{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b5abbb355a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b5abbb35630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b5abbb356c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b5abbb35750>", "_build": "<function ActorCriticPolicy._build at 0x7b5abbb357e0>", "forward": "<function ActorCriticPolicy.forward at 0x7b5abbb35870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b5abbb35900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b5abbb35990>", "_predict": "<function ActorCriticPolicy._predict at 0x7b5abbb35a20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b5abbb35ab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b5abbb35b40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b5abbb35bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b5abbb383c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702537090190542957, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrOKT0pyHK63YdLORrhRDTcZi86DlVuuAAAgD8AAIA/ANVXvVw7Q7pd2124fXRwtgifVTrH+YU3AACAPwAAgD9NnRS9w1lIulGzwrnVgXW23EY9uvqR4jUAAIA/AACAPzORkrx79II5rn7MN0lwsjJ6ku67klb2tgAAgD8AAIA/rWkiPn8oUD6ZMSO90BEJvh/tMTtsAhy9AAAAAAAAAADmHGw9rnWYunPiaDtKLIA45LeGOgrCCroAAIA/AACAPxreSb3hSJC6APjnupuRN7aRo9U6T3IFOgAAgD8AAIA/JvOdPcPtdLrO2Vg7axcmOG3eazuS7Qe6AACAPwAAgD8akKm9SD+Kuju2P7o8UC61gDpZOsjaXjkAAIA/AACAP800ODx3fBw+v4Yru97bc77DN6w7R2qMPAAAAAAAAAAAwAWlPRQMjLpuBsY2Qv6yMejcIbpjw+i1AACAPwAAgD9mdyi9e9KFurtg0zqaaPU1n4tkugJl9LkAAIA/AACAP6hXm76Ye8A+6+0JPn+VQ76QUjW9OJhsvAAAAAAAAAAApo2xvfZgQrqTbQU5hLnyNIVXoTtyICC4AACAPwAAAACzuxi9BgOOPvnXFD5T62y+mWRIvbunzLwAAAAAAAAAAABAgDlw+7E/wNObu1TenL6HVTc7FsHAPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDndvjwQUaMAWyUTaMBjAF0lEdAmISsFMZgonV9lChoBkdASdcipvP1MGgHTSwBaAhHQJid1mQKa5R1fZQoaAZHQF9HM9KVY6poB03oA2gIR0CYqVIu5BkadX2UKGgGR0BEg81fmcOLaAdNGAFoCEdAmKpCYw7DEXV9lChoBkdAZlJ62v0ROGgHTegDaAhHQJiq0Swnpjd1fZQoaAZHQGaGMFt8/lhoB03oA2gIR0CYquKPn0TUdX2UKGgGR0Bjwbrs0HhTaAdN6