emilios commited on
Commit
70b0653
1 Parent(s): 0476d44

Training in progress, step 2000

Browse files
checkpoint-2000/config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "emilios/whisper-medium-el-n2",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "gelu",
5
+ "architectures": [
6
+ "WhisperForConditionalGeneration"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "begin_suppress_tokens": [
10
+ 220,
11
+ 50257
12
+ ],
13
+ "bos_token_id": 50257,
14
+ "d_model": 1024,
15
+ "decoder_attention_heads": 16,
16
+ "decoder_ffn_dim": 4096,
17
+ "decoder_layerdrop": 0.0,
18
+ "decoder_layers": 24,
19
+ "decoder_start_token_id": 50258,
20
+ "dropout": 0.1,
21
+ "encoder_attention_heads": 16,
22
+ "encoder_ffn_dim": 4096,
23
+ "encoder_layerdrop": 0.0,
24
+ "encoder_layers": 24,
25
+ "eos_token_id": 50257,
26
+ "forced_decoder_ids": null,
27
+ "init_std": 0.02,
28
+ "is_encoder_decoder": true,
29
+ "max_length": 448,
30
+ "max_source_positions": 1500,
31
+ "max_target_positions": 448,
32
+ "model_type": "whisper",
33
+ "num_hidden_layers": 24,
34
+ "num_mel_bins": 80,
35
+ "pad_token_id": 50257,
36
+ "scale_embedding": false,
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.26.0.dev0",
39
+ "use_cache": false,
40
+ "vocab_size": 51865
41
+ }
checkpoint-2000/global_step2000/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09147113f409edbd3320ffe6566a545e03155fcc97b5f58b1489e760988fff64
3
+ size 1527967899
checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1738ed1e00d898c05e08689072ee5acc751eafd96506f2c621c91440676d48e
3
+ size 9166378846
checkpoint-2000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step2000
checkpoint-2000/preprocessor_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05cc466e70f2ceed7e53361d15918882e5610e783f0af6aed4bb9bc097ecab2c
3
+ size 1527847357
checkpoint-2000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:298e6062d856b07e4e64f549dcb173da63994e76aaba6afbf083d5836d6a7a3d
3
+ size 14575
checkpoint-2000/trainer_state.json ADDED
@@ -0,0 +1,514 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 10.27117384843982,
3
+ "best_model_checkpoint": "./checkpoint-2000",
4
+ "epoch": 117.6470588235294,
5
+ "global_step": 2000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 1.47,
12
+ "learning_rate": 1.5136083400296205e-06,
13
+ "loss": 0.0024,
14
+ "step": 25
15
+ },
16
+ {
17
+ "epoch": 2.94,
18
+ "learning_rate": 1.8687587131475301e-06,
19
+ "loss": 0.0024,
20
+ "step": 50
21
+ },
22
+ {
23
+ "epoch": 4.41,
24
+ "learning_rate": 2.0711488350670174e-06,
25
+ "loss": 0.0023,
26
+ "step": 75
27
+ },
28
+ {
29
+ "epoch": 5.88,
30
+ "learning_rate": 2.213317753617305e-06,
31
+ "loss": 0.0023,
32
+ "step": 100
33
+ },
34
+ {
35
+ "epoch": 7.35,
36
+ "learning_rate": 2.3230029693718747e-06,
37
+ "loss": 0.002,
38
+ "step": 125
39
+ },
40
+ {
41
+ "epoch": 8.82,
42
+ "learning_rate": 2.412322158351148e-06,
43
+ "loss": 0.002,
44
+ "step": 150
45
+ },
46
+ {
47
+ "epoch": 10.29,
48
+ "learning_rate": 2.4876668872198717e-06,
49
+ "loss": 0.0022,
50
+ "step": 175
51
+ },
52
+ {
53
+ "epoch": 11.76,
54
+ "learning_rate": 2.552824062407326e-06,
55
+ "loss": 0.0021,
56
+ "step": 200
57
+ },
58
+ {
59
+ "epoch": 13.24,
60
+ "learning_rate": 2.610223373296667e-06,
61
+ "loss": 0.0034,
62
+ "step": 225
63
+ },
64
+ {
65
+ "epoch": 14.71,
66
+ "learning_rate": 2.661517182828361e-06,
67
+ "loss": 0.0019,
68
+ "step": 250
69
+ },
70
+ {
71
+ "epoch": 16.18,
72
+ "learning_rate": 2.7078803874740543e-06,
73
+ "loss": 0.0018,
74
+ "step": 275
75
+ },
76
+ {
77
+ "epoch": 17.65,
78
+ "learning_rate": 2.750178319990197e-06,
79
+ "loss": 0.0023,
80
+ "step": 300
81
+ },
82
+ {
83
+ "epoch": 19.12,
84
+ "learning_rate": 2.7890667754365044e-06,
85
+ "loss": 0.0019,
86
+ "step": 325
87
+ },
88
+ {
89
+ "epoch": 20.59,
90
+ "learning_rate": 2.8250546392106077e-06,
91
+ "loss": 0.0021,
92
+ "step": 350
93
+ },
94
+ {
95
+ "epoch": 22.06,
96
+ "learning_rate": 2.8585447348549113e-06,
97
+ "loss": 0.0023,
98
+ "step": 375
99
+ },
100
+ {
101
+ "epoch": 23.53,
102
+ "learning_rate": 2.889861392935294e-06,
103
+ "loss": 0.0021,
104
+ "step": 400
105
+ },
106
+ {
107
+ "epoch": 25.0,
108
+ "learning_rate": 2.9192696063561725e-06,
109
+ "loss": 0.0016,
110
+ "step": 425
111
+ },
112
+ {
113
+ "epoch": 26.47,
114
+ "learning_rate": 2.946988676871634e-06,
115
+ "loss": 0.0018,
116
+ "step": 450
117
+ },
118
+ {
119
+ "epoch": 27.94,
120
+ "learning_rate": 2.973202150939645e-06,
121
+ "loss": 0.0022,
122
+ "step": 475
123
+ },
124
+ {
125
+ "epoch": 29.41,
126
+ "learning_rate": 2.998065193492142e-06,
127
+ "loss": 0.0018,
128
+ "step": 500
129
+ },
130
+ {
131
+ "epoch": 30.88,
132
+ "learning_rate": 2.9559999999999997e-06,
133
+ "loss": 0.0018,
134
+ "step": 525
135
+ },
136
+ {
137
+ "epoch": 32.35,
138
+ "learning_rate": 2.9060000000000002e-06,
139
+ "loss": 0.0021,
140
+ "step": 550
141
+ },
142
+ {
143
+ "epoch": 33.82,
144
+ "learning_rate": 2.856e-06,
145
+ "loss": 0.0017,
146
+ "step": 575
147
+ },
148
+ {
149
+ "epoch": 35.29,
150
+ "learning_rate": 2.8060000000000003e-06,
151
+ "loss": 0.0018,
152
+ "step": 600
153
+ },
154
+ {
155
+ "epoch": 36.76,
156
+ "learning_rate": 2.756e-06,
157
+ "loss": 0.0016,
158
+ "step": 625
159
+ },
160
+ {
161
+ "epoch": 38.24,
162
+ "learning_rate": 2.706e-06,
163
+ "loss": 0.0017,
164
+ "step": 650
165
+ },
166
+ {
167
+ "epoch": 39.71,
168
+ "learning_rate": 2.656e-06,
169
+ "loss": 0.0016,
170
+ "step": 675
171
+ },
172
+ {
173
+ "epoch": 41.18,
174
+ "learning_rate": 2.606e-06,
175
+ "loss": 0.0013,
176
+ "step": 700
177
+ },
178
+ {
179
+ "epoch": 42.65,
180
+ "learning_rate": 2.556e-06,
181
+ "loss": 0.0013,
182
+ "step": 725
183
+ },
184
+ {
185
+ "epoch": 44.12,
186
+ "learning_rate": 2.5060000000000002e-06,
187
+ "loss": 0.0012,
188
+ "step": 750
189
+ },
190
+ {
191
+ "epoch": 45.59,
192
+ "learning_rate": 2.456e-06,
193
+ "loss": 0.0013,
194
+ "step": 775
195
+ },
196
+ {
197
+ "epoch": 47.06,
198
+ "learning_rate": 2.4060000000000003e-06,
199
+ "loss": 0.0013,
200
+ "step": 800
201
+ },
202
+ {
203
+ "epoch": 48.53,
204
+ "learning_rate": 2.356e-06,
205
+ "loss": 0.0013,
206
+ "step": 825
207
+ },
208
+ {
209
+ "epoch": 50.0,
210
+ "learning_rate": 2.306e-06,
211
+ "loss": 0.0011,
212
+ "step": 850
213
+ },
214
+ {
215
+ "epoch": 51.47,
216
+ "learning_rate": 2.256e-06,
217
+ "loss": 0.0013,
218
+ "step": 875
219
+ },
220
+ {
221
+ "epoch": 52.94,
222
+ "learning_rate": 2.2059999999999997e-06,
223
+ "loss": 0.0014,
224
+ "step": 900
225
+ },
226
+ {
227
+ "epoch": 54.41,
228
+ "learning_rate": 2.156e-06,
229
+ "loss": 0.0011,
230
+ "step": 925
231
+ },
232
+ {
233
+ "epoch": 55.88,
234
+ "learning_rate": 2.106e-06,
235
+ "loss": 0.0024,
236
+ "step": 950
237
+ },
238
+ {
239
+ "epoch": 57.35,
240
+ "learning_rate": 2.0560000000000003e-06,
241
+ "loss": 0.0014,
242
+ "step": 975
243
+ },
244
+ {
245
+ "epoch": 58.82,
246
+ "learning_rate": 2.006e-06,
247
+ "loss": 0.0014,
248
+ "step": 1000
249
+ },
250
+ {
251
+ "epoch": 58.82,
252
+ "eval_loss": 0.494384765625,
253
+ "eval_runtime": 154.3699,
254
+ "eval_samples_per_second": 1.762,
255
+ "eval_steps_per_second": 0.11,
256
+ "eval_wer": 10.36404160475483,
257
+ "step": 1000
258
+ },
259
+ {
260
+ "epoch": 60.29,
261
+ "learning_rate": 1.96e-06,
262
+ "loss": 0.0012,
263
+ "step": 1025
264
+ },
265
+ {
266
+ "epoch": 61.76,
267
+ "learning_rate": 1.9100000000000003e-06,
268
+ "loss": 0.0009,
269
+ "step": 1050
270
+ },
271
+ {
272
+ "epoch": 63.24,
273
+ "learning_rate": 1.86e-06,
274
+ "loss": 0.0012,
275
+ "step": 1075
276
+ },
277
+ {
278
+ "epoch": 64.71,
279
+ "learning_rate": 1.8100000000000002e-06,
280
+ "loss": 0.0009,
281
+ "step": 1100
282
+ },
283
+ {
284
+ "epoch": 66.18,
285
+ "learning_rate": 1.76e-06,
286
+ "loss": 0.0012,
287
+ "step": 1125
288
+ },
289
+ {
290
+ "epoch": 67.65,
291
+ "learning_rate": 1.71e-06,
292
+ "loss": 0.0012,
293
+ "step": 1150
294
+ },
295
+ {
296
+ "epoch": 69.12,
297
+ "learning_rate": 1.66e-06,
298
+ "loss": 0.0009,
299
+ "step": 1175
300
+ },
301
+ {
302
+ "epoch": 70.59,
303
+ "learning_rate": 1.6099999999999998e-06,
304
+ "loss": 0.0007,
305
+ "step": 1200
306
+ },
307
+ {
308
+ "epoch": 72.06,
309
+ "learning_rate": 1.56e-06,
310
+ "loss": 0.0011,
311
+ "step": 1225
312
+ },
313
+ {
314
+ "epoch": 73.53,
315
+ "learning_rate": 1.51e-06,
316
+ "loss": 0.0014,
317
+ "step": 1250
318
+ },
319
+ {
320
+ "epoch": 75.0,
321
+ "learning_rate": 1.4600000000000002e-06,
322
+ "loss": 0.0008,
323
+ "step": 1275
324
+ },
325
+ {
326
+ "epoch": 76.47,
327
+ "learning_rate": 1.41e-06,
328
+ "loss": 0.0009,
329
+ "step": 1300
330
+ },
331
+ {
332
+ "epoch": 77.94,
333
+ "learning_rate": 1.36e-06,
334
+ "loss": 0.0008,
335
+ "step": 1325
336
+ },
337
+ {
338
+ "epoch": 79.41,
339
+ "learning_rate": 1.31e-06,
340
+ "loss": 0.0009,
341
+ "step": 1350
342
+ },
343
+ {
344
+ "epoch": 80.88,
345
+ "learning_rate": 1.26e-06,
346
+ "loss": 0.0011,
347
+ "step": 1375
348
+ },
349
+ {
350
+ "epoch": 82.35,
351
+ "learning_rate": 1.21e-06,
352
+ "loss": 0.0007,
353
+ "step": 1400
354
+ },
355
+ {
356
+ "epoch": 83.82,
357
+ "learning_rate": 1.16e-06,
358
+ "loss": 0.0011,
359
+ "step": 1425
360
+ },
361
+ {
362
+ "epoch": 85.29,
363
+ "learning_rate": 1.11e-06,
364
+ "loss": 0.001,
365
+ "step": 1450
366
+ },
367
+ {
368
+ "epoch": 86.76,
369
+ "learning_rate": 1.06e-06,
370
+ "loss": 0.0008,
371
+ "step": 1475
372
+ },
373
+ {
374
+ "epoch": 88.24,
375
+ "learning_rate": 1.01e-06,
376
+ "loss": 0.0007,
377
+ "step": 1500
378
+ },
379
+ {
380
+ "epoch": 89.71,
381
+ "learning_rate": 9.600000000000001e-07,
382
+ "loss": 0.0006,
383
+ "step": 1525
384
+ },
385
+ {
386
+ "epoch": 91.18,
387
+ "learning_rate": 9.100000000000001e-07,
388
+ "loss": 0.0007,
389
+ "step": 1550
390
+ },
391
+ {
392
+ "epoch": 92.65,
393
+ "learning_rate": 8.6e-07,
394
+ "loss": 0.0006,
395
+ "step": 1575
396
+ },
397
+ {
398
+ "epoch": 94.12,
399
+ "learning_rate": 8.100000000000001e-07,
400
+ "loss": 0.0008,
401
+ "step": 1600
402
+ },
403
+ {
404
+ "epoch": 95.59,
405
+ "learning_rate": 7.600000000000001e-07,
406
+ "loss": 0.0009,
407
+ "step": 1625
408
+ },
409
+ {
410
+ "epoch": 97.06,
411
+ "learning_rate": 7.1e-07,
412
+ "loss": 0.0006,
413
+ "step": 1650
414
+ },
415
+ {
416
+ "epoch": 98.53,
417
+ "learning_rate": 6.6e-07,
418
+ "loss": 0.0006,
419
+ "step": 1675
420
+ },
421
+ {
422
+ "epoch": 100.0,
423
+ "learning_rate": 6.1e-07,
424
+ "loss": 0.0008,
425
+ "step": 1700
426
+ },
427
+ {
428
+ "epoch": 101.47,
429
+ "learning_rate": 5.6e-07,
430
+ "loss": 0.0006,
431
+ "step": 1725
432
+ },
433
+ {
434
+ "epoch": 102.94,
435
+ "learning_rate": 5.100000000000001e-07,
436
+ "loss": 0.0008,
437
+ "step": 1750
438
+ },
439
+ {
440
+ "epoch": 104.41,
441
+ "learning_rate": 4.6e-07,
442
+ "loss": 0.0006,
443
+ "step": 1775
444
+ },
445
+ {
446
+ "epoch": 105.88,
447
+ "learning_rate": 4.1e-07,
448
+ "loss": 0.0006,
449
+ "step": 1800
450
+ },
451
+ {
452
+ "epoch": 107.35,
453
+ "learning_rate": 3.6e-07,
454
+ "loss": 0.0007,
455
+ "step": 1825
456
+ },
457
+ {
458
+ "epoch": 108.82,
459
+ "learning_rate": 3.1e-07,
460
+ "loss": 0.0007,
461
+ "step": 1850
462
+ },
463
+ {
464
+ "epoch": 110.29,
465
+ "learning_rate": 2.6e-07,
466
+ "loss": 0.0007,
467
+ "step": 1875
468
+ },
469
+ {
470
+ "epoch": 111.76,
471
+ "learning_rate": 2.1000000000000003e-07,
472
+ "loss": 0.0005,
473
+ "step": 1900
474
+ },
475
+ {
476
+ "epoch": 113.24,
477
+ "learning_rate": 1.6e-07,
478
+ "loss": 0.0008,
479
+ "step": 1925
480
+ },
481
+ {
482
+ "epoch": 114.71,
483
+ "learning_rate": 1.1e-07,
484
+ "loss": 0.0006,
485
+ "step": 1950
486
+ },
487
+ {
488
+ "epoch": 116.18,
489
+ "learning_rate": 6.000000000000001e-08,
490
+ "loss": 0.0006,
491
+ "step": 1975
492
+ },
493
+ {
494
+ "epoch": 117.65,
495
+ "learning_rate": 1e-08,
496
+ "loss": 0.0007,
497
+ "step": 2000
498
+ },
499
+ {
500
+ "epoch": 117.65,
501
+ "eval_loss": 0.50830078125,
502
+ "eval_runtime": 170.147,
503
+ "eval_samples_per_second": 1.599,
504
+ "eval_steps_per_second": 0.1,
505
+ "eval_wer": 10.27117384843982,
506
+ "step": 2000
507
+ }
508
+ ],
509
+ "max_steps": 2000,
510
+ "num_train_epochs": 118,
511
+ "total_flos": 6.161697879136351e+19,
512
+ "trial_name": null,
513
+ "trial_params": null
514
+ }
checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ed73d2b317cd1e368b1f5f7eb5b1eb41b01338f297addbfd473d2f8fb949e5d
3
+ size 4731
checkpoint-2000/zero_to_fp32.py ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
4
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
5
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
6
+ # application.
7
+ #
8
+ # example: python zero_to_fp32.py . pytorch_model.bin
9
+
10
+ import argparse
11
+ import torch
12
+ import glob
13
+ import math
14
+ import os
15
+ import re
16
+ from collections import OrderedDict
17
+
18
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
19
+ # DeepSpeed data structures it has to be available in the current python environment.
20
+ from deepspeed.utils import logger
21
+ from deepspeed.checkpoint.constants import (DS_VERSION,
22
+ OPTIMIZER_STATE_DICT,
23
+ SINGLE_PARTITION_OF_FP32_GROUPS,
24
+ FP32_FLAT_GROUPS,
25
+ ZERO_STAGE,
26
+ PARTITION_COUNT,
27
+ PARAM_SHAPES,
28
+ BUFFER_NAMES)
29
+
30
+ debug = 0
31
+
32
+ # load to cpu
33
+ device = torch.device('cpu')
34
+
35
+
36
+ def atoi(text):
37
+ return int(text) if text.isdigit() else text
38
+
39
+
40
+ def natural_keys(text):
41
+ '''
42
+ alist.sort(key=natural_keys) sorts in human order
43
+ http://nedbatchelder.com/blog/200712/human_sorting.html
44
+ (See Toothy's implementation in the comments)
45
+ '''
46
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
47
+
48
+
49
+ def get_model_state_file(checkpoint_dir, zero_stage):
50
+ if not os.path.isdir(checkpoint_dir):
51
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
52
+
53
+ # there should be only one file
54
+ if zero_stage == 2:
55
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
56
+ elif zero_stage == 3:
57
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
58
+
59
+ if not os.path.exists(file):
60
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
61
+
62
+ return file
63
+
64
+
65
+ def get_optim_files(checkpoint_dir):
66
+ # XXX: need to test that this simple glob rule works for multi-node setup too
67
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
68
+ "*_optim_states.pt")),
69
+ key=natural_keys)
70
+
71
+ if len(optim_files) == 0:
72
+ raise FileNotFoundError(
73
+ f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
74
+
75
+ return optim_files
76
+
77
+
78
+ def parse_model_state(file):
79
+ state_dict = torch.load(file, map_location=device)
80
+
81
+ if BUFFER_NAMES not in state_dict:
82
+ raise ValueError(f"{file} is not a model state checkpoint")
83
+ buffer_names = state_dict[BUFFER_NAMES]
84
+ if debug:
85
+ print("Found buffers:", buffer_names)
86
+
87
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
88
+ buffers = {
89
+ k: v.float()
90
+ for k,
91
+ v in state_dict["module"].items() if k in buffer_names
92
+ }
93
+ param_shapes = state_dict[PARAM_SHAPES]
94
+
95
+ ds_version = state_dict.get(DS_VERSION, None)
96
+
97
+ return buffers, param_shapes, ds_version
98
+
99
+
100
+ def parse_optim_states(files, ds_checkpoint_dir):
101
+
102
+ total_files = len(files)
103
+ state_dicts = []
104
+ for f in files:
105
+ state_dicts.append(torch.load(f, map_location=device))
106
+
107
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
108
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
109
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
110
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
111
+
112
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
113
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
114
+ # use the max of the partition_count to get the dp world_size.
115
+
116
+ if type(world_size) is list:
117
+ world_size = max(world_size)
118
+
119
+ if world_size != total_files:
120
+ raise ValueError(
121
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
122
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
123
+ )
124
+
125
+ # the groups are named differently in each stage
126
+ if zero_stage == 2:
127
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
128
+ elif zero_stage == 3:
129
+ fp32_groups_key = FP32_FLAT_GROUPS
130
+ else:
131
+ raise ValueError(f"unknown zero stage {zero_stage}")
132
+
133
+ if zero_stage == 2:
134
+ fp32_flat_groups = [
135
+ state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
136
+ for i in range(len(state_dicts))
137
+ ]
138
+ elif zero_stage == 3:
139
+ # if there is more than one param group, there will be multiple flattened tensors - one
140
+ # flattened tensor per group - for simplicity merge them into a single tensor
141
+ #
142
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
143
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
144
+
145
+ fp32_flat_groups = [
146
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
147
+ 0) for i in range(len(state_dicts))
148
+ ]
149
+
150
+ return zero_stage, world_size, fp32_flat_groups
151
+
152
+
153
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
154
+ """
155
+ Returns fp32 state_dict reconstructed from ds checkpoint
156
+
157
+ Args:
158
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
159
+
160
+ """
161
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
162
+
163
+ optim_files = get_optim_files(ds_checkpoint_dir)
164
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
165
+ print(
166
+ f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
167
+
168
+ model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
169
+ buffers, param_shapes, ds_version = parse_model_state(model_file)
170
+ print(f'Parsing checkpoint created by deepspeed=={ds_version}')
171
+
172
+ if zero_stage == 2:
173
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
174
+ param_shapes,
175
+ fp32_flat_groups,
176
+ buffers)
177
+ elif zero_stage == 3:
178
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
179
+ param_shapes,
180
+ fp32_flat_groups,
181
+ buffers)
182
+
183
+
184
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
185
+ param_shapes,
186
+ fp32_flat_groups,
187
+ buffers):
188
+
189
+ # Reconstruction protocol:
190
+ #
191
+ # XXX: document this
192
+
193
+ if debug:
194
+ for i in range(world_size):
195
+ for j in range(len(fp32_flat_groups[0])):
196
+ print(
197
+ f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
198
+
199
+ # XXX: memory usage doubles here (zero2)
200
+ num_param_groups = len(fp32_flat_groups[0])
201
+ merged_single_partition_of_fp32_groups = []
202
+ for i in range(num_param_groups):
203
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
204
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
205
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
206
+ avail_numel = sum([
207
+ full_single_fp32_vector.numel()
208
+ for full_single_fp32_vector in merged_single_partition_of_fp32_groups
209
+ ])
210
+
211
+ if debug:
212
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
213
+ wanted_numel = sum(
214
+ [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
215
+ # not asserting if there is a mismatch due to possible padding
216
+ print(f"Have {avail_numel} numels to process.")
217
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
218
+
219
+ state_dict = OrderedDict()
220
+
221
+ # buffers
222
+ state_dict.update(buffers)
223
+ if debug:
224
+ print(f"added {len(buffers)} buffers")
225
+
226
+ # params
227
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
228
+ # out-of-core computing solution
229
+ total_numel = 0
230
+ total_params = 0
231
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
232
+ offset = 0
233
+ avail_numel = full_single_fp32_vector.numel()
234
+ for name, shape in shapes.items():
235
+
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+ total_params += 1
239
+
240
+ if debug:
241
+ print(
242
+ f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
243
+ )
244
+ state_dict[name] = full_single_fp32_vector.narrow(
245
+ 0,
246
+ offset,
247
+ unpartitioned_numel).view(shape)
248
+ offset += unpartitioned_numel
249
+
250
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
251
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
252
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
253
+ # live optimizer object, so we are checking that the numbers are within the right range
254
+ align_to = 2 * world_size
255
+
256
+ def zero2_align(x):
257
+ return align_to * math.ceil(x / align_to)
258
+
259
+ if debug:
260
+ print(f"original offset={offset}, avail_numel={avail_numel}")
261
+
262
+ offset = zero2_align(offset)
263
+ avail_numel = zero2_align(avail_numel)
264
+
265
+ if debug:
266
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
267
+
268
+ # Sanity check
269
+ if offset != avail_numel:
270
+ raise ValueError(
271
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
272
+
273
+ print(
274
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
275
+ )
276
+
277
+ return state_dict
278
+
279
+
280
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
281
+ remainder = unpartitioned_numel % world_size
282
+ padding_numel = (world_size - remainder) if remainder else 0
283
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
284
+ return partitioned_numel, padding_numel
285
+
286
+
287
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
288
+ param_shapes,
289
+ fp32_flat_groups,
290
+ buffers):
291
+
292
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
293
+ # param, re-consolidating each param, while dealing with padding if any
294
+
295
+ avail_numel = fp32_flat_groups[0].numel() * world_size
296
+ # merge list of dicts, preserving order
297
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
298
+
299
+ if debug:
300
+ for i in range(world_size):
301
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
302
+
303
+ wanted_params = len(param_shapes)
304
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
305
+ # not asserting if there is a mismatch due to possible padding
306
+ print(f"Have {avail_numel} numels to process.")
307
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
308
+
309
+ state_dict = OrderedDict()
310
+
311
+ # buffers
312
+ state_dict.update(buffers)
313
+ if debug:
314
+ print(f"added {len(buffers)} buffers")
315
+
316
+ # params
317
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
318
+ # out-of-core computing solution
319
+ offset = 0
320
+ total_numel = 0
321
+ total_params = 0
322
+ for name, shape in param_shapes.items():
323
+
324
+ unpartitioned_numel = shape.numel()
325
+ total_numel += unpartitioned_numel
326
+ total_params += 1
327
+
328
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
329
+
330
+ if debug:
331
+ print(
332
+ f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
333
+ )
334
+
335
+ # XXX: memory usage doubles here
336
+ state_dict[name] = torch.cat(
337
+ tuple(fp32_flat_groups[i].narrow(0,
338
+ offset,
339
+ partitioned_numel)
340
+ for i in range(world_size)),
341
+ 0).narrow(0,
342
+ 0,
343
+ unpartitioned_numel).view(shape)
344
+ offset += partitioned_numel
345
+
346
+ offset *= world_size
347
+
348
+ # Sanity check
349
+ if offset != avail_numel:
350
+ raise ValueError(
351
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
352
+
353
+ print(
354
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
355
+ )
356
+
357
+ return state_dict
358
+
359
+
360
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
361
+ """
362
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
363
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
364
+ via a model hub.
365
+
366
+ Args:
367
+ - ``checkpoint_dir``: path to the desired checkpoint folder
368
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
369
+
370
+ Returns:
371
+ - pytorch ``state_dict``
372
+
373
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
374
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
375
+ the checkpoint.
376
+
377
+ A typical usage might be ::
378
+
379
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
380
+ # do the training and checkpoint saving
381
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
382
+ model = model.cpu() # move to cpu
383
+ model.load_state_dict(state_dict)
384
+ # submit to model hub or save the model to share with others
385
+
386
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
387
+ application. i.e. you will need to re-initialize the deepspeed engine, since
388
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
389
+
390
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
391
+
392
+ """
393
+ if tag is None:
394
+ latest_path = os.path.join(checkpoint_dir, 'latest')
395
+ if os.path.isfile(latest_path):
396
+ with open(latest_path, 'r') as fd:
397
+ tag = fd.read().strip()
398
+ else:
399
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
400
+
401
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
402
+
403
+ if not os.path.isdir(ds_checkpoint_dir):
404
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
405
+
406
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
407
+
408
+
409
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
410
+ """
411
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
412
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
413
+
414
+ Args:
415
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
416
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
417
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
418
+ """
419
+
420
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
421
+ print(f"Saving fp32 state dict to {output_file}")
422
+ torch.save(state_dict, output_file)
423
+
424
+
425
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
426
+ """
427
+ 1. Put the provided model to cpu
428
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
429
+ 3. Load it into the provided model
430
+
431
+ Args:
432
+ - ``model``: the model object to update
433
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
434
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
435
+
436
+ Returns:
437
+ - ``model`: modified model
438
+
439
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
440
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
441
+ conveniently placed for you in the checkpoint folder.
442
+
443
+ A typical usage might be ::
444
+
445
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
446
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
447
+ # submit to model hub or save the model to share with others
448
+
449
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
450
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
451
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
452
+
453
+ """
454
+ logger.info(f"Extracting fp32 weights")
455
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
456
+
457
+ logger.info(f"Overwriting model with fp32 weights")
458
+ model = model.cpu()
459
+ model.load_state_dict(state_dict, strict=False)
460
+
461
+ return model
462
+
463
+
464
+ if __name__ == "__main__":
465
+
466
+ parser = argparse.ArgumentParser()
467
+ parser.add_argument(
468
+ "checkpoint_dir",
469
+ type=str,
470
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
471
+ parser.add_argument(
472
+ "output_file",
473
+ type=str,
474
+ help=
475
+ "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
476
+ )
477
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
478
+ args = parser.parse_args()
479
+
480
+ debug = args.debug
481
+
482
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c003ccc0e40b6e5ee396b9f08631bc9a513d9d258d81e20345f01d9d83e99efd
3
  size 1527847357
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05cc466e70f2ceed7e53361d15918882e5610e783f0af6aed4bb9bc097ecab2c
3
  size 1527847357
runs/Dec22_17-47-55_129-146-176-120/events.out.tfevents.1671731318.129-146-176-120.842798.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f0b32700784f86ec746846f0b99529a5efbc6b0880f1bbc1e391d71222ce964d
3
- size 10885
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4d49f22ddfd6d01ad8c521f956c799732c5bcee1ed342d63cd8d6566319773c
3
+ size 17483