+
)
|
470 |
+
|
471 |
+
config.update({ "forced_decoder_ids": model_args.forced_decoder_ids,
|
472 |
+
"suppress_tokens": model_args.suppress_tokens})
|
473 |
+
|
474 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
475 |
+
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
|
476 |
+
cache_dir=model_args.cache_dir,
|
477 |
+
revision=model_args.model_revision,
|
478 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
479 |
+
)
|
480 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
481 |
+
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
482 |
+
cache_dir=model_args.cache_dir,
|
483 |
+
use_fast=model_args.use_fast_tokenizer,
|
484 |
+
revision=model_args.model_revision,
|
485 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
486 |
+
)
|
487 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
488 |
+
model_args.model_name_or_path,
|
489 |
+
config=config,
|
490 |
+
cache_dir=model_args.cache_dir,
|
491 |
+
revision=model_args.model_revision,
|
492 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
493 |
+
)
|
494 |
+
|
495 |
+
model.config.use_cache = model_args.use_cache
|
496 |
+
model.config.dropout = model_args.dropout
|
497 |
+
if training_args.gradient_checkpointing:
|
498 |
+
model.gradient_checkpointing_enable()
|
499 |
+
|
500 |
+
if model.config.decoder_start_token_id is None:
|
501 |
+
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
502 |
+
|
503 |
+
# deprecated
|
504 |
+
#if model_args.freeze_feature_encoder:
|
505 |
+
# model.freeze_feature_encoder()
|
506 |
+
|
507 |
+
if model_args.freeze_encoder:
|
508 |
+
model.freeze_encoder()
|
509 |
+
model.model.encoder.gradient_checkpointing = False
|
510 |
+
|
511 |
+
if data_args.language is not None:
|
512 |
+
# We only need to set the task id when the language is specified (i.e. in a multilingual setting)
|
513 |
+
tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task)
|
514 |
+
|
515 |
+
|
516 |
+
# 4. Load dataset
|
517 |
+
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
|
518 |
+
|
519 |
+
# if training_args.do_train:
|
520 |
+
# raw_datasets["train"] = load_streaming_dataset(
|
521 |
+
# data_args.dataset_name,
|
522 |
+
# data_args.dataset_config_name,
|
523 |
+
# split=data_args.train_split_name,
|
524 |
+
# use_auth_token=True if model_args.use_auth_token else None,
|
525 |
+
# )
|
526 |
+
|
527 |
+
# if training_args.do_eval:
|
528 |
+
# raw_datasets["eval"] = load_streaming_dataset(
|
529 |
+
# data_args.dataset_name,
|
530 |
+
# data_args.dataset_config_name,
|
531 |
+
# split=data_args.eval_split_name,
|
532 |
+
# use_auth_token=True if model_args.use_auth_token else None,
|
533 |
+
# )
|
534 |
+
|
535 |
+
if training_args.do_train:
|
536 |
+
raw_datasets["train"] = load_multiple_streaming_datasets(
|
537 |
+
dataset_names=data_args.dataset_name.split(","),
|
538 |
+
dataset_config_names=data_args.dataset_config_name.split(","),
|
539 |
+
splits = data_args.train_split_name.split(","),
|
540 |
+
text_column_names = data_args.text_column_name.split(","),
|
541 |
+
sampling_rate = feature_extractor.sampling_rate,
|
542 |
+
streaming=data_args.streaming,
|
543 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
544 |
+
)
|
545 |
+
|
546 |
+
if training_args.do_eval:
|
547 |
+
raw_datasets["eval"] = load_multiple_streaming_datasets(
|
548 |
+
dataset_names=data_args.dataset_name.split(","),
|
549 |
+
dataset_config_names=data_args.dataset_config_name.split(","),
|
550 |
+
splits = data_args.eval_split_name.split(","),
|
551 |
+
text_column_names = data_args.text_column_name.split(","),
|
552 |
+
sampling_rate = feature_extractor.sampling_rate,
|
553 |
+
streaming=False,
|
554 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
555 |
+
)
|
556 |
+
|
557 |
+
raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys())
|
558 |
+
|
559 |
+
if AUDIO_COL_NAME not in raw_datasets_features:
|
560 |
+
raise ValueError(
|
561 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
562 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
563 |
+
f"{', '.join(raw_datasets_features)}."
|
564 |
+
)
|
565 |
+
|
566 |
+
if TEXT_COL_NAME not in raw_datasets_features:
|
567 |
+
raise ValueError(
|
568 |
+
f"--text_column_name {TEXT_COL_NAME} not found in dataset. "
|
569 |
+
"Make sure to set `--text_column_name` to the the respective correct text columns."
|
570 |
+
)
|
571 |
+
|
572 |
+
|
573 |
+
# 6. Resample speech dataset if necessary
|
574 |
+
#dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
575 |
+
#if dataset_sampling_rate != feature_extractor.sampling_rate:
|
576 |
+
# raw_datasets = raw_datasets.cast_column(
|
577 |
+
# data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
578 |
+
# )
|
579 |
+
|
580 |
+
# 7. Preprocessing the datasets.
|
581 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
582 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
583 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
584 |
+
audio_column_name = AUDIO_COL_NAME
|
585 |
+
text_column_name = TEXT_COL_NAME
|
586 |
+
model_input_name = feature_extractor.model_input_names[0]
|
587 |
+
do_lower_case = data_args.do_lower_case
|
588 |
+
do_remove_punctuation = data_args.do_remove_punctuation
|
589 |
+
normalizer = BasicTextNormalizer() # 'official' text normalizer from OpenAI
|
590 |
+
|
591 |
+
if data_args.max_train_samples is not None:
|
592 |
+
raw_datasets["train"] = (
|
593 |
+
raw_datasets["train"].take(data_args.max_train_samples)
|
594 |
+
if data_args.streaming
|
595 |
+
else raw_datasets["train"].select(range(data_args.max_train_samples))
|
596 |
+
)
|
597 |
+
|
598 |
+
if data_args.max_eval_samples is not None:
|
599 |
+
raw_datasets["eval"] = (
|
600 |
+
raw_datasets["eval"].take(data_args.max_eval_samples)
|
601 |
+
if data_args.streaming
|
602 |
+
else raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
603 |
+
)
|
604 |
+
|
605 |
+
def prepare_dataset(batch):
|
606 |
+
# process audio
|
607 |
+
sample = batch[audio_column_name]
|
608 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
609 |
+
# process audio length
|
610 |
+
batch[model_input_name] = inputs.get(model_input_name)[0]
|
611 |
+
batch["input_length"] = len(sample["array"])
|
612 |
+
|
613 |
+
# process targets
|
614 |
+
input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name]
|
615 |
+
if do_remove_punctuation:
|
616 |
+
input_str = normalizer(input_str).strip()
|
617 |
+
batch["labels"] = tokenizer(input_str).input_ids
|
618 |
+
return batch
|
619 |
+
|
620 |
+
with training_args.main_process_first(desc="dataset map pre-processing"):
|
621 |
+
vectorized_datasets = raw_datasets.map(
|
622 |
+
prepare_dataset,
|
623 |
+
remove_columns=raw_datasets_features
|
624 |
+
).with_format("torch")
|
625 |
+
|
626 |
+
if training_args.do_train and data_args.streaming:
|
627 |
+
# manually shuffle if streaming (done by the trainer for non-streaming)
|
628 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(
|
629 |
+
buffer_size=data_args.shuffle_buffer_size,
|
630 |
+
seed=training_args.seed,
|
631 |
+
)
|
632 |
+
|
633 |
+
# filter training data that is shorter than min_input_length or longer than
|
634 |
+
# max_input_length
|
635 |
+
def is_audio_in_length_range(length):
|
636 |
+
return min_input_length < length < max_input_length
|
637 |
+
|
638 |
+
if training_args.do_train:
|
639 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
|
640 |
+
is_audio_in_length_range,
|
641 |
+
input_columns=["input_length"],
|
642 |
+
)
|
643 |
+
|
644 |
+
# 8. Load Metric
|
645 |
+
metric = evaluate.load("wer")
|
646 |
+
do_normalize_eval = data_args.do_normalize_eval
|
647 |
+
|
648 |
+
def compute_metrics(pred):
|
649 |
+
pred_ids = pred.predictions
|
650 |
+
|
651 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
652 |
+
|
653 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
654 |
+
# we do not want to group tokens when computing the metrics
|
655 |
+
label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
|
656 |
+
|
657 |
+
if do_normalize_eval:
|
658 |
+
pred_str = [normalizer(pred) for pred in pred_str]
|
659 |
+
label_str = [normalizer(label) for label in label_str]
|
660 |
+
# filtering step to only evaluate the samples that correspond to non-zero references:
|
661 |
+
pred_str = [pred_str[i] for i in range(len(pred_str)) if len(label_str[i]) > 0]
|
662 |
+
label_str = [label_str[i] for i in range(len(label_str)) if len(label_str[i]) > 0]
|
663 |
+
|
664 |
+
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
|
665 |
+
|
666 |
+
return {"wer": wer}
|
667 |
+
|
668 |
+
# 9. Create a single speech processor
|
669 |
+
if is_main_process(training_args.local_rank):
|
670 |
+
# save feature extractor, tokenizer and config
|
671 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
672 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
673 |
+
config.save_pretrained(training_args.output_dir)
|
674 |
+
|
675 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
676 |
+
|
677 |
+
# 10. Define data collator
|
678 |
+
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
|
679 |
+
processor=processor,
|
680 |
+
decoder_start_token_id=model.config.decoder_start_token_id,
|
681 |
+
)
|
682 |
+
|
683 |
+
# 11. Configure Trainer
|
684 |
+
# Trainer callback to reinitialise and reshuffle the streamable datasets at the beginning of each epoch
|
685 |
+
# Only required for streaming: Trainer automatically shuffles non-streaming datasets
|
686 |
+
class ShuffleCallback(TrainerCallback):
|
687 |
+
def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs):
|
688 |
+
if isinstance(train_dataloader.dataset, IterableDatasetShard):
|
689 |
+
pass # set_epoch() is handled by the Trainer
|
690 |
+
elif isinstance(train_dataloader.dataset, IterableDataset):
|
691 |
+
train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)
|
692 |
+
|
693 |
+
# Initialize Trainer
|
694 |
+
trainer = Seq2SeqTrainer(
|
695 |
+
model=model,
|
696 |
+
args=training_args,
|
697 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
698 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
699 |
+
tokenizer=feature_extractor,
|
700 |
+
data_collator=data_collator,
|
701 |
+
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
702 |
+
callbacks=[ShuffleCallback()] if data_args.streaming else None,
|
703 |
+
)
|
704 |
+
|
705 |
+
# 12. Training
|
706 |
+
if training_args.do_train:
|
707 |
+
checkpoint = None
|
708 |
+
if training_args.resume_from_checkpoint is not None:
|
709 |
+
checkpoint = training_args.resume_from_checkpoint
|
710 |
+
elif last_checkpoint is not None:
|
711 |
+
checkpoint = last_checkpoint
|
712 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
713 |
+
trainer.save_model() # Saves the feature extractor too for easy upload
|
714 |
+
|
715 |
+
metrics = train_result.metrics
|
716 |
+
if data_args.max_train_samples:
|
717 |
+
metrics["train_samples"] = data_args.max_train_samples
|
718 |
+
trainer.log_metrics("train", metrics)
|
719 |
+
trainer.save_metrics("train", metrics)
|
720 |
+
trainer.save_state()
|
721 |
+
|
722 |
+
# 13. Evaluation
|
723 |
+
results = {}
|
724 |
+
if training_args.do_eval:
|
725 |
+
logger.info("*** Evaluate ***")
|
726 |
+
metrics = trainer.evaluate(
|
727 |
+
metric_key_prefix="eval",
|
728 |
+
max_length=training_args.generation_max_length,
|
729 |
+
num_beams=training_args.generation_num_beams,
|
730 |
+
)
|
731 |
+
if data_args.max_eval_samples:
|
732 |
+
metrics["eval_samples"] = data_args.max_eval_samples
|
733 |
+
|
734 |
+
trainer.log_metrics("eval", metrics)
|
735 |
+
trainer.save_metrics("eval", metrics)
|
736 |
+
|
737 |
+
# 14. Write Training Stats
|
738 |
+
kwargs = {
|
739 |
+
"finetuned_from": model_args.model_name_or_path,
|
740 |
+
"tasks": "automatic-speech-recognition",
|
741 |
+
"tags": "whisper-event",
|
742 |
+
}
|
743 |
+
if data_args.dataset_name is not None:
|
744 |
+
kwargs["dataset_tags"] = data_args.dataset_name
|
745 |
+
if data_args.dataset_config_name is not None:
|
746 |
+
kwargs["dataset"] = f"{data_args.dataset_name} el"
|
747 |
+
else:
|
748 |
+
kwargs["dataset"] = data_args.dataset_name
|
749 |
+
if "common_voice" in data_args.dataset_name:
|
750 |
+
kwargs["language"] = data_args.dataset_config_name[:2]
|
751 |
+
if model_args.model_index_name is not None:
|
752 |
+
kwargs["model_name"] = model_args.model_index_name
|
753 |
+
|
754 |
+
trainer.push_to_hub(**kwargs)
|
755 |
+
|
756 |
+
|
757 |
+
if __name__ == "__main__":
|
758 |
+
main()
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3055754841
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b29d215205456ef40d6ac76daabab944f90a03dcb2153898b46883c2733cf26
|
3 |
size 3055754841
|
run.sh
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_seq2seq_streaming.py \
|
2 |
+
--model_name_or_path="emilios/whisper-medium-el" \
|
3 |
+
--dataset_name="mozilla-foundation/common_voice_11_0" \
|
4 |
+
--dataset_name="mozilla-foundation/common_voice_11_0,google/fleurs" \
|
5 |
+
--dataset_config_name="el,el_gr" \
|
6 |
+
--language="greek" \
|
7 |
+
--train_split_name="train+validation,train+validation" \
|
8 |
+
--eval_split_name="test,-" \
|
9 |
+
--model_index_name="Whisper Medium El Greco" \
|
10 |
+
--text_column_name="sentence,transcription" \
|
11 |
+
--audio_column_name="audio,audio" \
|
12 |
+
--resume_from_checkpoint="4000" \
|
13 |
+
--streaming="False" \
|
14 |
+
--max_steps="5000" \
|
15 |
+
--max_steps="9000" \
|
16 |
+
--output_dir="./" \
|
17 |
+
--per_device_train_batch_size="32" \
|
18 |
+
--per_device_eval_batch_size="16" \
|
19 |
+
--logging_steps="25" \
|
20 |
+
--learning_rate="1e-5" \
|
21 |
+
--warmup_steps="500" \
|
22 |
+
--evaluation_strategy="steps" \
|
23 |
+
--eval_steps="1000" \
|
24 |
+
--save_strategy="steps" \
|
25 |
+
--save_steps="1000" \
|
26 |
+
--generation_max_length="225" \
|
27 |
+
--length_column_name="input_length" \
|
28 |
+
--max_duration_in_seconds="30" \
|
29 |
+
--freeze_feature_encoder="False" \
|
30 |
+
--report_to="tensorboard" \
|
31 |
+
--gradient_checkpointing \
|
32 |
+
--fp16 \
|
33 |
+
--overwrite_output_dir \
|
34 |
+
--do_train="True" \
|
35 |
+
--do_eval="True" \
|
36 |
+
--predict_with_generate \
|
37 |
+
--do_normalize_eval \
|
38 |
+
--use_auth_token \
|
39 |
+
--push_to_hub
|
run_eval_whisper_streaming.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
from transformers import pipeline
|
4 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
5 |
+
from datasets import load_dataset, Audio
|
6 |
+
import evaluate
|
7 |
+
|
8 |
+
wer_metric = evaluate.load("wer")
|
9 |
+
|
10 |
+
|
11 |
+
def is_target_text_in_range(ref):
|
12 |
+
if ref.strip() == "ignore time segment in scoring":
|
13 |
+
return False
|
14 |
+
else:
|
15 |
+
return ref.strip() != ""
|
16 |
+
|
17 |
+
|
18 |
+
def get_text(sample):
|
19 |
+
if "text" in sample:
|
20 |
+
return sample["text"]
|
21 |
+
elif "sentence" in sample:
|
22 |
+
return sample["sentence"]
|
23 |
+
elif "normalized_text" in sample:
|
24 |
+
return sample["normalized_text"]
|
25 |
+
elif "transcript" in sample:
|
26 |
+
return sample["transcript"]
|
27 |
+
elif "transcription" in sample:
|
28 |
+
return sample["transcription"]
|
29 |
+
else:
|
30 |
+
raise ValueError(
|
31 |
+
f"Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of "
|
32 |
+
".join{sample.keys()}. Ensure a text column name is present in the dataset."
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
whisper_norm = BasicTextNormalizer()
|
37 |
+
|
38 |
+
|
39 |
+
def normalise(batch):
|
40 |
+
batch["norm_text"] = whisper_norm(get_text(batch))
|
41 |
+
return batch
|
42 |
+
|
43 |
+
|
44 |
+
def data(dataset):
|
45 |
+
for i, item in enumerate(dataset):
|
46 |
+
yield {**item["audio"], "reference": item["norm_text"]}
|
47 |
+
|
48 |
+
|
49 |
+
def main(args):
|
50 |
+
batch_size = args.batch_size
|
51 |
+
whisper_asr = pipeline(
|
52 |
+
"automatic-speech-recognition", model=args.model_id, device=args.device
|
53 |
+
)
|
54 |
+
|
55 |
+
whisper_asr.model.config.forced_decoder_ids = (
|
56 |
+
whisper_asr.tokenizer.get_decoder_prompt_ids(
|
57 |
+
language=args.language, task="transcribe"
|
58 |
+
)
|
59 |
+
)
|
60 |
+
|
61 |
+
dataset = load_dataset(
|
62 |
+
args.dataset,
|
63 |
+
args.config,
|
64 |
+
split=args.split,
|
65 |
+
streaming=args.streaming,
|
66 |
+
use_auth_token=True,
|
67 |
+
)
|
68 |
+
|
69 |
+
# Only uncomment for debugging
|
70 |
+
dataset = dataset.take(args.max_eval_samples)
|
71 |
+
|
72 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
73 |
+
dataset = dataset.map(normalise)
|
74 |
+
dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])
|
75 |
+
|
76 |
+
predictions = []
|
77 |
+
references = []
|
78 |
+
|
79 |
+
# run streamed inference
|
80 |
+
for out in whisper_asr(data(dataset), batch_size=batch_size):
|
81 |
+
predictions.append(whisper_norm(out["text"]))
|
82 |
+
references.append(out["reference"][0])
|
83 |
+
|
84 |
+
wer = wer_metric.compute(references=references, predictions=predictions)
|
85 |
+
wer = round(100 * wer, 2)
|
86 |
+
|
87 |
+
print("WER:", wer)
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
parser = argparse.ArgumentParser()
|
92 |
+
|
93 |
+
parser.add_argument(
|
94 |
+
"--model_id",
|
95 |
+
type=str,
|
96 |
+
required=True,
|
97 |
+
help="Model identifier. Should be loadable with 🤗 Transformers",
|
98 |
+
)
|
99 |
+
parser.add_argument(
|
100 |
+
"--dataset",
|
101 |
+
type=str,
|
102 |
+
default="mozilla-foundation/common_voice_11_0",
|
103 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
104 |
+
)
|
105 |
+
parser.add_argument(
|
106 |
+
"--config",
|
107 |
+
type=str,
|
108 |
+
required=True,
|
109 |
+
help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice",
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--split",
|
113 |
+
type=str,
|
114 |
+
default="test",
|
115 |
+
help="Split of the dataset. *E.g.* `'test'`",
|
116 |
+
)
|
117 |
+
|
118 |
+
parser.add_argument(
|
119 |
+
"--device",
|
120 |
+
type=int,
|
121 |
+
default=-1,
|
122 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
123 |
+
)
|
124 |
+
parser.add_argument(
|
125 |
+
"--batch_size",
|
126 |
+
type=int,
|
127 |
+
default=16,
|
128 |
+
help="Number of samples to go through each streamed batch.",
|
129 |
+
)
|
130 |
+
parser.add_argument(
|
131 |
+
"--max_eval_samples",
|
132 |
+
type=int,
|
133 |
+
default=None,
|
134 |
+
help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--streaming",
|
138 |
+
type=bool,
|
139 |
+
default=True,
|
140 |
+
help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
|
141 |
+
)
|
142 |
+
parser.add_argument(
|
143 |
+
"--language",
|
144 |
+
type=str,
|
145 |
+
required=True,
|
146 |
+
help="Two letter language code for the transcription language, e.g. use 'en' for English.",
|
147 |
+
)
|
148 |
+
args = parser.parse_args()
|
149 |
+
|
150 |
+
main(args)
|
run_interleave.py
CHANGED
@@ -61,7 +61,7 @@ from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
|
61 |
|
62 |
#TEXT_COL_NAME="text"
|
63 |
TEXT_COL_NAME="sentence,transcription"
|
64 |
-
AUDIO_COL_NAME="audio
|
65 |
|
66 |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
67 |
check_min_version("4.25.0.dev0")
|
|
|
61 |
|
62 |
#TEXT_COL_NAME="text"
|
63 |
TEXT_COL_NAME="sentence,transcription"
|
64 |
+
AUDIO_COL_NAME="audio"
|
65 |
|
66 |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
67 |
check_min_version("4.25.0.dev0")
|
run_speech_recognition_seq2seq_streaming.py
ADDED
@@ -0,0 +1,629 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for sequence to sequence speech recognition
|
18 |
+
with 🤗 Datasets' streaming mode.
|
19 |
+
"""
|
20 |
+
# You can also adapt this script for your own sequence to sequence speech
|
21 |
+
# recognition task. Pointers for this are left as comments.
|
22 |
+
|
23 |
+
import logging
|
24 |
+
import os
|
25 |
+
import sys
|
26 |
+
from dataclasses import dataclass, field
|
27 |
+
from typing import Any, Dict, List, Optional, Union
|
28 |
+
|
29 |
+
import datasets
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset
|
32 |
+
from torch.utils.data import IterableDataset
|
33 |
+
|
34 |
+
import evaluate
|
35 |
+
import transformers
|
36 |
+
from transformers import (
|
37 |
+
AutoConfig,
|
38 |
+
AutoFeatureExtractor,
|
39 |
+
AutoModelForSpeechSeq2Seq,
|
40 |
+
AutoProcessor,
|
41 |
+
AutoTokenizer,
|
42 |
+
HfArgumentParser,
|
43 |
+
Seq2SeqTrainer,
|
44 |
+
Seq2SeqTrainingArguments,
|
45 |
+
TrainerCallback,
|
46 |
+
set_seed,
|
47 |
+
)
|
48 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
49 |
+
from transformers.trainer_pt_utils import IterableDatasetShard
|
50 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
51 |
+
from transformers.utils import check_min_version, send_example_telemetry
|
52 |
+
from transformers.utils.versions import require_version
|
53 |
+
|
54 |
+
|
55 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
56 |
+
check_min_version("4.25.0.dev0")
|
57 |
+
|
58 |
+
require_version("datasets>=1.18.2", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
59 |
+
|
60 |
+
logger = logging.getLogger(__name__)
|
61 |
+
|
62 |
+
|
63 |
+
@dataclass
|
64 |
+
class ModelArguments:
|
65 |
+
"""
|
66 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
67 |
+
"""
|
68 |
+
|
69 |
+
model_name_or_path: str = field(
|
70 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
71 |
+
)
|
72 |
+
config_name: Optional[str] = field(
|
73 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
74 |
+
)
|
75 |
+
tokenizer_name: Optional[str] = field(
|
76 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
77 |
+
)
|
78 |
+
feature_extractor_name: Optional[str] = field(
|
79 |
+
default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
|
80 |
+
)
|
81 |
+
cache_dir: Optional[str] = field(
|
82 |
+
default=None,
|
83 |
+
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
84 |
+
)
|
85 |
+
use_fast_tokenizer: bool = field(
|
86 |
+
default=True,
|
87 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
88 |
+
)
|
89 |
+
model_revision: str = field(
|
90 |
+
default="main",
|
91 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
92 |
+
)
|
93 |
+
use_auth_token: bool = field(
|
94 |
+
default=False,
|
95 |
+
metadata={
|
96 |
+
"help": (
|
97 |
+
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
98 |
+
"with private models)."
|
99 |
+
)
|
100 |
+
},
|
101 |
+
)
|
102 |
+
freeze_feature_encoder: bool = field(
|
103 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
104 |
+
)
|
105 |
+
freeze_encoder: bool = field(
|
106 |
+
default=False, metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."}
|
107 |
+
)
|
108 |
+
forced_decoder_ids: List[List[int]] = field(
|
109 |
+
default=None,
|
110 |
+
metadata={
|
111 |
+
"help": (
|
112 |
+
"A list of pairs of integers which indicates a mapping from generation indices to token indices "
|
113 |
+
"that will be forced before sampling. For example, [[0, 123]] means the first generated token "
|
114 |
+
"will always be a token of index 123."
|
115 |
+
)
|
116 |
+
},
|
117 |
+
)
|
118 |
+
suppress_tokens: List[int] = field(
|
119 |
+
default=None, metadata={"help": "A list of tokens that will be suppressed at generation."}
|
120 |
+
)
|
121 |
+
model_index_name: str = field(default=None, metadata={"help": "Pretty name for the model card."})
|
122 |
+
|
123 |
+
|
124 |
+
@dataclass
|
125 |
+
class DataTrainingArguments:
|
126 |
+
"""
|
127 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
128 |
+
"""
|
129 |
+
|
130 |
+
dataset_name: str = field(
|
131 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
132 |
+
)
|
133 |
+
dataset_config_name: Optional[str] = field(
|
134 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
135 |
+
)
|
136 |
+
text_column: Optional[str] = field(
|
137 |
+
default=None,
|
138 |
+
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
|
139 |
+
)
|
140 |
+
max_train_samples: Optional[int] = field(
|
141 |
+
default=None,
|
142 |
+
metadata={
|
143 |
+
"help": (
|
144 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
145 |
+
"value if set."
|
146 |
+
)
|
147 |
+
},
|
148 |
+
)
|
149 |
+
max_eval_samples: Optional[int] = field(
|
150 |
+
default=None,
|
151 |
+
metadata={
|
152 |
+
"help": (
|
153 |
+
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
154 |
+
"value if set."
|
155 |
+
)
|
156 |
+
},
|
157 |
+
)
|
158 |
+
audio_column_name: str = field(
|
159 |
+
default="audio",
|
160 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
161 |
+
)
|
162 |
+
text_column_name: str = field(
|
163 |
+
default="text",
|
164 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
165 |
+
)
|
166 |
+
max_duration_in_seconds: float = field(
|
167 |
+
default=20.0,
|
168 |
+
metadata={
|
169 |
+
"help": (
|
170 |
+
"Truncate audio files that are longer than `max_duration_in_seconds` seconds to"
|
171 |
+
" 'max_duration_in_seconds`"
|
172 |
+
)
|
173 |
+
},
|
174 |
+
)
|
175 |
+
min_duration_in_seconds: float = field(
|
176 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
177 |
+
)
|
178 |
+
train_split_name: str = field(
|
179 |
+
default="train",
|
180 |
+
metadata={
|
181 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
182 |
+
},
|
183 |
+
)
|
184 |
+
eval_split_name: str = field(
|
185 |
+
default="test",
|
186 |
+
metadata={
|
187 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
188 |
+
},
|
189 |
+
)
|
190 |
+
do_lower_case: bool = field(
|
191 |
+
default=False,
|
192 |
+
metadata={"help": "Whether the target text should be lower cased."},
|
193 |
+
)
|
194 |
+
do_remove_punctuation: bool = field(
|
195 |
+
default=False,
|
196 |
+
metadata={"help": "Whether the target text should be striped of punctuation."},
|
197 |
+
)
|
198 |
+
do_normalize_eval: bool = field(
|
199 |
+
default=True,
|
200 |
+
metadata={"help": "Whether to normalise the references and predictions in the eval WER calculation."},
|
201 |
+
)
|
202 |
+
language: str = field(
|
203 |
+
default=None,
|
204 |
+
metadata={
|
205 |
+
"help": (
|
206 |
+
"Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
|
207 |
+
"only. For English speech recognition, it should be set to `None`."
|
208 |
+
)
|
209 |
+
},
|
210 |
+
)
|
211 |
+
task: str = field(
|
212 |
+
default="transcribe",
|
213 |
+
metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."},
|
214 |
+
)
|
215 |
+
shuffle_buffer_size: Optional[int] = field(
|
216 |
+
default=500,
|
217 |
+
metadata={
|
218 |
+
"help": (
|
219 |
+
"The number of streamed examples to download before shuffling them. The large the buffer, "
|
220 |
+
"the closer it is to real offline shuffling."
|
221 |
+
)
|
222 |
+
},
|
223 |
+
)
|
224 |
+
streaming: bool = field(
|
225 |
+
default=True,
|
226 |
+
metadata={"help": "Whether to use streaming mode to load and pre-process the data."},
|
227 |
+
)
|
228 |
+
|
229 |
+
|
230 |
+
@dataclass
|
231 |
+
class DataCollatorSpeechSeq2SeqWithPadding:
|
232 |
+
"""
|
233 |
+
Data collator that will dynamically pad the inputs received.
|
234 |
+
Args:
|
235 |
+
processor ([`WhisperProcessor`])
|
236 |
+
The processor used for processing the data.
|
237 |
+
decoder_start_token_id (`int`)
|
238 |
+
The begin-of-sentence of the decoder.
|
239 |
+
"""
|
240 |
+
|
241 |
+
processor: Any
|
242 |
+
decoder_start_token_id: int
|
243 |
+
|
244 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
245 |
+
# split inputs and labels since they have to be of different lengths and need
|
246 |
+
# different padding methods
|
247 |
+
model_input_name = self.processor.model_input_names[0]
|
248 |
+
input_features = [{model_input_name: feature[model_input_name]} for feature in features]
|
249 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
250 |
+
|
251 |
+
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
|
252 |
+
|
253 |
+
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
|
254 |
+
|
255 |
+
# replace padding with -100 to ignore loss correctly
|
256 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
257 |
+
|
258 |
+
# if bos token is appended in previous tokenization step,
|
259 |
+
# cut bos token here as it's append later anyways
|
260 |
+
if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
|
261 |
+
labels = labels[:, 1:]
|
262 |
+
|
263 |
+
batch["labels"] = labels
|
264 |
+
|
265 |
+
return batch
|
266 |
+
|
267 |
+
|
268 |
+
def load_maybe_streaming_dataset(dataset_name, dataset_config_name, split="train", streaming=True, **kwargs):
|
269 |
+
"""
|
270 |
+
Utility function to load a dataset in streaming mode. For datasets with multiple splits,
|
271 |
+
each split is loaded individually and then splits combined by taking alternating examples from
|
272 |
+
each (interleaving).
|
273 |
+
"""
|
274 |
+
if "+" in split:
|
275 |
+
# load multiple splits separated by the `+` symbol with streaming mode
|
276 |
+
dataset_splits = [
|
277 |
+
load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=streaming, **kwargs)
|
278 |
+
for split_name in split.split("+")
|
279 |
+
]
|
280 |
+
# interleave multiple splits to form one dataset
|
281 |
+
interleaved_dataset = interleave_datasets(dataset_splits)
|
282 |
+
return interleaved_dataset
|
283 |
+
else:
|
284 |
+
# load a single split *with* streaming mode
|
285 |
+
dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=streaming, **kwargs)
|
286 |
+
return dataset
|
287 |
+
|
288 |
+
|
289 |
+
def main():
|
290 |
+
# 1. Parse input arguments
|
291 |
+
# See all possible arguments in src/transformers/training_args.py
|
292 |
+
# or by passing the --help flag to this script.
|
293 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
294 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
295 |
+
|
296 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
297 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
298 |
+
# let's parse it to get our arguments.
|
299 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
300 |
+
else:
|
301 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
302 |
+
|
303 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
304 |
+
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
305 |
+
send_example_telemetry("run_speech_recognition_seq2seq_streaming", model_args, data_args)
|
306 |
+
|
307 |
+
# 2. Setup logging
|
308 |
+
logging.basicConfig(
|
309 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
310 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
311 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
312 |
+
)
|
313 |
+
log_level = training_args.get_process_log_level()
|
314 |
+
logger.setLevel(log_level)
|
315 |
+
datasets.utils.logging.set_verbosity(log_level)
|
316 |
+
transformers.utils.logging.set_verbosity(log_level)
|
317 |
+
transformers.utils.logging.enable_default_handler()
|
318 |
+
transformers.utils.logging.enable_explicit_format()
|
319 |
+
|
320 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
321 |
+
|
322 |
+
# Log on each process the small summary:
|
323 |
+
logger.warning(
|
324 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
325 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
326 |
+
)
|
327 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
328 |
+
|
329 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
330 |
+
if is_main_process(training_args.local_rank):
|
331 |
+
transformers.utils.logging.set_verbosity_info()
|
332 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
333 |
+
|
334 |
+
# 3. Detecting last checkpoint and eventually continue from last checkpoint
|
335 |
+
last_checkpoint = None
|
336 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
337 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
338 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
339 |
+
raise ValueError(
|
340 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
341 |
+
"Use --overwrite_output_dir to overcome."
|
342 |
+
)
|
343 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
344 |
+
logger.info(
|
345 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
346 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
347 |
+
)
|
348 |
+
|
349 |
+
# Set seed before initializing model.
|
350 |
+
set_seed(training_args.seed)
|
351 |
+
|
352 |
+
# 4. Load dataset
|
353 |
+
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
|
354 |
+
|
355 |
+
if training_args.do_train:
|
356 |
+
raw_datasets["train"] = load_maybe_streaming_dataset(
|
357 |
+
data_args.dataset_name,
|
358 |
+
data_args.dataset_config_name,
|
359 |
+
split=data_args.train_split_name,
|
360 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
361 |
+
streaming=data_args.streaming,
|
362 |
+
)
|
363 |
+
|
364 |
+
if training_args.do_eval:
|
365 |
+
raw_datasets["eval"] = load_maybe_streaming_dataset(
|
366 |
+
data_args.dataset_name,
|
367 |
+
data_args.dataset_config_name,
|
368 |
+
split=data_args.eval_split_name,
|
369 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
370 |
+
streaming=data_args.streaming,
|
371 |
+
)
|
372 |
+
|
373 |
+
raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys())
|
374 |
+
|
375 |
+
if data_args.audio_column_name not in raw_datasets_features:
|
376 |
+
raise ValueError(
|
377 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
378 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
379 |
+
f"{', '.join(raw_datasets_features)}."
|
380 |
+
)
|
381 |
+
|
382 |
+
if data_args.text_column_name not in raw_datasets_features:
|
383 |
+
raise ValueError(
|
384 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
385 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
386 |
+
f"{', '.join(raw_datasets_features)}."
|
387 |
+
)
|
388 |
+
|
389 |
+
# 5. Load pretrained model, tokenizer, and feature extractor
|
390 |
+
#
|
391 |
+
# Distributed training:
|
392 |
+
# The .from_pretrained methods guarantee that only one local process can concurrently
|
393 |
+
config = AutoConfig.from_pretrained(
|
394 |
+
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
395 |
+
cache_dir=model_args.cache_dir,
|
396 |
+
revision=model_args.model_revision,
|
397 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
398 |
+
)
|
399 |
+
|
400 |
+
config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens})
|
401 |
+
|
402 |
+
if training_args.gradient_checkpointing:
|
403 |
+
config.update({"use_cache": False})
|
404 |
+
|
405 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
406 |
+
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
|
407 |
+
cache_dir=model_args.cache_dir,
|
408 |
+
revision=model_args.model_revision,
|
409 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
410 |
+
)
|
411 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
412 |
+
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
413 |
+
cache_dir=model_args.cache_dir,
|
414 |
+
use_fast=model_args.use_fast_tokenizer,
|
415 |
+
revision=model_args.model_revision,
|
416 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
417 |
+
)
|
418 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
419 |
+
model_args.model_name_or_path,
|
420 |
+
config=config,
|
421 |
+
cache_dir=model_args.cache_dir,
|
422 |
+
revision=model_args.model_revision,
|
423 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
424 |
+
)
|
425 |
+
|
426 |
+
if model.config.decoder_start_token_id is None:
|
427 |
+
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
428 |
+
|
429 |
+
if model_args.freeze_feature_encoder:
|
430 |
+
model.freeze_feature_encoder()
|
431 |
+
|
432 |
+
if model_args.freeze_encoder:
|
433 |
+
model.freeze_encoder()
|
434 |
+
|
435 |
+
if data_args.language is not None:
|
436 |
+
# We only need to set the task id when the language is specified (i.e. in a multilingual setting)
|
437 |
+
tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task)
|
438 |
+
|
439 |
+
# 6. Resample speech dataset if necessary
|
440 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
441 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
442 |
+
raw_datasets = raw_datasets.cast_column(
|
443 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
444 |
+
)
|
445 |
+
|
446 |
+
# 7. Preprocessing the datasets.
|
447 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
448 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
449 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
450 |
+
audio_column_name = data_args.audio_column_name
|
451 |
+
text_column_name = data_args.text_column_name
|
452 |
+
model_input_name = feature_extractor.model_input_names[0]
|
453 |
+
do_lower_case = data_args.do_lower_case
|
454 |
+
do_remove_punctuation = data_args.do_remove_punctuation
|
455 |
+
normalizer = BasicTextNormalizer() # 'official' text normalizer from OpenAI
|
456 |
+
|
457 |
+
if data_args.max_train_samples is not None:
|
458 |
+
raw_datasets["train"] = (
|
459 |
+
raw_datasets["train"].take(data_args.max_train_samples)
|
460 |
+
if data_args.streaming
|
461 |
+
else raw_datasets["train"].select(range(data_args.max_train_samples))
|
462 |
+
)
|
463 |
+
|
464 |
+
if data_args.max_eval_samples is not None:
|
465 |
+
raw_datasets["eval"] = (
|
466 |
+
raw_datasets["eval"].take(data_args.max_eval_samples)
|
467 |
+
if data_args.streaming
|
468 |
+
else raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
469 |
+
)
|
470 |
+
|
471 |
+
def prepare_dataset(batch):
|
472 |
+
# process audio
|
473 |
+
sample = batch[audio_column_name]
|
474 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
475 |
+
# process audio length
|
476 |
+
batch[model_input_name] = inputs.get(model_input_name)[0]
|
477 |
+
batch["input_length"] = len(sample["array"])
|
478 |
+
|
479 |
+
# process targets
|
480 |
+
input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name]
|
481 |
+
if do_remove_punctuation:
|
482 |
+
input_str = normalizer(input_str).strip()
|
483 |
+
batch["labels"] = tokenizer(input_str).input_ids
|
484 |
+
return batch
|
485 |
+
|
486 |
+
with training_args.main_process_first(desc="dataset map pre-processing"):
|
487 |
+
vectorized_datasets = raw_datasets.map(
|
488 |
+
prepare_dataset,
|
489 |
+
remove_columns=raw_datasets_features,
|
490 |
+
).with_format("torch")
|
491 |
+
|
492 |
+
if training_args.do_train and data_args.streaming:
|
493 |
+
# manually shuffle if streaming (done by the trainer for non-streaming)
|
494 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(
|
495 |
+
buffer_size=data_args.shuffle_buffer_size,
|
496 |
+
seed=training_args.seed,
|
497 |
+
)
|
498 |
+
|
499 |
+
# filter training data that is shorter than min_input_length or longer than
|
500 |
+
# max_input_length
|
501 |
+
def is_audio_in_length_range(length):
|
502 |
+
return min_input_length < length < max_input_length
|
503 |
+
|
504 |
+
if training_args.do_train:
|
505 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
|
506 |
+
is_audio_in_length_range,
|
507 |
+
input_columns=["input_length"],
|
508 |
+
)
|
509 |
+
|
510 |
+
# 8. Load Metric
|
511 |
+
metric = evaluate.load("wer")
|
512 |
+
do_normalize_eval = data_args.do_normalize_eval
|
513 |
+
|
514 |
+
def compute_metrics(pred):
|
515 |
+
pred_ids = pred.predictions
|
516 |
+
|
517 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
518 |
+
|
519 |
+
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
520 |
+
# we do not want to group tokens when computing the metrics
|
521 |
+
label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
|
522 |
+
|
523 |
+
if do_normalize_eval:
|
524 |
+
pred_str = [normalizer(pred) for pred in pred_str]
|
525 |
+
label_str = [normalizer(label) for label in label_str]
|
526 |
+
# filtering step to only evaluate the samples that correspond to non-zero references:
|
527 |
+
pred_str = [pred_str[i] for i in range(len(pred_str)) if len(label_str[i]) > 0]
|
528 |
+
label_str = [label_str[i] for i in range(len(label_str)) if len(label_str[i]) > 0]
|
529 |
+
|
530 |
+
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
|
531 |
+
|
532 |
+
return {"wer": wer}
|
533 |
+
|
534 |
+
# 9. Create a single speech processor
|
535 |
+
if is_main_process(training_args.local_rank):
|
536 |
+
# save feature extractor, tokenizer and config
|
537 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
538 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
539 |
+
config.save_pretrained(training_args.output_dir)
|
540 |
+
|
541 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
542 |
+
|
543 |
+
# 10. Define data collator
|
544 |
+
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
|
545 |
+
processor=processor,
|
546 |
+
decoder_start_token_id=model.config.decoder_start_token_id,
|
547 |
+
)
|
548 |
+
|
549 |
+
# 11. Configure Trainer
|
550 |
+
# Trainer callback to reinitialise and reshuffle the streamable datasets at the beginning of each epoch
|
551 |
+
# Only required for streaming: Trainer automatically shuffles non-streaming datasets
|
552 |
+
class ShuffleCallback(TrainerCallback):
|
553 |
+
def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs):
|
554 |
+
if isinstance(train_dataloader.dataset, IterableDatasetShard):
|
555 |
+
pass # set_epoch() is handled by the Trainer
|
556 |
+
elif isinstance(train_dataloader.dataset, IterableDataset):
|
557 |
+
train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)
|
558 |
+
|
559 |
+
# Initialize Trainer
|
560 |
+
trainer = Seq2SeqTrainer(
|
561 |
+
model=model,
|
562 |
+
args=training_args,
|
563 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
564 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
565 |
+
tokenizer=feature_extractor,
|
566 |
+
data_collator=data_collator,
|
567 |
+
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
568 |
+
callbacks=[ShuffleCallback()] if data_args.streaming else None,
|
569 |
+
)
|
570 |
+
|
571 |
+
# 12. Training
|
572 |
+
if training_args.do_train:
|
573 |
+
checkpoint = None
|
574 |
+
if training_args.resume_from_checkpoint is not None:
|
575 |
+
checkpoint = training_args.resume_from_checkpoint
|
576 |
+
elif last_checkpoint is not None:
|
577 |
+
checkpoint = last_checkpoint
|
578 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
579 |
+
trainer.save_model() # Saves the feature extractor too for easy upload
|
580 |
+
|
581 |
+
metrics = train_result.metrics
|
582 |
+
if data_args.max_train_samples:
|
583 |
+
metrics["train_samples"] = data_args.max_train_samples
|
584 |
+
trainer.log_metrics("train", metrics)
|
585 |
+
trainer.save_metrics("train", metrics)
|
586 |
+
trainer.save_state()
|
587 |
+
|
588 |
+
# 13. Evaluation
|
589 |
+
results = {}
|
590 |
+
if training_args.do_eval:
|
591 |
+
logger.info("*** Evaluate ***")
|
592 |
+
metrics = trainer.evaluate(
|
593 |
+
metric_key_prefix="eval",
|
594 |
+
max_length=training_args.generation_max_length,
|
595 |
+
num_beams=training_args.generation_num_beams,
|
596 |
+
)
|
597 |
+
if data_args.max_eval_samples:
|
598 |
+
metrics["eval_samples"] = data_args.max_eval_samples
|
599 |
+
|
600 |
+
trainer.log_metrics("eval", metrics)
|
601 |
+
trainer.save_metrics("eval", metrics)
|
602 |
+
|
603 |
+
# 14. Write Training Stats
|
604 |
+
kwargs = {
|
605 |
+
"finetuned_from": model_args.model_name_or_path,
|
606 |
+
"tasks": "automatic-speech-recognition",
|
607 |
+
"tags": "whisper-event",
|
608 |
+
}
|
609 |
+
if data_args.dataset_name is not None:
|
610 |
+
kwargs["dataset_tags"] = data_args.dataset_name
|
611 |
+
if data_args.dataset_config_name is not None:
|
612 |
+
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
613 |
+
else:
|
614 |
+
kwargs["dataset"] = data_args.dataset_name
|
615 |
+
if "common_voice" in data_args.dataset_name:
|
616 |
+
kwargs["language"] = data_args.dataset_config_name[:2]
|
617 |
+
if model_args.model_index_name is not None:
|
618 |
+
kwargs["model_name"] = model_args.model_index_name
|
619 |
+
|
620 |
+
if training_args.push_to_hub:
|
621 |
+
trainer.push_to_hub(**kwargs)
|
622 |
+
else:
|
623 |
+
trainer.create_model_card(**kwargs)
|
624 |
+
|
625 |
+
return results
|
626 |
+
|
627 |
+
|
628 |
+
if __name__ == "__main__":
|
629 |
+
main()
|
run_whisper-md-el-intlv-xs.sh
CHANGED
@@ -29,6 +29,7 @@ python run_interleave.py \
|
|
29 |
--dropout 0.1 \
|
30 |
--warmup_steps 500 \
|
31 |
--max_steps 5000 \
|
|
|
32 |
--eval_steps 1000 \
|
33 |
--gradient_checkpointing True \
|
34 |
--cache_dir '~/.cache' \
|
@@ -42,8 +43,7 @@ python run_interleave.py \
|
|
42 |
--load_best_model_at_end True \
|
43 |
--metric_for_best_model wer \
|
44 |
--greater_is_better False \
|
45 |
-
--push_to_hub
|
46 |
|
47 |
|
48 |
-
#
|
49 |
|
|
|
29 |
--dropout 0.1 \
|
30 |
--warmup_steps 500 \
|
31 |
--max_steps 5000 \
|
32 |
+
--resume_from_checkpoint="4000" \
|
33 |
--eval_steps 1000 \
|
34 |
--gradient_checkpointing True \
|
35 |
--cache_dir '~/.cache' \
|
|
|
43 |
--load_best_model_at_end True \
|
44 |
--metric_for_best_model wer \
|
45 |
--greater_is_better False \
|
46 |
+
--push_to_hub True
|
47 |
|
48 |
|
|
|
49 |
|
runs/Dec13_00-20-31_150-136-33-0/1670891059.409924/events.out.tfevents.1670891059.150-136-33-0.3897722.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd75ccf3b1bd98778e44cae4793e895aeec95a0d406fd4842436a2557e542e15
|
3 |
+
size 5917
|
runs/Dec13_00-20-31_150-136-33-0/events.out.tfevents.1670891059.150-136-33-0.3897722.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9c9398f6ed427bd41ff5741f352098952e1b913961b916e2d365d493d692c78
|
3 |
+
size 4344
|
runs/Dec13_00-26-09_150-136-33-0/1670891185.5348835/events.out.tfevents.1670891185.150-136-33-0.3897722.3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35265950f470f0bb0bc82f0f6bb1ea4a83bc795bf5d255645f4f880d140d506a
|
3 |
+
size 5917
|
runs/Dec13_00-26-09_150-136-33-0/events.out.tfevents.1670891185.150-136-33-0.3897722.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94d957e6f71dfd826ff305f81cafa3d73556930b286f440116360b825b11332f
|
3 |
+
size 4343
|
runs/Dec13_00-29-21_150-136-33-0/1670891404.5181074/events.out.tfevents.1670891404.150-136-33-0.127865.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2de5049f3bf41fae21055257bab18c7324d889c6f89810468c3ba3c622d9eb3b
|
3 |
+
size 5917
|
runs/Dec13_00-29-21_150-136-33-0/1670891530.7157552/events.out.tfevents.1670891530.150-136-33-0.127865.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:367be3341ff0617872ec5a6d9835404033aeb617bd43a6c309b3eaf37b96a8c1
|
3 |
+
size 5917
|
runs/Dec13_00-29-21_150-136-33-0/events.out.tfevents.1670891404.150-136-33-0.127865.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49d3593a4263cbf140645c09337c65104f6b6257df0e3fdff3f10a4027c867c4
|
3 |
+
size 9354
|
runs/Dec13_00-33-53_150-136-33-0/1670891644.5885968/events.out.tfevents.1670891644.150-136-33-0.127865.4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33cf05b8a4dd04ead085260d1bbb46d5e480d28366bcf7be1970bc9b5e4eced2
|
3 |
+
size 5917
|
runs/Dec13_00-33-53_150-136-33-0/events.out.tfevents.1670891644.150-136-33-0.127865.3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0417f0824bb1e400e36093b415ea327c75a275f99909bd52a68f2639b4a2d2db
|
3 |
+
size 4343
|
runs/Dec13_00-36-22_150-136-33-0/1670891797.5398705/events.out.tfevents.1670891797.150-136-33-0.152213.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:707fb35872449414d5446b923f39ed46d3efaf89754df4c9cdff9d2ad7e27dc3
|
3 |
+
size 5917
|
runs/Dec13_00-36-22_150-136-33-0/events.out.tfevents.1670891797.150-136-33-0.152213.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f972921d72e7ec59f8f92edf0ffa2b0b0a0b3e0f1000b294806893018aba7201
|
3 |
+
size 10941
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dccf5c02020cb4db0b8e5e421cc7fbb47dfb469165fb362c0937177d17244b57
|
3 |
+
size 3643
|