ANoCEdAmKu0DU3GXHV9lChoBkdAXzJvHcUM5WgHTegDaAhHQJirwtL+PzZ1fZQoaAZHQGBmw0GeMAFoB03oA2gIR0CYsQUz9CNTdX2UKGgGR0BhOcoBq9GraAdN6ANoCEdAmLN0c0cfeXV9lChoBkdAYoSdeY2KmGgHTegDaAhHQJi27CIk7fZ1fZQoaAZHQGSwgTAWSEFoB03oA2gIR0CYvr8aXKKYdX2UKGgGR0BhM8NQTEiuaAdN6ANoCEdAmL8pXU6PsHV9lChoBkdAYX7RRdhRZWgHTegDaAhHQJjBGReTmnx1fZQoaAZHQGy6wyZa3ZxoB03RAWgIR0CYw8nH/95ydX2UKGgGR0BekZA6dUbUaAdN6ANoCEdAmMd1ghKUV3V9lChoBkdAYpp+YtxuK2gHTegDaAhHQJjMnq9oN/h1fZQoaAZHQGRYhqj8DSxoB03oA2gIR0CYzwc9W6sidX2UKGgGR0AxI/yGzru6aAdNMQFoCEdAmNUf3vhIfHV9lChoBkdAYJLDziCJ42gHTegDaAhHQJjbrMs6JZZ1fZQoaAZHQGNCo6bONYNoB03oA2gIR0CY9pHHWBjGdX2UKGgGR0BlY7KzRhMKaAdN6ANoCEdAmPeLf1pTM3V9lChoBkdAXo3vv0AcUGgHTegDaAhHQJj4I/0NBnl1fZQoaAZHQF2Vwt8NQTFoB03oA2gIR0CY+QlOXVsldX2UKGgGR0BgYQigTRICaAdN6ANoCEdAmPkZ2IO6NHV9lChoBkdAYSQQf6oES2gHTegDaAhHQJj/PyJ9Aop1fZQoaAZHQGZGPBSDRMNoB03oA2gIR0CZAwP9UCJXdX2UKGgGR0BvcVqFh5PeaAdN6wJoCEdAmQXgpF1B+nV9lChoBkdAWTjSDyvs7mgHTegDaAhHQJkIlTKkl/p1fZQoaAZHQECnovi97F9oB00JAWgIR0CZCiWRA8jidX2UKGgGR0BgquIO6NEPaAdN6ANoCEdAmRFxm5DqnnV9lChoBkdAYouotL+PzWgHTegDaAhHQJkR1fb9If91fZQoaAZHQGFFo6bONYNoB03oA2gIR0CZGt71Iy0sdX2UKGgGR0BwFhBt1p0waAdNKwJoCEdAmRsMJUo8ZHV9lChoBkdAYu5Z9NN8E2gHTegDaAhHQJkgRUXHim51fZQoaAZHQGF56D5CWu5oB03oA2gIR0CZIifLcKw7dX2UKGgGR0AVmYNRWLgoaAdNDAFoCEdAmSKUkfLcK3V9lChoBkdAY3XT+ee4C2gHTegDaAhHQJkmrY4ACGN1fZQoaAZHQGFY9KEnLJVoB03oA2gIR0CZLILKV6eHdX2UKGgGR0BumkXpGFzuaAdN6gFoCEdAmULfaHsTnXV9lChoBkdAQX6l+EytWGgHTQoBaAhHQJlDnboKUml1fZQoaAZHQGUBt0eU6gdoB03oA2gIR0CZSjmu1WsBdX2UKGgGR0Bj/PjQzDXOaAdN6ANoCEdAmUvK3uuzQnV9lChoBkdAZq3VwPy08mgHTegDaAhHQJlL2rKeTV51fZQoaAZHQG08ybYsd1doB01aAWgIR0CZTvDLbHp9dX2UKGgGR0BjylzZHuqnaAdN6ANoCEdAmVILWI42j3V9lChoBkc/7UfRu0kWymgHTRgBaAhHQJlT/yPMjeN1fZQoaAZHQGcyUa6z3RJoB03oA2gIR0CZVLfEGZ/kdX2UKGgGR0BjWa2BreqJaAdN6ANoCEdAmVaD4QBgeHV9lChoBkdAY8Gq2jO9nWgHTegDaAhHQJlYQrsjVx11fZQoaAZHQG5v052hZhdoB01XAmgIR0CZWFLMcIZ7dX2UKGgGR0BqwIH7gsK9aAdN0QJoCEdAmVhtJJ5E+nV9lChoBkdAYg4cXm/34GgHTegDaAhHQJlZGZOSGJx1fZQoaAZHQG/9LmITGo9oB01BA2gIR0CZZGPvrnkldX2UKGgGR0BDkwbMottiaAdNCQFoCEdAmWdQAU+LWXV9lChoBkdAYw4V5a/yoWgHTegDaAhHQJlnVL7Gecx1fZQoaAZHQHJtQY+B6KNoB01FAmgIR0CZbO4mkWRBdX2UKGgGR0Bvpj+cYqG2aAdNjANoCEdAmXa0FGG21HV9lChoBkdAbNDYDklu32gHTfoCaAhHQJl4OP+4smR1fZQoaAZHQHJ4I0ZWJadoB02/A2gIR0CZfTNXYDkmdX2UKGgGR0Burmwqy4WlaAdN3ANoCEdAmZm4rJ8v3HV9lChoBkdAYIsU/wAlwGgHTegDaAhHQJmfg+iaiK11fZQoaAZHQG/WSWRigChoB01EA2gIR0CZoLZLZi/gdX2UKGgGR0Bfw5zkp7TlaAdN6ANoCEdAmaQhF/hESnV9lChoBkdAYlWkHlfZ3GgHTegDaAhHQJmmko4MnZ11fZQoaAZHQGUxSjQAuI1oB03oA2gIR0CZp1UnogV5dX2UKGgGR0BhgDWmP5pKaAdN6ANoCEdAmakYcm0E5nV9lChoBkdActMTKkl/pmgHTdADaAhHQJmpstxuKoB1fZQoaAZHQGU0UA93bEhoB03oA2gIR0CZqt6PbO/tdX2UKGgGR0BtRGLFXJYDaAdN7QFoCEdAma7Ub5uZTnV9lChoBkdAbWGyKNyYHGgHTTADaAhHQJmztA2Q4jt1fZQoaAZHQGMnFXA/LTxoB03oA2gIR0CZuCfaHsTndX2UKGgGR0Bi8wiV0Lc9aAdN6ANoCEdAmbrc1n/T9nV9lChoBkdAYjtUcXFcZGgHTegDaAhHQJm63LNfPX11fZQoaAZHQHAoTWTX8O1oB01qAWgIR0CZu1MUAT7EdX2UKGgGR0BtqNkUbkwOaAdNvQFoCEdAmcJtTHbRGHV9lChoBkdAYaRJwKjSHGgHTegDaAhHQJnF4UypJf91fZQoaAZHQHFAe9i+cpdoB03YA2gIR0CZxkVu76HkdX2UKGgGR0BwOlbD/EOzaAdN3gJoCEdAmc9CY1He8HV9lChoBkdAbX8J0nw5N2gHTa8BaAhHQJnjT2Jzkp91fZQoaAZHQG51K15Sm65oB02uAmgIR0CZ5AKgZjx1dX2UKGgGR0BsQe8dxQzlaAdNiANoCEdAmeZJpeu3dHV9lChoBkdAZWMAoXsPa2gHTegDaAhHQJnn3y+YdAB1fZQoaAZHQG6RL6UJOWVoB02+AmgIR0CZ6PNwzch1dX2UKGgGR0BioneHi3ocaAdN6ANoCEdAmewitRvWH3V9lChoBkdAYNiwEhaC+WgHTegDaAhHQJnuVemelKt1fZQoaAZHQGONR+z+m3xoB03oA2gIR0CZ8uM5OrQxdX2UKGgGR0Bu0XxlQMx5aAdN1QJoCEdAmf5WH58BuHV9lChoBkdAcDtA7xNIsmgHTfEBaAhHQJn+alwcYIl1fZQoaAZHQGLzLxiG34NoB03oA2gIR0CaAAvfj0cwdX2UKGgGR0BxRjd43WFwaAdNkwNoCEdAmgMfa6BiC3V9lChoBkdAcTTVdX1an2gHTeoBaAhHQJoFLJOnEVF1fZQoaAZHQHFIxbB42TBoB030AmgIR0CaB2ABT4tZdX2UKGgGR0BiBfN5dGAkaAdN6ANoCEdAmgrGhysCDHV9lChoBkdAXVl1xKg7HWgHTegDaAhHQJoLWnNxEOR1fZQoaAZHQHF4xk3CKrJoB02dAmgIR0CaFKQSSNfgdX2UKGgGR0A6/eVs1sLwaAdNLgFoCEdAmhXSxu89OnV9lChoBkdAbntJnxri2mgHTRADaAhHQJoW1V81Gb11fZQoaAZHQGR4g3cYZVJoB03oA2gIR0CaF4YW+GoKdX2UKGgGR0Bhw0kQf6oEaAdN6ANoCEdAmiIJRjz7M3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |