Upload AxialCaduceusForMaskedLM
Browse files- config.json +4 -0
- configuration_caduceus.py +174 -0
- modeling_caduceus.py +1645 -0
- modeling_rcps.py +243 -0
config.json
CHANGED
@@ -4,6 +4,10 @@
|
|
4 |
"architectures": [
|
5 |
"AxialCaduceusForMaskedLM"
|
6 |
],
|
|
|
|
|
|
|
|
|
7 |
"bidirectional": "true,",
|
8 |
"bidirectional_strategy": "add",
|
9 |
"bidirectional_weight_tie": true,
|
|
|
4 |
"architectures": [
|
5 |
"AxialCaduceusForMaskedLM"
|
6 |
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_caduceus.AxialCaduceusConfig",
|
9 |
+
"AutoModelForMaskedLM": "modeling_caduceus.AxialCaduceusForMaskedLM"
|
10 |
+
},
|
11 |
"bidirectional": "true,",
|
12 |
"bidirectional_strategy": "add",
|
13 |
"bidirectional_weight_tie": true,
|
configuration_caduceus.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Caduceus config for Hugging Face.
|
2 |
+
|
3 |
+
"""
|
4 |
+
|
5 |
+
from typing import Optional, Union
|
6 |
+
|
7 |
+
from transformers import PretrainedConfig
|
8 |
+
|
9 |
+
|
10 |
+
class CaduceusConfig(PretrainedConfig):
|
11 |
+
"""Config that extends the original MambaConfig with params relevant to bi-directionality and RC equivariance."""
|
12 |
+
|
13 |
+
model_type = "caduceus"
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
# From original MambaConfig
|
18 |
+
d_model: int = 2560,
|
19 |
+
d_intermediate: int = 0,
|
20 |
+
use_mamba2: bool = False,
|
21 |
+
n_layer: int = 64,
|
22 |
+
vocab_size: int = 50277,
|
23 |
+
ssm_cfg: Optional[dict] = None,
|
24 |
+
rms_norm: bool = True,
|
25 |
+
residual_in_fp32: bool = True,
|
26 |
+
fused_add_norm: bool = True,
|
27 |
+
pad_vocab_size_multiple: int = 8,
|
28 |
+
# Not in original MambaConfig, but default arg in create_block in mamba_ssm repo; used in layer norm
|
29 |
+
norm_epsilon: float = 1e-5,
|
30 |
+
# Used in init_weights
|
31 |
+
initializer_cfg: Optional[dict] = None,
|
32 |
+
# Caduceus-specific params
|
33 |
+
bidirectional: bool = True,
|
34 |
+
bidirectional_strategy: Union[str, None] = "add",
|
35 |
+
bidirectional_weight_tie: bool = True,
|
36 |
+
rcps: bool = False,
|
37 |
+
complement_map: Optional[dict] = None, # used for RCPSEmbedding / RCPSLMHead
|
38 |
+
pos_embeddings: Optional[str] = None,
|
39 |
+
row_first: Optional[bool] = True,
|
40 |
+
**kwargs,
|
41 |
+
):
|
42 |
+
super().__init__(**kwargs)
|
43 |
+
self.d_model = d_model
|
44 |
+
self.d_intermediate = d_intermediate
|
45 |
+
self.use_mamba2 = use_mamba2
|
46 |
+
self.n_layer = n_layer
|
47 |
+
self.vocab_size = vocab_size
|
48 |
+
self.ssm_cfg = ssm_cfg
|
49 |
+
self.rms_norm = rms_norm
|
50 |
+
self.residual_in_fp32 = residual_in_fp32
|
51 |
+
self.fused_add_norm = fused_add_norm
|
52 |
+
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
53 |
+
self.norm_epsilon = norm_epsilon
|
54 |
+
self.initializer_cfg = initializer_cfg
|
55 |
+
self.bidirectional = bidirectional
|
56 |
+
self.bidirectional_strategy = bidirectional_strategy
|
57 |
+
self.bidirectional_weight_tie = bidirectional_weight_tie
|
58 |
+
self.rcps = rcps
|
59 |
+
self.complement_map = complement_map
|
60 |
+
self.pos_embeddings = pos_embeddings
|
61 |
+
self.row_first = row_first
|
62 |
+
|
63 |
+
class AxialCaduceusConfig(PretrainedConfig):
|
64 |
+
"""Config that extends the original MambaConfig with params relevant to bi-directionality and RC equivariance."""
|
65 |
+
|
66 |
+
model_type = "axial_caduceus"
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
# From original MambaConfig
|
71 |
+
d_model: int = 2560,
|
72 |
+
d_intermediate: int = 0,
|
73 |
+
use_mamba2: bool = False,
|
74 |
+
n_layer: int = 64,
|
75 |
+
vocab_size: int = 50277,
|
76 |
+
ssm_cfg: Optional[dict] = None,
|
77 |
+
rms_norm: bool = True,
|
78 |
+
residual_in_fp32: bool = True,
|
79 |
+
fused_add_norm: bool = True,
|
80 |
+
pad_vocab_size_multiple: int = 8,
|
81 |
+
# Not in original MambaConfig, but default arg in create_block in mamba_ssm repo; used in layer norm
|
82 |
+
norm_epsilon: float = 1e-5,
|
83 |
+
# Used in init_weights
|
84 |
+
initializer_cfg: Optional[dict] = None,
|
85 |
+
# Caduceus-specific params
|
86 |
+
bidirectional: bool = True,
|
87 |
+
bidirectional_strategy: Union[str, None] = "add",
|
88 |
+
bidirectional_weight_tie: bool = True,
|
89 |
+
rcps: bool = False,
|
90 |
+
complement_map: Optional[dict] = None, # used for RCPSEmbedding / RCPSLMHead
|
91 |
+
pos_embeddings: Optional[str] = None,
|
92 |
+
row_first: Optional[bool] = True,
|
93 |
+
**kwargs,
|
94 |
+
):
|
95 |
+
super().__init__(**kwargs)
|
96 |
+
self.d_model = d_model
|
97 |
+
self.d_intermediate = d_intermediate
|
98 |
+
self.use_mamba2 = use_mamba2
|
99 |
+
self.n_layer = n_layer
|
100 |
+
self.vocab_size = vocab_size
|
101 |
+
self.ssm_cfg = ssm_cfg
|
102 |
+
self.rms_norm = rms_norm
|
103 |
+
self.residual_in_fp32 = residual_in_fp32
|
104 |
+
self.fused_add_norm = fused_add_norm
|
105 |
+
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
106 |
+
self.norm_epsilon = norm_epsilon
|
107 |
+
self.initializer_cfg = initializer_cfg
|
108 |
+
self.bidirectional = bidirectional
|
109 |
+
self.bidirectional_strategy = bidirectional_strategy
|
110 |
+
self.bidirectional_weight_tie = bidirectional_weight_tie
|
111 |
+
self.rcps = rcps
|
112 |
+
self.complement_map = complement_map
|
113 |
+
self.pos_embeddings = pos_embeddings
|
114 |
+
self.row_first = row_first
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
class MixedCaduceusConfig(PretrainedConfig):
|
119 |
+
"""Config that extends the original CaduceusConfig with params relevant to alternating between attention and caducues"""
|
120 |
+
|
121 |
+
model_type = "mixed_caduceus"
|
122 |
+
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
# From original MambaConfig
|
126 |
+
d_model: int = 2560,
|
127 |
+
d_intermediate: int = 0,
|
128 |
+
use_mamba2: bool = False,
|
129 |
+
n_layer: int = 64,
|
130 |
+
vocab_size: int = 50277,
|
131 |
+
ssm_cfg: Optional[dict] = None,
|
132 |
+
rms_norm: bool = True,
|
133 |
+
residual_in_fp32: bool = True,
|
134 |
+
fused_add_norm: bool = True,
|
135 |
+
pad_vocab_size_multiple: int = 8,
|
136 |
+
# Not in original MambaConfig, but default arg in create_block in mamba_ssm repo; used in layer norm
|
137 |
+
norm_epsilon: float = 1e-5,
|
138 |
+
# Used in init_weights
|
139 |
+
initializer_cfg: Optional[dict] = None,
|
140 |
+
# Caduceus-specific params
|
141 |
+
bidirectional: bool = True,
|
142 |
+
bidirectional_strategy: Union[str, None] = "add",
|
143 |
+
bidirectional_weight_tie: bool = True,
|
144 |
+
rcps: bool = False,
|
145 |
+
complement_map: Optional[dict] = None, # used for RCPSEmbedding / RCPSLMHead
|
146 |
+
# attention specific params
|
147 |
+
attn_d_model: int = 128,
|
148 |
+
attn_n_heads: int = 16,
|
149 |
+
attn_attn_dropout: float = 0.1,
|
150 |
+
attn_block_dropout: float = 0.1,
|
151 |
+
**kwargs,
|
152 |
+
):
|
153 |
+
super().__init__(**kwargs)
|
154 |
+
self.d_model = d_model
|
155 |
+
self.d_intermediate = d_intermediate
|
156 |
+
self.use_mamba2 = use_mamba2
|
157 |
+
self.n_layer = n_layer
|
158 |
+
self.vocab_size = vocab_size
|
159 |
+
self.ssm_cfg = ssm_cfg
|
160 |
+
self.rms_norm = rms_norm
|
161 |
+
self.residual_in_fp32 = residual_in_fp32
|
162 |
+
self.fused_add_norm = fused_add_norm
|
163 |
+
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
164 |
+
self.norm_epsilon = norm_epsilon
|
165 |
+
self.initializer_cfg = initializer_cfg
|
166 |
+
self.bidirectional = bidirectional
|
167 |
+
self.bidirectional_strategy = bidirectional_strategy
|
168 |
+
self.bidirectional_weight_tie = bidirectional_weight_tie
|
169 |
+
self.rcps = rcps
|
170 |
+
self.complement_map = complement_map
|
171 |
+
self.attn_d_model = attn_d_model
|
172 |
+
self.attn_n_heads = attn_n_heads
|
173 |
+
self.attn_attn_dropout = attn_attn_dropout
|
174 |
+
self.attn_block_dropout = attn_block_dropout
|
modeling_caduceus.py
ADDED
@@ -0,0 +1,1645 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Caduceus model for Hugging Face.
|
2 |
+
|
3 |
+
"""
|
4 |
+
|
5 |
+
import math
|
6 |
+
from functools import partial
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
#from mamba_ssm.modules.mamba_simple import Mamba, Block
|
11 |
+
#from mamba_ssm.modules import Block
|
12 |
+
from mamba_ssm import Mamba, Mamba2
|
13 |
+
from mamba_ssm.modules.block import Block
|
14 |
+
from mamba_ssm.modules.mlp import GatedMLP
|
15 |
+
from torch import nn
|
16 |
+
from torch.nn import functional as F
|
17 |
+
from torch.nn.parallel import parallel_apply
|
18 |
+
from transformers import PreTrainedModel
|
19 |
+
from transformers.modeling_outputs import (
|
20 |
+
BaseModelOutputWithNoAttention,
|
21 |
+
MaskedLMOutput,
|
22 |
+
SequenceClassifierOutput,
|
23 |
+
)
|
24 |
+
|
25 |
+
try:
|
26 |
+
from mamba_ssm.ops.triton.layer_norm import RMSNorm, layer_norm_fn, rms_norm_fn
|
27 |
+
except ImportError:
|
28 |
+
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
|
29 |
+
|
30 |
+
from .configuration_caduceus import CaduceusConfig, MixedCaduceusConfig, AxialCaduceusConfig
|
31 |
+
from .modeling_rcps import RCPSAddNormWrapper, RCPSEmbedding, RCPSLMHead, RCPSMambaBlock
|
32 |
+
#from .esm_repo.esm.axial_attention import RowSelfAttention
|
33 |
+
#from .esm_repo.esm.modules import NormalizedResidualBlock
|
34 |
+
|
35 |
+
|
36 |
+
def sinusoidal_encoding(positions: torch.Tensor, d_model: int, device=None, dtype=None):
|
37 |
+
"""
|
38 |
+
from https://github.com/wzlxjtu/PositionalEncoding2D
|
39 |
+
:param d_model: dimension of the model (d model)
|
40 |
+
:param positions: Tensor of the input positions [B, L]
|
41 |
+
:return: length*d_model position matrix
|
42 |
+
"""
|
43 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
44 |
+
if d_model % 2 != 0:
|
45 |
+
raise ValueError("Cannot use sin/cos positional encoding with "
|
46 |
+
"odd dim (got dim={:d})".format(d_model))
|
47 |
+
B, L = positions.size()
|
48 |
+
pe = torch.zeros(B, L, d_model, **factory_kwargs) # [B, L, D}
|
49 |
+
|
50 |
+
# position = torch.arange(0, length).unsqueeze(1) #[L, 1]
|
51 |
+
position = positions.unsqueeze(-1) # [B,L,1]
|
52 |
+
div_term = torch.exp((torch.arange(0, d_model, 2, device=position.device, dtype=torch.float) *
|
53 |
+
-(math.log(10000.0) / d_model)))
|
54 |
+
pe[:, :, 0::2] = torch.sin(position.float() * div_term)
|
55 |
+
pe[:, :, 1::2] = torch.cos(position.float() * div_term)
|
56 |
+
pe = pe.to(**factory_kwargs)
|
57 |
+
return pe
|
58 |
+
|
59 |
+
def create_block(
|
60 |
+
d_model,
|
61 |
+
ssm_cfg=None,
|
62 |
+
norm_epsilon=1e-5,
|
63 |
+
rms_norm=False,
|
64 |
+
residual_in_fp32=False,
|
65 |
+
fused_add_norm=False,
|
66 |
+
layer_idx=None,
|
67 |
+
bidirectional=True,
|
68 |
+
bidirectional_strategy="add",
|
69 |
+
bidirectional_weight_tie=True,
|
70 |
+
rcps=False,
|
71 |
+
device=None,
|
72 |
+
dtype=None,
|
73 |
+
):
|
74 |
+
"""Create Caduceus block.
|
75 |
+
|
76 |
+
Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py
|
77 |
+
"""
|
78 |
+
if ssm_cfg is None:
|
79 |
+
ssm_cfg = {}
|
80 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
81 |
+
bidirectional_kwargs = {
|
82 |
+
"bidirectional": bidirectional,
|
83 |
+
"bidirectional_strategy": bidirectional_strategy,
|
84 |
+
"bidirectional_weight_tie": bidirectional_weight_tie,
|
85 |
+
}
|
86 |
+
mixer_cls = partial(
|
87 |
+
BiMambaWrapper,
|
88 |
+
layer_idx=layer_idx,
|
89 |
+
**ssm_cfg,
|
90 |
+
**bidirectional_kwargs,
|
91 |
+
**factory_kwargs,
|
92 |
+
)
|
93 |
+
norm_cls = partial(
|
94 |
+
nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
|
95 |
+
)
|
96 |
+
block_cls = RCPSMambaBlock if rcps else Block
|
97 |
+
d_intermediate=0
|
98 |
+
if d_intermediate == 0:
|
99 |
+
mlp_cls = nn.Identity
|
100 |
+
else:
|
101 |
+
mlp_cls = partial(
|
102 |
+
GatedMLP, hidden_features=d_intermediate, out_features=d_model, **factory_kwargs
|
103 |
+
)
|
104 |
+
block = block_cls(
|
105 |
+
dim=d_model,
|
106 |
+
mixer_cls=mixer_cls,
|
107 |
+
mlp_cls=mlp_cls,
|
108 |
+
norm_cls=norm_cls,
|
109 |
+
fused_add_norm=fused_add_norm,
|
110 |
+
residual_in_fp32=residual_in_fp32,
|
111 |
+
)
|
112 |
+
block.layer_idx = layer_idx
|
113 |
+
return block
|
114 |
+
|
115 |
+
|
116 |
+
def create_axial_block(
|
117 |
+
d_model,
|
118 |
+
d_intermediate,
|
119 |
+
use_mamba2,
|
120 |
+
axis,
|
121 |
+
ssm_cfg=None,
|
122 |
+
norm_epsilon=1e-5,
|
123 |
+
rms_norm=False,
|
124 |
+
residual_in_fp32=False,
|
125 |
+
fused_add_norm=False,
|
126 |
+
layer_idx=None,
|
127 |
+
bidirectional=True,
|
128 |
+
bidirectional_strategy="add",
|
129 |
+
bidirectional_weight_tie=True,
|
130 |
+
rcps=False,
|
131 |
+
device=None,
|
132 |
+
dtype=None,
|
133 |
+
):
|
134 |
+
"""Create an axial Caduceus block composed of two AxialCaduceus blocks, one for row and one for columns.
|
135 |
+
|
136 |
+
Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py
|
137 |
+
"""
|
138 |
+
if ssm_cfg is None:
|
139 |
+
ssm_cfg = {}
|
140 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
141 |
+
bidirectional_kwargs = {
|
142 |
+
"bidirectional": bidirectional,
|
143 |
+
"bidirectional_strategy": bidirectional_strategy,
|
144 |
+
"bidirectional_weight_tie": bidirectional_weight_tie,
|
145 |
+
}
|
146 |
+
#mixer_cls = partial(
|
147 |
+
# Mamba2 if ssm_layer == "Mamba2" else Mamba,
|
148 |
+
# layer_idx=layer_idx,
|
149 |
+
# **ssm_cfg,
|
150 |
+
# **factory_kwargs
|
151 |
+
#)
|
152 |
+
|
153 |
+
mixer_cls = partial(
|
154 |
+
AxialBiMambaWrapper,
|
155 |
+
use_mamba2=use_mamba2,
|
156 |
+
axis=axis,
|
157 |
+
layer_idx=layer_idx,
|
158 |
+
**ssm_cfg,
|
159 |
+
**bidirectional_kwargs,
|
160 |
+
**factory_kwargs,
|
161 |
+
)
|
162 |
+
norm_cls = partial(
|
163 |
+
nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
|
164 |
+
)
|
165 |
+
block_cls = RCPSMambaBlock if rcps else Block
|
166 |
+
if d_intermediate == 0:
|
167 |
+
mlp_cls = nn.Identity
|
168 |
+
else:
|
169 |
+
mlp_cls = partial(
|
170 |
+
GatedMLP, hidden_features=d_intermediate, out_features=d_model, **factory_kwargs
|
171 |
+
)
|
172 |
+
|
173 |
+
block = block_cls(
|
174 |
+
dim=d_model,
|
175 |
+
mixer_cls=mixer_cls,
|
176 |
+
mlp_cls=mlp_cls,
|
177 |
+
norm_cls=norm_cls,
|
178 |
+
fused_add_norm=fused_add_norm,
|
179 |
+
residual_in_fp32=residual_in_fp32,
|
180 |
+
)
|
181 |
+
block.layer_idx = layer_idx
|
182 |
+
return block
|
183 |
+
|
184 |
+
def create_attention_block(
|
185 |
+
d_model: int,
|
186 |
+
n_heads: int,
|
187 |
+
attention_dropout: float,
|
188 |
+
block_dropout: float,
|
189 |
+
layer_idx=None,
|
190 |
+
device=None,
|
191 |
+
dtype=None,
|
192 |
+
):
|
193 |
+
"""Create an RowAttention block from MSATransformer."""
|
194 |
+
raise NotImplementedError()
|
195 |
+
# factory_kwargs = {"device": device, "dtype": dtype}
|
196 |
+
# layer_cls = RowSelfAttention(
|
197 |
+
# embed_dim=d_model, num_heads=n_heads, dropout=attention_dropout
|
198 |
+
# )
|
199 |
+
# block = NormalizedResidualBlock(
|
200 |
+
# layer=layer_cls, embedding_dim=d_model, dropout=block_dropout
|
201 |
+
# ) # Wraps attention with residual connection, layer norm, and drop out. NOTE: No mixer in this block
|
202 |
+
# block = block.to(device)
|
203 |
+
# block.layer_idx = layer_idx
|
204 |
+
# return block
|
205 |
+
|
206 |
+
|
207 |
+
class BiMambaWrapper(nn.Module):
|
208 |
+
"""Thin wrapper around Mamba to support bi-directionality."""
|
209 |
+
|
210 |
+
def __init__(
|
211 |
+
self,
|
212 |
+
d_model: int,
|
213 |
+
bidirectional: bool = True,
|
214 |
+
bidirectional_strategy: Optional[str] = "add",
|
215 |
+
bidirectional_weight_tie: bool = True,
|
216 |
+
**mamba_kwargs,
|
217 |
+
):
|
218 |
+
super().__init__()
|
219 |
+
if bidirectional and bidirectional_strategy is None:
|
220 |
+
bidirectional_strategy = "add" # Default strategy: `add`
|
221 |
+
if bidirectional and bidirectional_strategy not in ["add", "ew_multiply"]:
|
222 |
+
raise NotImplementedError(
|
223 |
+
f"`{bidirectional_strategy}` strategy for bi-directionality is not implemented!"
|
224 |
+
)
|
225 |
+
self.bidirectional = bidirectional
|
226 |
+
self.bidirectional_strategy = bidirectional_strategy
|
227 |
+
self.mamba_fwd = Mamba(d_model=d_model, **mamba_kwargs)
|
228 |
+
if bidirectional:
|
229 |
+
self.mamba_rev = Mamba(d_model=d_model, **mamba_kwargs)
|
230 |
+
if (
|
231 |
+
bidirectional_weight_tie
|
232 |
+
): # Tie in and out projections (where most of param count lies)
|
233 |
+
self.mamba_rev.in_proj.weight = self.mamba_fwd.in_proj.weight
|
234 |
+
self.mamba_rev.in_proj.bias = self.mamba_fwd.in_proj.bias
|
235 |
+
self.mamba_rev.out_proj.weight = self.mamba_fwd.out_proj.weight
|
236 |
+
self.mamba_rev.out_proj.bias = self.mamba_fwd.out_proj.bias
|
237 |
+
else:
|
238 |
+
self.mamba_rev = None
|
239 |
+
|
240 |
+
def forward(self, hidden_states, inference_params=None):
|
241 |
+
"""Bidirectional-enabled forward pass
|
242 |
+
|
243 |
+
hidden_states: (B, L, D)
|
244 |
+
Returns: same shape as hidden_states
|
245 |
+
"""
|
246 |
+
out = self.mamba_fwd(hidden_states, inference_params=inference_params)
|
247 |
+
if self.bidirectional:
|
248 |
+
out_rev = self.mamba_rev(
|
249 |
+
hidden_states.flip(
|
250 |
+
dims=(1,)
|
251 |
+
), # Flip along the sequence length dimension
|
252 |
+
inference_params=inference_params,
|
253 |
+
).flip(dims=(1,)) # Flip back for combining with forward hidden states
|
254 |
+
if self.bidirectional_strategy == "add":
|
255 |
+
out = out + out_rev
|
256 |
+
elif self.bidirectional_strategy == "ew_multiply":
|
257 |
+
out = out * out_rev
|
258 |
+
else:
|
259 |
+
raise NotImplementedError(
|
260 |
+
f"`{self.bidirectional_strategy}` for bi-directionality not implemented!"
|
261 |
+
)
|
262 |
+
return out
|
263 |
+
|
264 |
+
|
265 |
+
class AxialBiMambaWrapper(nn.Module):
|
266 |
+
"""Thin wrapper around BiMamba to support running and aggregating over rows.
|
267 |
+
axis=1 for RowMamba, axis=2 for column Mamba
|
268 |
+
"""
|
269 |
+
|
270 |
+
def __init__(
|
271 |
+
self,
|
272 |
+
d_model: int,
|
273 |
+
use_mamba2: bool,
|
274 |
+
bidirectional: bool = True,
|
275 |
+
bidirectional_strategy: Optional[str] = "add",
|
276 |
+
bidirectional_weight_tie: bool = True,
|
277 |
+
axis: int = 1,
|
278 |
+
**mamba_kwargs,
|
279 |
+
):
|
280 |
+
super().__init__()
|
281 |
+
if bidirectional and bidirectional_strategy is None:
|
282 |
+
bidirectional_strategy = "add" # Default strategy: `add`
|
283 |
+
if bidirectional and bidirectional_strategy not in ["add", "ew_multiply"]:
|
284 |
+
raise NotImplementedError(
|
285 |
+
f"`{bidirectional_strategy}` strategy for bi-directionality is not implemented!"
|
286 |
+
)
|
287 |
+
self.bidirectional = bidirectional
|
288 |
+
self.bidirectional_strategy = bidirectional_strategy
|
289 |
+
self.mamba_fwd = Mamba2(d_model=d_model, **mamba_kwargs) if use_mamba2 else Mamba(d_model=d_model, **mamba_kwargs)
|
290 |
+
self.axis = axis
|
291 |
+
if bidirectional:
|
292 |
+
self.mamba_rev = Mamba2(d_model=d_model, **mamba_kwargs) if use_mamba2 else Mamba(d_model=d_model, **mamba_kwargs)
|
293 |
+
if (
|
294 |
+
bidirectional_weight_tie
|
295 |
+
): # Tie in and out projections (where most of param count lies)
|
296 |
+
self.mamba_rev.in_proj.weight = self.mamba_fwd.in_proj.weight
|
297 |
+
self.mamba_rev.in_proj.bias = self.mamba_fwd.in_proj.bias
|
298 |
+
self.mamba_rev.out_proj.weight = self.mamba_fwd.out_proj.weight
|
299 |
+
self.mamba_rev.out_proj.bias = self.mamba_fwd.out_proj.bias
|
300 |
+
else:
|
301 |
+
self.mamba_rev = None
|
302 |
+
|
303 |
+
def forward(self, hidden_states, inference_params=None):
|
304 |
+
"""Bidirectional-enabled forward pass
|
305 |
+
|
306 |
+
hidden_states: (B, R, C, D)
|
307 |
+
Returns: same shape as hidden_states
|
308 |
+
"""
|
309 |
+
def apply_mamba(x):
|
310 |
+
out = self.mamba_fwd(x, inference_params=inference_params)
|
311 |
+
if self.bidirectional:
|
312 |
+
out_rev = self.mamba_rev(
|
313 |
+
x.flip(
|
314 |
+
dims=(1,)
|
315 |
+
), # Flip along the sequence length dimension
|
316 |
+
inference_params=inference_params,
|
317 |
+
).flip(dims=(1,)) # Flip back for combining with forward hidden states
|
318 |
+
if self.bidirectional_strategy == "add":
|
319 |
+
out = out + out_rev
|
320 |
+
elif self.bidirectional_strategy == "ew_multiply":
|
321 |
+
out = out * out_rev
|
322 |
+
else:
|
323 |
+
raise NotImplementedError(
|
324 |
+
f"`{self.bidirectional_strategy}` for bi-directionality not implemented!"
|
325 |
+
)
|
326 |
+
return out
|
327 |
+
batch, rows, columns, hidden_dim = hidden_states.size()
|
328 |
+
if self.axis == 1: # row mamba
|
329 |
+
hidden_states = hidden_states.permute(1, 0, 2, 3)
|
330 |
+
axis_len = rows
|
331 |
+
elif self.axis == 2:
|
332 |
+
hidden_states = hidden_states.permute(2, 0, 1, 3)
|
333 |
+
axis_len = columns
|
334 |
+
outs = []
|
335 |
+
## parllel
|
336 |
+
#outs = parallel_apply([apply_mamba for _ in range(axis_len)], hidden_states.unbind(0))
|
337 |
+
|
338 |
+
## reshape
|
339 |
+
outs = apply_mamba(hidden_states.reshape(axis_len * batch, -1, hidden_dim))
|
340 |
+
out = outs.reshape(axis_len, batch, -1, hidden_dim)
|
341 |
+
|
342 |
+
|
343 |
+
### forlop
|
344 |
+
#for axis_idx in range(axis_len):
|
345 |
+
#tmp_hidden_states = hidden_states[axis_idx, ...]
|
346 |
+
#out = apply_mamba(tmp_hidden_states)
|
347 |
+
#outs.append(out)
|
348 |
+
#out = torch.stack(outs, dim=0)
|
349 |
+
if self.axis == 1: # row mamba
|
350 |
+
out = out.permute(1, 0, 2, 3)
|
351 |
+
elif self.axis == 2: # [C, B, R, D]
|
352 |
+
out = out.permute(1, 2, 0, 3)
|
353 |
+
return out
|
354 |
+
|
355 |
+
|
356 |
+
class CaduceusEmbeddings(nn.Module):
|
357 |
+
def __init__(
|
358 |
+
self,
|
359 |
+
config: CaduceusConfig,
|
360 |
+
device=None,
|
361 |
+
dtype=None,
|
362 |
+
):
|
363 |
+
super().__init__()
|
364 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
365 |
+
if config.rcps:
|
366 |
+
self.word_embeddings = RCPSEmbedding(
|
367 |
+
config.vocab_size,
|
368 |
+
config.d_model,
|
369 |
+
config.complement_map,
|
370 |
+
**factory_kwargs,
|
371 |
+
)
|
372 |
+
else:
|
373 |
+
self.word_embeddings = nn.Embedding(
|
374 |
+
config.vocab_size, config.d_model, **factory_kwargs
|
375 |
+
)
|
376 |
+
|
377 |
+
def forward(self, input_ids):
|
378 |
+
"""
|
379 |
+
input_ids: (batch, seqlen)
|
380 |
+
"""
|
381 |
+
return self.word_embeddings(input_ids)
|
382 |
+
|
383 |
+
|
384 |
+
class CaduceusMixerModel(nn.Module):
|
385 |
+
def __init__(
|
386 |
+
self,
|
387 |
+
config: CaduceusConfig,
|
388 |
+
device=None,
|
389 |
+
dtype=None,
|
390 |
+
) -> None:
|
391 |
+
super().__init__()
|
392 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
393 |
+
|
394 |
+
self.fused_add_norm = config.fused_add_norm
|
395 |
+
self.rcps = config.rcps
|
396 |
+
self.residual_in_fp32 = config.residual_in_fp32
|
397 |
+
|
398 |
+
self.embeddings = CaduceusEmbeddings(config, **factory_kwargs)
|
399 |
+
|
400 |
+
# Mamba changes the order of residual and layer norm:
|
401 |
+
# Instead of LN -> Attn / MLP -> Add, we do:
|
402 |
+
# Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and
|
403 |
+
# the main branch (output of MLP / Mixer). The model definition is unchanged.
|
404 |
+
# This is for performance reason: we can fuse add + layer_norm.
|
405 |
+
if config.fused_add_norm:
|
406 |
+
if layer_norm_fn is None or rms_norm_fn is None:
|
407 |
+
raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels")
|
408 |
+
|
409 |
+
self.layers = nn.ModuleList(
|
410 |
+
[
|
411 |
+
create_block(
|
412 |
+
config.d_model,
|
413 |
+
ssm_cfg=config.ssm_cfg,
|
414 |
+
norm_epsilon=config.norm_epsilon,
|
415 |
+
rms_norm=config.rms_norm,
|
416 |
+
residual_in_fp32=config.residual_in_fp32,
|
417 |
+
fused_add_norm=config.fused_add_norm,
|
418 |
+
layer_idx=i,
|
419 |
+
bidirectional=config.bidirectional,
|
420 |
+
bidirectional_strategy=config.bidirectional_strategy,
|
421 |
+
bidirectional_weight_tie=config.bidirectional_weight_tie,
|
422 |
+
rcps=config.rcps,
|
423 |
+
**factory_kwargs,
|
424 |
+
)
|
425 |
+
for i in range(config.n_layer)
|
426 |
+
]
|
427 |
+
)
|
428 |
+
|
429 |
+
norm_f = (nn.LayerNorm if not config.rms_norm else RMSNorm)(
|
430 |
+
config.d_model, eps=config.norm_epsilon, **factory_kwargs
|
431 |
+
)
|
432 |
+
self.norm_f = (
|
433 |
+
norm_f
|
434 |
+
if (config.fused_add_norm or not config.rcps)
|
435 |
+
else RCPSAddNormWrapper(norm_f)
|
436 |
+
)
|
437 |
+
|
438 |
+
def forward(self, input_ids, inputs_embeds=None, output_hidden_states=False):
|
439 |
+
"""Mixer forward."""
|
440 |
+
all_hidden_states = []
|
441 |
+
if inputs_embeds is not None:
|
442 |
+
hidden_states = inputs_embeds
|
443 |
+
else:
|
444 |
+
hidden_states = self.embeddings(input_ids)
|
445 |
+
|
446 |
+
residual = None
|
447 |
+
for layer in self.layers:
|
448 |
+
if output_hidden_states:
|
449 |
+
all_hidden_states.append(hidden_states)
|
450 |
+
# TODO: Add support for gradient checkpointing
|
451 |
+
hidden_states, residual = layer(
|
452 |
+
hidden_states, residual, inference_params=None
|
453 |
+
)
|
454 |
+
|
455 |
+
if not self.fused_add_norm:
|
456 |
+
if self.rcps:
|
457 |
+
# Set prenorm=False here since we don't need the residual
|
458 |
+
hidden_states = self.norm_f(
|
459 |
+
hidden_states, residual=residual, prenorm=False
|
460 |
+
)
|
461 |
+
else:
|
462 |
+
residual = (
|
463 |
+
(hidden_states + residual)
|
464 |
+
if residual is not None
|
465 |
+
else hidden_states
|
466 |
+
)
|
467 |
+
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
|
468 |
+
else:
|
469 |
+
fused_add_norm_fn = (
|
470 |
+
rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
|
471 |
+
)
|
472 |
+
if self.rcps:
|
473 |
+
# Set prenorm=False here since we don't need the residual
|
474 |
+
hidden_states_fwd = fused_add_norm_fn(
|
475 |
+
hidden_states[..., : hidden_states.shape[-1] // 2],
|
476 |
+
self.norm_f.weight,
|
477 |
+
self.norm_f.bias,
|
478 |
+
eps=self.norm_f.eps,
|
479 |
+
residual=residual[..., : hidden_states.shape[-1] // 2],
|
480 |
+
prenorm=False,
|
481 |
+
residual_in_fp32=self.residual_in_fp32,
|
482 |
+
)
|
483 |
+
hidden_states_rc = fused_add_norm_fn(
|
484 |
+
hidden_states[..., hidden_states.shape[-1] // 2 :].flip(
|
485 |
+
dims=[-2, -1]
|
486 |
+
),
|
487 |
+
self.norm_f.weight,
|
488 |
+
self.norm_f.bias,
|
489 |
+
eps=self.norm_f.eps,
|
490 |
+
residual=residual[..., hidden_states.shape[-1] // 2 :].flip(
|
491 |
+
dims=[-2, -1]
|
492 |
+
),
|
493 |
+
prenorm=False,
|
494 |
+
residual_in_fp32=self.residual_in_fp32,
|
495 |
+
)
|
496 |
+
hidden_states = torch.cat(
|
497 |
+
[hidden_states_fwd, hidden_states_rc.flip(dims=[-2, -1])], dim=-1
|
498 |
+
)
|
499 |
+
else:
|
500 |
+
# Set prenorm=False here since we don't need the residual
|
501 |
+
hidden_states = fused_add_norm_fn(
|
502 |
+
hidden_states,
|
503 |
+
self.norm_f.weight,
|
504 |
+
self.norm_f.bias,
|
505 |
+
eps=self.norm_f.eps,
|
506 |
+
residual=residual,
|
507 |
+
prenorm=False,
|
508 |
+
residual_in_fp32=self.residual_in_fp32,
|
509 |
+
)
|
510 |
+
if output_hidden_states:
|
511 |
+
all_hidden_states.append(hidden_states)
|
512 |
+
return hidden_states, all_hidden_states
|
513 |
+
|
514 |
+
|
515 |
+
class AxialCaduceusMixerModel(nn.Module):
|
516 |
+
def __init__(
|
517 |
+
self,
|
518 |
+
config: CaduceusConfig,
|
519 |
+
device=None,
|
520 |
+
dtype=None,
|
521 |
+
) -> None:
|
522 |
+
super().__init__()
|
523 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
524 |
+
|
525 |
+
self.fused_add_norm = config.fused_add_norm
|
526 |
+
self.rcps = config.rcps
|
527 |
+
self.residual_in_fp32 = config.residual_in_fp32
|
528 |
+
|
529 |
+
self.embeddings = CaduceusEmbeddings(config, **factory_kwargs)
|
530 |
+
|
531 |
+
self.pos_embeddings = None
|
532 |
+
self.add_pos = False
|
533 |
+
if config.pos_embeddings == 'Linear':
|
534 |
+
self.add_pos = True
|
535 |
+
self.pos_embeddings = nn.Linear(in_features=1, out_features=config.d_model, **factory_kwargs)
|
536 |
+
|
537 |
+
elif config.pos_embeddings == 'Sinusoidal':
|
538 |
+
self.pos_embeddings = partial(sinusoidal_encoding, d_model=config.d_model, **factory_kwargs)
|
539 |
+
|
540 |
+
# Mamba changes the order of residual and layer norm:
|
541 |
+
# Instead of LN -> Attn / MLP -> Add, we do:
|
542 |
+
# Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and
|
543 |
+
# the main branch (output of MLP / Mixer). The model definition is unchanged.
|
544 |
+
# This is for performance reason: we can fuse add + layer_norm.
|
545 |
+
if config.fused_add_norm:
|
546 |
+
if layer_norm_fn is None or rms_norm_fn is None:
|
547 |
+
raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels")
|
548 |
+
row_first = 0 #assume col ssm first
|
549 |
+
if config.row_first: #row first
|
550 |
+
row_first = 1
|
551 |
+
|
552 |
+
self.layers = nn.ModuleList(
|
553 |
+
[
|
554 |
+
create_axial_block(
|
555 |
+
d_model=config.d_model,
|
556 |
+
d_intermediate=config.d_intermediate,
|
557 |
+
use_mamba2=config.use_mamba2,
|
558 |
+
axis=((i + row_first) % 2) + 1, # (i%2) + 1 for columns first
|
559 |
+
ssm_cfg=config.ssm_cfg,
|
560 |
+
norm_epsilon=config.norm_epsilon,
|
561 |
+
rms_norm=config.rms_norm,
|
562 |
+
residual_in_fp32=config.residual_in_fp32,
|
563 |
+
fused_add_norm=config.fused_add_norm,
|
564 |
+
layer_idx=i,
|
565 |
+
bidirectional=config.bidirectional,
|
566 |
+
bidirectional_strategy=config.bidirectional_strategy,
|
567 |
+
bidirectional_weight_tie=config.bidirectional_weight_tie,
|
568 |
+
rcps=config.rcps,
|
569 |
+
**factory_kwargs,
|
570 |
+
)
|
571 |
+
for i in range(config.n_layer * 2)
|
572 |
+
]
|
573 |
+
)
|
574 |
+
|
575 |
+
norm_f = (nn.LayerNorm if not config.rms_norm else RMSNorm)(
|
576 |
+
config.d_model, eps=config.norm_epsilon, **factory_kwargs
|
577 |
+
)
|
578 |
+
self.norm_f = (
|
579 |
+
norm_f
|
580 |
+
if (config.fused_add_norm or not config.rcps)
|
581 |
+
else RCPSAddNormWrapper(norm_f)
|
582 |
+
)
|
583 |
+
|
584 |
+
def forward(self, input_ids, inputs_embeds=None, input_positions=None, output_hidden_states=False):
|
585 |
+
"""Mixer forward."""
|
586 |
+
all_hidden_states = []
|
587 |
+
if inputs_embeds is not None:
|
588 |
+
hidden_states = inputs_embeds
|
589 |
+
else:
|
590 |
+
hidden_states = self.embeddings(input_ids)
|
591 |
+
if self.pos_embeddings is not None:
|
592 |
+
if self.add_pos:
|
593 |
+
pos_embedding = self.pos_embeddings(input_positions[...,None]) #[B, L, D]
|
594 |
+
hidden_states = torch.cat([pos_embedding[:,None, ...], hidden_states], dim=1)
|
595 |
+
else:
|
596 |
+
p_B, p_L = input_positions.size()
|
597 |
+
B, R, L, D = hidden_states.size()
|
598 |
+
assert p_B == B
|
599 |
+
assert p_L == L
|
600 |
+
pos_embedding = self.pos_embeddings(positions=input_positions)[:,None, ...] # [B, 1, L, D]
|
601 |
+
hidden_states += pos_embedding
|
602 |
+
|
603 |
+
|
604 |
+
|
605 |
+
residual = None
|
606 |
+
for layer in self.layers:
|
607 |
+
if output_hidden_states:
|
608 |
+
all_hidden_states.append(hidden_states)
|
609 |
+
# TODO: Add support for gradient checkpointing
|
610 |
+
hidden_states, residual = layer(
|
611 |
+
hidden_states, residual, inference_params=None
|
612 |
+
)
|
613 |
+
|
614 |
+
if not self.fused_add_norm:
|
615 |
+
if self.rcps:
|
616 |
+
# Set prenorm=False here since we don't need the residual
|
617 |
+
hidden_states = self.norm_f(
|
618 |
+
hidden_states, residual=residual, prenorm=False
|
619 |
+
)
|
620 |
+
else:
|
621 |
+
residual = (
|
622 |
+
(hidden_states + residual)
|
623 |
+
if residual is not None
|
624 |
+
else hidden_states
|
625 |
+
)
|
626 |
+
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
|
627 |
+
else:
|
628 |
+
fused_add_norm_fn = (
|
629 |
+
rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
|
630 |
+
)
|
631 |
+
if self.rcps:
|
632 |
+
# Set prenorm=False here since we don't need the residual
|
633 |
+
hidden_states_fwd = fused_add_norm_fn(
|
634 |
+
hidden_states[..., : hidden_states.shape[-1] // 2],
|
635 |
+
self.norm_f.weight,
|
636 |
+
self.norm_f.bias,
|
637 |
+
eps=self.norm_f.eps,
|
638 |
+
residual=residual[..., : hidden_states.shape[-1] // 2],
|
639 |
+
prenorm=False,
|
640 |
+
residual_in_fp32=self.residual_in_fp32,
|
641 |
+
)
|
642 |
+
hidden_states_rc = fused_add_norm_fn(
|
643 |
+
hidden_states[..., hidden_states.shape[-1] // 2 :].flip(
|
644 |
+
dims=[-2, -1]
|
645 |
+
),
|
646 |
+
self.norm_f.weight,
|
647 |
+
self.norm_f.bias,
|
648 |
+
eps=self.norm_f.eps,
|
649 |
+
residual=residual[..., hidden_states.shape[-1] // 2 :].flip(
|
650 |
+
dims=[-2, -1]
|
651 |
+
),
|
652 |
+
prenorm=False,
|
653 |
+
residual_in_fp32=self.residual_in_fp32,
|
654 |
+
)
|
655 |
+
hidden_states = torch.cat(
|
656 |
+
[hidden_states_fwd, hidden_states_rc.flip(dims=[-2, -1])], dim=-1
|
657 |
+
)
|
658 |
+
else:
|
659 |
+
# Set prenorm=False here since we don't need the residual
|
660 |
+
hidden_states = fused_add_norm_fn(
|
661 |
+
hidden_states,
|
662 |
+
self.norm_f.weight,
|
663 |
+
self.norm_f.bias,
|
664 |
+
eps=self.norm_f.eps,
|
665 |
+
residual=residual,
|
666 |
+
prenorm=False,
|
667 |
+
residual_in_fp32=self.residual_in_fp32,
|
668 |
+
)
|
669 |
+
if output_hidden_states:
|
670 |
+
all_hidden_states.append(hidden_states)
|
671 |
+
if self.pos_embeddings is not None and self.add_pos:
|
672 |
+
#removce the positional embeddings form the returned MSA
|
673 |
+
hidden_states = hidden_states[:,1:,...]
|
674 |
+
return hidden_states, all_hidden_states
|
675 |
+
|
676 |
+
|
677 |
+
class MixedAxialCaduceusMixerModel(nn.Module):
|
678 |
+
"""
|
679 |
+
A model that swtiches between Caducues and Standard attention mechanisms
|
680 |
+
"""
|
681 |
+
|
682 |
+
def __init__(
|
683 |
+
self,
|
684 |
+
config: MixedCaduceusConfig,
|
685 |
+
device=None,
|
686 |
+
dtype=None,
|
687 |
+
) -> None:
|
688 |
+
super().__init__()
|
689 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
690 |
+
|
691 |
+
self.fused_add_norm = config.fused_add_norm
|
692 |
+
self.rcps = config.rcps
|
693 |
+
self.residual_in_fp32 = config.residual_in_fp32
|
694 |
+
|
695 |
+
self.embeddings = CaduceusEmbeddings(config, **factory_kwargs)
|
696 |
+
|
697 |
+
# Mamba changes the order of residual and layer norm:
|
698 |
+
# Instead of LN -> Attn / MLP -> Add, we do:
|
699 |
+
# Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and
|
700 |
+
# the main branch (output of MLP / Mixer). The model definition is unchanged.
|
701 |
+
# This is for performance reason: we can fuse add + layer_norm.
|
702 |
+
if config.fused_add_norm:
|
703 |
+
if layer_norm_fn is None or rms_norm_fn is None:
|
704 |
+
raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels")
|
705 |
+
|
706 |
+
layers = []
|
707 |
+
for i in range(config.n_layer * 2):
|
708 |
+
axis = ((i + 1) % 2) + 1 # 1 for rows, 2 for columns, columns first.
|
709 |
+
block = None
|
710 |
+
if axis == 1:
|
711 |
+
block = create_attention_block(
|
712 |
+
d_model=config.attn_d_model,
|
713 |
+
n_heads=config.attn_n_heads,
|
714 |
+
attention_dropout=config.attn_attn_dropout,
|
715 |
+
block_dropout=config.attn_block_dropout,
|
716 |
+
layer_idx=i,
|
717 |
+
**factory_kwargs,
|
718 |
+
)
|
719 |
+
elif axis == 2:
|
720 |
+
block = create_axial_block(
|
721 |
+
d_model=config.d_model,
|
722 |
+
d_intermediate=config.d_intermediate,
|
723 |
+
use_mamba2=config.use_mamba2,
|
724 |
+
axis=axis, # always columns
|
725 |
+
ssm_cfg=config.ssm_cfg,
|
726 |
+
norm_epsilon=config.norm_epsilon,
|
727 |
+
rms_norm=config.rms_norm,
|
728 |
+
residual_in_fp32=config.residual_in_fp32,
|
729 |
+
fused_add_norm=config.fused_add_norm,
|
730 |
+
layer_idx=i,
|
731 |
+
bidirectional=config.bidirectional,
|
732 |
+
bidirectional_strategy=config.bidirectional_strategy,
|
733 |
+
bidirectional_weight_tie=config.bidirectional_weight_tie,
|
734 |
+
rcps=config.rcps,
|
735 |
+
**factory_kwargs,
|
736 |
+
)
|
737 |
+
layers.append(block)
|
738 |
+
|
739 |
+
self.layers = nn.ModuleList(layers)
|
740 |
+
|
741 |
+
norm_f = (nn.LayerNorm if not config.rms_norm else RMSNorm)(
|
742 |
+
config.d_model, eps=config.norm_epsilon, **factory_kwargs
|
743 |
+
)
|
744 |
+
self.norm_f = (
|
745 |
+
norm_f
|
746 |
+
if (config.fused_add_norm or not config.rcps)
|
747 |
+
else RCPSAddNormWrapper(norm_f)
|
748 |
+
)
|
749 |
+
|
750 |
+
def forward(self, input_ids, inputs_embeds=None, output_hidden_states=False):
|
751 |
+
"""Mixer forward."""
|
752 |
+
all_hidden_states = []
|
753 |
+
if inputs_embeds is not None:
|
754 |
+
hidden_states = inputs_embeds
|
755 |
+
else:
|
756 |
+
hidden_states = self.embeddings(input_ids)
|
757 |
+
|
758 |
+
residual = None
|
759 |
+
for layer in self.layers:
|
760 |
+
if output_hidden_states:
|
761 |
+
all_hidden_states.append(hidden_states)
|
762 |
+
# TODO: Add support for gradient checkpointing
|
763 |
+
hidden_states, residual = layer(
|
764 |
+
hidden_states, residual, inference_params=None
|
765 |
+
)
|
766 |
+
|
767 |
+
if not self.fused_add_norm:
|
768 |
+
if self.rcps:
|
769 |
+
# Set prenorm=False here since we don't need the residual
|
770 |
+
hidden_states = self.norm_f(
|
771 |
+
hidden_states, residual=residual, prenorm=False
|
772 |
+
)
|
773 |
+
else:
|
774 |
+
residual = (
|
775 |
+
(hidden_states + residual)
|
776 |
+
if residual is not None
|
777 |
+
else hidden_states
|
778 |
+
)
|
779 |
+
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
|
780 |
+
else:
|
781 |
+
fused_add_norm_fn = (
|
782 |
+
rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
|
783 |
+
)
|
784 |
+
if self.rcps:
|
785 |
+
# Set prenorm=False here since we don't need the residual
|
786 |
+
hidden_states_fwd = fused_add_norm_fn(
|
787 |
+
hidden_states[..., : hidden_states.shape[-1] // 2],
|
788 |
+
self.norm_f.weight,
|
789 |
+
self.norm_f.bias,
|
790 |
+
eps=self.norm_f.eps,
|
791 |
+
residual=residual[..., : hidden_states.shape[-1] // 2],
|
792 |
+
prenorm=False,
|
793 |
+
residual_in_fp32=self.residual_in_fp32,
|
794 |
+
)
|
795 |
+
hidden_states_rc = fused_add_norm_fn(
|
796 |
+
hidden_states[..., hidden_states.shape[-1] // 2 :].flip(
|
797 |
+
dims=[-2, -1]
|
798 |
+
),
|
799 |
+
self.norm_f.weight,
|
800 |
+
self.norm_f.bias,
|
801 |
+
eps=self.norm_f.eps,
|
802 |
+
residual=residual[..., hidden_states.shape[-1] // 2 :].flip(
|
803 |
+
dims=[-2, -1]
|
804 |
+
),
|
805 |
+
prenorm=False,
|
806 |
+
residual_in_fp32=self.residual_in_fp32,
|
807 |
+
)
|
808 |
+
hidden_states = torch.cat(
|
809 |
+
[hidden_states_fwd, hidden_states_rc.flip(dims=[-2, -1])], dim=-1
|
810 |
+
)
|
811 |
+
else:
|
812 |
+
# Set prenorm=False here since we don't need the residual
|
813 |
+
hidden_states = fused_add_norm_fn(
|
814 |
+
hidden_states,
|
815 |
+
self.norm_f.weight,
|
816 |
+
self.norm_f.bias,
|
817 |
+
eps=self.norm_f.eps,
|
818 |
+
residual=residual,
|
819 |
+
prenorm=False,
|
820 |
+
residual_in_fp32=self.residual_in_fp32,
|
821 |
+
)
|
822 |
+
if output_hidden_states:
|
823 |
+
all_hidden_states.append(hidden_states)
|
824 |
+
return hidden_states, all_hidden_states
|
825 |
+
|
826 |
+
|
827 |
+
def cross_entropy(logits, y, ignore_index=-100):
|
828 |
+
"""Cross entropy loss."""
|
829 |
+
logits = logits.view(-1, logits.shape[-1])
|
830 |
+
y = y.view(-1)
|
831 |
+
return F.cross_entropy(logits, y, ignore_index=ignore_index)
|
832 |
+
|
833 |
+
|
834 |
+
def weighted_cross_entropy(logits, y, loss_weights, ignore_index=-100):
|
835 |
+
"""Weighted cross entropy loss (discounts certain tokens, e.g., repeated base pairs in genome)."""
|
836 |
+
logits = logits.view(-1, logits.shape[-1])
|
837 |
+
y = y.view(-1)
|
838 |
+
ce = F.cross_entropy(logits, y, ignore_index=ignore_index, reduction="none")
|
839 |
+
loss_weights = loss_weights.view(-1)
|
840 |
+
loss_weights[y == ignore_index] = 0.0
|
841 |
+
# TODO: Follows GPN implementation, but should we remove weight normalization?
|
842 |
+
return (ce * (loss_weights / loss_weights.sum())).sum()
|
843 |
+
|
844 |
+
|
845 |
+
class CaduceusPreTrainedModel(PreTrainedModel):
|
846 |
+
"""PreTrainedModel wrapper for Caduceus backbone."""
|
847 |
+
|
848 |
+
config_class = CaduceusConfig
|
849 |
+
base_model_prefix = "caduceus"
|
850 |
+
supports_gradient_checkpointing = False
|
851 |
+
_no_split_modules = ["BiMambaWrapper"]
|
852 |
+
|
853 |
+
def _init_weights(
|
854 |
+
self,
|
855 |
+
module,
|
856 |
+
initializer_range=0.02, # Now only used for embedding layer.
|
857 |
+
**kwargs,
|
858 |
+
):
|
859 |
+
"""Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py"""
|
860 |
+
|
861 |
+
n_layer = self.config.n_layer
|
862 |
+
initialized_cfg = (
|
863 |
+
self.config.initializer_cfg
|
864 |
+
if self.config.initializer_cfg is not None
|
865 |
+
else {}
|
866 |
+
)
|
867 |
+
rescale_prenorm_residual = initialized_cfg.get("rescale_prenorm_residual", True)
|
868 |
+
initializer_range = initialized_cfg.get("initializer_range", initializer_range)
|
869 |
+
n_residuals_per_layer = initialized_cfg.get("n_residuals_per_layer", 1)
|
870 |
+
|
871 |
+
if isinstance(module, nn.Linear):
|
872 |
+
if module.bias is not None:
|
873 |
+
if not getattr(module.bias, "_no_reinit", False):
|
874 |
+
nn.init.zeros_(module.bias)
|
875 |
+
elif isinstance(module, nn.Embedding):
|
876 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
877 |
+
|
878 |
+
if rescale_prenorm_residual:
|
879 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
880 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth.
|
881 |
+
# > Scale the weights of residual layers at initialization by a factor of 1/√N where N is the # of
|
882 |
+
# residual layers.
|
883 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
884 |
+
#
|
885 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
886 |
+
for name, p in module.named_parameters():
|
887 |
+
if name in ["out_proj.weight", "fc2.weight"]:
|
888 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
889 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
890 |
+
# We need to reinit p since this code could be called multiple times
|
891 |
+
# Having just p *= scale would repeatedly scale it down
|
892 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
893 |
+
with torch.no_grad():
|
894 |
+
p /= math.sqrt(n_residuals_per_layer * n_layer)
|
895 |
+
|
896 |
+
class AxialCaduceusPreTrainedModel(PreTrainedModel):
|
897 |
+
"""PreTrainedModel wrapper for Caduceus backbone."""
|
898 |
+
|
899 |
+
config_class = AxialCaduceusConfig
|
900 |
+
base_model_prefix = "axial_caduceus"
|
901 |
+
supports_gradient_checkpointing = False
|
902 |
+
_no_split_modules = ["BiMambaWrapper"]
|
903 |
+
|
904 |
+
def _init_weights(
|
905 |
+
self,
|
906 |
+
module,
|
907 |
+
initializer_range=0.02, # Now only used for embedding layer.
|
908 |
+
**kwargs,
|
909 |
+
):
|
910 |
+
"""Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py"""
|
911 |
+
|
912 |
+
n_layer = self.config.n_layer
|
913 |
+
initialized_cfg = (
|
914 |
+
self.config.initializer_cfg
|
915 |
+
if self.config.initializer_cfg is not None
|
916 |
+
else {}
|
917 |
+
)
|
918 |
+
rescale_prenorm_residual = initialized_cfg.get("rescale_prenorm_residual", True)
|
919 |
+
initializer_range = initialized_cfg.get("initializer_range", initializer_range)
|
920 |
+
n_residuals_per_layer = initialized_cfg.get("n_residuals_per_layer", 1)
|
921 |
+
|
922 |
+
if isinstance(module, nn.Linear):
|
923 |
+
if module.bias is not None:
|
924 |
+
if not getattr(module.bias, "_no_reinit", False):
|
925 |
+
nn.init.zeros_(module.bias)
|
926 |
+
elif isinstance(module, nn.Embedding):
|
927 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
928 |
+
|
929 |
+
if rescale_prenorm_residual:
|
930 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
931 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth.
|
932 |
+
# > Scale the weights of residual layers at initialization by a factor of 1/√N where N is the # of
|
933 |
+
# residual layers.
|
934 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
935 |
+
#
|
936 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
937 |
+
for name, p in module.named_parameters():
|
938 |
+
if name in ["out_proj.weight", "fc2.weight"]:
|
939 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
940 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
941 |
+
# We need to reinit p since this code could be called multiple times
|
942 |
+
# Having just p *= scale would repeatedly scale it down
|
943 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
944 |
+
with torch.no_grad():
|
945 |
+
p /= math.sqrt(n_residuals_per_layer * n_layer)
|
946 |
+
|
947 |
+
|
948 |
+
|
949 |
+
class Caduceus(CaduceusPreTrainedModel):
|
950 |
+
"""Caduceus model that can be instantiated using HF patterns."""
|
951 |
+
|
952 |
+
def __init__(self, config: CaduceusConfig, device=None, dtype=None, **kwargs):
|
953 |
+
super().__init__(config)
|
954 |
+
|
955 |
+
if config.rcps:
|
956 |
+
assert (
|
957 |
+
config.complement_map is not None
|
958 |
+
), "Complement map must be provided for RCPS."
|
959 |
+
|
960 |
+
# Adjust vocab size and complement maps if vocab padding is set.
|
961 |
+
if config.vocab_size % config.pad_vocab_size_multiple != 0:
|
962 |
+
config.vocab_size += config.pad_vocab_size_multiple - (
|
963 |
+
config.vocab_size % config.pad_vocab_size_multiple
|
964 |
+
)
|
965 |
+
if config.complement_map is not None and config.vocab_size > len(
|
966 |
+
config.complement_map
|
967 |
+
):
|
968 |
+
for i in range(len(config.complement_map), config.vocab_size):
|
969 |
+
config.complement_map[i] = i
|
970 |
+
|
971 |
+
self.config = config
|
972 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
973 |
+
self.backbone = CaduceusMixerModel(config, **factory_kwargs, **kwargs)
|
974 |
+
|
975 |
+
def forward(
|
976 |
+
self,
|
977 |
+
input_ids: torch.LongTensor = None,
|
978 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
979 |
+
output_hidden_states: Optional[bool] = None,
|
980 |
+
return_dict: Optional[bool] = None,
|
981 |
+
) -> Union[torch.Tensor, Tuple, BaseModelOutputWithNoAttention]:
|
982 |
+
"""HF-compatible forward method."""
|
983 |
+
output_hidden_states = (
|
984 |
+
output_hidden_states
|
985 |
+
if output_hidden_states is not None
|
986 |
+
else self.config.output_hidden_states
|
987 |
+
)
|
988 |
+
return_dict = (
|
989 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
990 |
+
)
|
991 |
+
|
992 |
+
hidden_states, all_hidden_states = self.backbone(
|
993 |
+
input_ids,
|
994 |
+
inputs_embeds=inputs_embeds,
|
995 |
+
output_hidden_states=output_hidden_states,
|
996 |
+
)
|
997 |
+
if return_dict:
|
998 |
+
return BaseModelOutputWithNoAttention(
|
999 |
+
last_hidden_state=hidden_states,
|
1000 |
+
hidden_states=all_hidden_states if output_hidden_states else None,
|
1001 |
+
)
|
1002 |
+
elif output_hidden_states:
|
1003 |
+
return hidden_states, all_hidden_states
|
1004 |
+
else:
|
1005 |
+
return hidden_states
|
1006 |
+
|
1007 |
+
|
1008 |
+
class AxialCaduceus(AxialCaduceusPreTrainedModel):
|
1009 |
+
"""Caduceus model that can be instantiated using HF patterns."""
|
1010 |
+
|
1011 |
+
def __init__(self, config: AxialCaduceusConfig, device=None, dtype=None, **kwargs):
|
1012 |
+
super().__init__(config)
|
1013 |
+
|
1014 |
+
if config.rcps:
|
1015 |
+
assert (
|
1016 |
+
config.complement_map is not None
|
1017 |
+
), "Complement map must be provided for RCPS."
|
1018 |
+
|
1019 |
+
# Adjust vocab size and complement maps if vocab padding is set.
|
1020 |
+
if config.vocab_size % config.pad_vocab_size_multiple != 0:
|
1021 |
+
config.vocab_size += config.pad_vocab_size_multiple - (
|
1022 |
+
config.vocab_size % config.pad_vocab_size_multiple
|
1023 |
+
)
|
1024 |
+
if config.complement_map is not None and config.vocab_size > len(
|
1025 |
+
config.complement_map
|
1026 |
+
):
|
1027 |
+
for i in range(len(config.complement_map), config.vocab_size):
|
1028 |
+
config.complement_map[i] = i
|
1029 |
+
|
1030 |
+
self.config = config
|
1031 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
1032 |
+
self.backbone = AxialCaduceusMixerModel(config, **factory_kwargs, **kwargs)
|
1033 |
+
|
1034 |
+
def forward(
|
1035 |
+
self,
|
1036 |
+
input_ids: torch.LongTensor = None,
|
1037 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1038 |
+
input_positions: Optional[torch.LongTensor] = None,
|
1039 |
+
output_hidden_states: Optional[bool] = None,
|
1040 |
+
return_dict: Optional[bool] = None,
|
1041 |
+
) -> Union[torch.Tensor, Tuple, BaseModelOutputWithNoAttention]:
|
1042 |
+
"""HF-compatible forward method."""
|
1043 |
+
output_hidden_states = (
|
1044 |
+
output_hidden_states
|
1045 |
+
if output_hidden_states is not None
|
1046 |
+
else self.config.output_hidden_states
|
1047 |
+
)
|
1048 |
+
return_dict = (
|
1049 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1050 |
+
)
|
1051 |
+
|
1052 |
+
hidden_states, all_hidden_states = self.backbone(
|
1053 |
+
input_ids,
|
1054 |
+
inputs_embeds=inputs_embeds,
|
1055 |
+
input_positions=input_positions,
|
1056 |
+
output_hidden_states=output_hidden_states,
|
1057 |
+
)
|
1058 |
+
if return_dict:
|
1059 |
+
return BaseModelOutputWithNoAttention(
|
1060 |
+
last_hidden_state=hidden_states,
|
1061 |
+
hidden_states=all_hidden_states if output_hidden_states else None,
|
1062 |
+
)
|
1063 |
+
elif output_hidden_states:
|
1064 |
+
return hidden_states, all_hidden_states
|
1065 |
+
else:
|
1066 |
+
return hidden_states
|
1067 |
+
|
1068 |
+
|
1069 |
+
class MixedAxialCaduceus(CaduceusPreTrainedModel):
|
1070 |
+
"""Mixed Caduceus/Attention model that can be instantiated using HF patterns."""
|
1071 |
+
|
1072 |
+
def __init__(self, config: MixedCaduceusConfig, device=None, dtype=None, **kwargs):
|
1073 |
+
super().__init__(config)
|
1074 |
+
|
1075 |
+
if config.rcps:
|
1076 |
+
assert (
|
1077 |
+
config.complement_map is not None
|
1078 |
+
), "Complement map must be provided for RCPS."
|
1079 |
+
|
1080 |
+
# Adjust vocab size and complement maps if vocab padding is set.
|
1081 |
+
if config.vocab_size % config.pad_vocab_size_multiple != 0:
|
1082 |
+
config.vocab_size += config.pad_vocab_size_multiple - (
|
1083 |
+
config.vocab_size % config.pad_vocab_size_multiple
|
1084 |
+
)
|
1085 |
+
if config.complement_map is not None and config.vocab_size > len(
|
1086 |
+
config.complement_map
|
1087 |
+
):
|
1088 |
+
for i in range(len(config.complement_map), config.vocab_size):
|
1089 |
+
config.complement_map[i] = i
|
1090 |
+
|
1091 |
+
self.config = config
|
1092 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
1093 |
+
self.backbone = MixedAxialCaduceusMixerModel(config, **factory_kwargs, **kwargs)
|
1094 |
+
|
1095 |
+
def forward(
|
1096 |
+
self,
|
1097 |
+
input_ids: torch.LongTensor = None,
|
1098 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1099 |
+
output_hidden_states: Optional[bool] = None,
|
1100 |
+
return_dict: Optional[bool] = None,
|
1101 |
+
) -> Union[torch.Tensor, Tuple, BaseModelOutputWithNoAttention]:
|
1102 |
+
"""HF-compatible forward method."""
|
1103 |
+
output_hidden_states = (
|
1104 |
+
output_hidden_states
|
1105 |
+
if output_hidden_states is not None
|
1106 |
+
else self.config.output_hidden_states
|
1107 |
+
)
|
1108 |
+
return_dict = (
|
1109 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1110 |
+
)
|
1111 |
+
|
1112 |
+
hidden_states, all_hidden_states = self.backbone(
|
1113 |
+
input_ids,
|
1114 |
+
inputs_embeds=inputs_embeds,
|
1115 |
+
output_hidden_states=output_hidden_states,
|
1116 |
+
)
|
1117 |
+
if return_dict:
|
1118 |
+
return BaseModelOutputWithNoAttention(
|
1119 |
+
last_hidden_state=hidden_states,
|
1120 |
+
hidden_states=all_hidden_states if output_hidden_states else None,
|
1121 |
+
)
|
1122 |
+
elif output_hidden_states:
|
1123 |
+
return hidden_states, all_hidden_states
|
1124 |
+
else:
|
1125 |
+
return hidden_states
|
1126 |
+
|
1127 |
+
|
1128 |
+
class CaduceusForMaskedLM(CaduceusPreTrainedModel):
|
1129 |
+
"""HF-compatible Caduceus model for masked language modeling."""
|
1130 |
+
|
1131 |
+
def __init__(self, config: CaduceusConfig, device=None, dtype=None, **kwargs):
|
1132 |
+
super().__init__(config, **kwargs)
|
1133 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
1134 |
+
self.caduceus = Caduceus(config, **factory_kwargs, **kwargs)
|
1135 |
+
if config.rcps:
|
1136 |
+
self.lm_head = RCPSLMHead(
|
1137 |
+
complement_map=self.config.complement_map, # Use caduceus config as it might have been updated
|
1138 |
+
vocab_size=self.config.vocab_size, # Use caduceus config as it might have been updated
|
1139 |
+
true_dim=config.d_model,
|
1140 |
+
dtype=dtype,
|
1141 |
+
)
|
1142 |
+
else:
|
1143 |
+
self.lm_head = nn.Linear(
|
1144 |
+
config.d_model,
|
1145 |
+
self.config.vocab_size, # Use caduceus config as it might have been updated
|
1146 |
+
bias=False,
|
1147 |
+
**factory_kwargs,
|
1148 |
+
)
|
1149 |
+
|
1150 |
+
# Initialize weights and apply final processing
|
1151 |
+
self.post_init()
|
1152 |
+
|
1153 |
+
def get_input_embeddings(self):
|
1154 |
+
return self.caduceus.backbone.embeddings.word_embeddings
|
1155 |
+
|
1156 |
+
def set_input_embeddings(self, value):
|
1157 |
+
if self.config.rcps:
|
1158 |
+
raise NotImplementedError(
|
1159 |
+
"Setting input embeddings for RCPS LM is not supported."
|
1160 |
+
)
|
1161 |
+
self.caduceus.backbone.embeddings.word_embeddings = value
|
1162 |
+
|
1163 |
+
def get_output_embeddings(self):
|
1164 |
+
return self.lm_head
|
1165 |
+
|
1166 |
+
def set_output_embeddings(self, new_embeddings):
|
1167 |
+
"""Overrides output embeddings."""
|
1168 |
+
if self.config.rcps:
|
1169 |
+
raise NotImplementedError(
|
1170 |
+
"Setting output embeddings for RCPS LM is not supported."
|
1171 |
+
)
|
1172 |
+
self.lm_head = new_embeddings
|
1173 |
+
|
1174 |
+
def tie_weights(self):
|
1175 |
+
"""Tie weights, accounting for RCPS."""
|
1176 |
+
if self.config.rcps:
|
1177 |
+
self.lm_head.set_weight(self.get_input_embeddings().weight)
|
1178 |
+
else:
|
1179 |
+
super().tie_weights()
|
1180 |
+
|
1181 |
+
def get_decoder(self):
|
1182 |
+
"""Get decoder (backbone) for the model."""
|
1183 |
+
return self.caduceus
|
1184 |
+
|
1185 |
+
def set_decoder(self, decoder):
|
1186 |
+
"""Set decoder (backbone) for the model."""
|
1187 |
+
self.caduceus = decoder
|
1188 |
+
|
1189 |
+
def forward(
|
1190 |
+
self,
|
1191 |
+
input_ids: torch.LongTensor = None,
|
1192 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1193 |
+
labels: Optional[torch.LongTensor] = None,
|
1194 |
+
loss_weights: Optional[torch.FloatTensor] = None,
|
1195 |
+
output_hidden_states: Optional[bool] = None,
|
1196 |
+
return_dict: Optional[bool] = None,
|
1197 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1198 |
+
"""HF-compatible forward method."""
|
1199 |
+
|
1200 |
+
output_hidden_states = (
|
1201 |
+
output_hidden_states
|
1202 |
+
if output_hidden_states is not None
|
1203 |
+
else self.config.output_hidden_states
|
1204 |
+
)
|
1205 |
+
return_dict = (
|
1206 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1210 |
+
outputs = self.caduceus(
|
1211 |
+
input_ids=input_ids,
|
1212 |
+
inputs_embeds=inputs_embeds,
|
1213 |
+
output_hidden_states=output_hidden_states,
|
1214 |
+
return_dict=return_dict,
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
hidden_states = outputs[0]
|
1218 |
+
logits = self.lm_head(hidden_states)
|
1219 |
+
logits = logits.float()
|
1220 |
+
|
1221 |
+
loss = None
|
1222 |
+
if labels is not None:
|
1223 |
+
if loss_weights is not None:
|
1224 |
+
loss = weighted_cross_entropy(
|
1225 |
+
logits, labels, loss_weights, ignore_index=self.config.pad_token_id
|
1226 |
+
)
|
1227 |
+
else:
|
1228 |
+
loss = cross_entropy(
|
1229 |
+
logits, labels, ignore_index=self.config.pad_token_id
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
if not return_dict:
|
1233 |
+
output = (logits,) + outputs[1:]
|
1234 |
+
return (loss,) + output if loss is not None else output
|
1235 |
+
|
1236 |
+
return MaskedLMOutput(
|
1237 |
+
loss=loss,
|
1238 |
+
logits=logits,
|
1239 |
+
hidden_states=outputs.hidden_states,
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
|
1243 |
+
class AxialCaduceusForMaskedLM(AxialCaduceusPreTrainedModel):
|
1244 |
+
"""HF-compatible Caduceus model for masked language modeling."""
|
1245 |
+
|
1246 |
+
def __init__(self, config: CaduceusConfig, device=None, dtype=None, **kwargs):
|
1247 |
+
super().__init__(config, **kwargs)
|
1248 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
1249 |
+
self.caduceus = AxialCaduceus(config, **factory_kwargs, **kwargs)
|
1250 |
+
if config.rcps:
|
1251 |
+
self.lm_head = RCPSLMHead(
|
1252 |
+
complement_map=self.config.complement_map, # Use caduceus config as it might have been updated
|
1253 |
+
vocab_size=self.config.vocab_size, # Use caduceus config as it might have been updated
|
1254 |
+
true_dim=config.d_model,
|
1255 |
+
dtype=dtype,
|
1256 |
+
)
|
1257 |
+
else:
|
1258 |
+
self.lm_head = nn.Linear(
|
1259 |
+
config.d_model,
|
1260 |
+
self.config.vocab_size, # Use caduceus config as it might have been updated
|
1261 |
+
bias=False,
|
1262 |
+
**factory_kwargs,
|
1263 |
+
)
|
1264 |
+
|
1265 |
+
# Initialize weights and apply final processing
|
1266 |
+
self.post_init()
|
1267 |
+
|
1268 |
+
def get_input_embeddings(self):
|
1269 |
+
return self.caduceus.backbone.embeddings.word_embeddings
|
1270 |
+
|
1271 |
+
def set_input_embeddings(self, value):
|
1272 |
+
if self.config.rcps:
|
1273 |
+
raise NotImplementedError(
|
1274 |
+
"Setting input embeddings for RCPS LM is not supported."
|
1275 |
+
)
|
1276 |
+
self.caduceus.backbone.embeddings.word_embeddings = value
|
1277 |
+
|
1278 |
+
def get_output_embeddings(self):
|
1279 |
+
return self.lm_head
|
1280 |
+
|
1281 |
+
def set_output_embeddings(self, new_embeddings):
|
1282 |
+
"""Overrides output embeddings."""
|
1283 |
+
if self.config.rcps:
|
1284 |
+
raise NotImplementedError(
|
1285 |
+
"Setting output embeddings for RCPS LM is not supported."
|
1286 |
+
)
|
1287 |
+
self.lm_head = new_embeddings
|
1288 |
+
|
1289 |
+
def tie_weights(self):
|
1290 |
+
"""Tie weights, accounting for RCPS."""
|
1291 |
+
if self.config.rcps:
|
1292 |
+
self.lm_head.set_weight(self.get_input_embeddings().weight)
|
1293 |
+
else:
|
1294 |
+
super().tie_weights()
|
1295 |
+
|
1296 |
+
def get_decoder(self):
|
1297 |
+
"""Get decoder (backbone) for the model."""
|
1298 |
+
return self.caduceus
|
1299 |
+
|
1300 |
+
def set_decoder(self, decoder):
|
1301 |
+
"""Set decoder (backbone) for the model."""
|
1302 |
+
self.caduceus = decoder
|
1303 |
+
|
1304 |
+
def forward(
|
1305 |
+
self,
|
1306 |
+
input_ids: torch.LongTensor = None,
|
1307 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1308 |
+
input_positions: Optional[torch.LongTensor] = None,
|
1309 |
+
labels: Optional[torch.LongTensor] = None,
|
1310 |
+
loss_weights: Optional[torch.FloatTensor] = None,
|
1311 |
+
output_hidden_states: Optional[bool] = None,
|
1312 |
+
return_dict: Optional[bool] = None,
|
1313 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1314 |
+
"""HF-compatible forward method."""
|
1315 |
+
|
1316 |
+
output_hidden_states = (
|
1317 |
+
output_hidden_states
|
1318 |
+
if output_hidden_states is not None
|
1319 |
+
else self.config.output_hidden_states
|
1320 |
+
)
|
1321 |
+
return_dict = (
|
1322 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1323 |
+
)
|
1324 |
+
|
1325 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1326 |
+
outputs = self.caduceus(
|
1327 |
+
input_ids=input_ids,
|
1328 |
+
inputs_embeds=inputs_embeds,
|
1329 |
+
input_positions=input_positions,
|
1330 |
+
output_hidden_states=output_hidden_states,
|
1331 |
+
return_dict=return_dict,
|
1332 |
+
)
|
1333 |
+
|
1334 |
+
hidden_states = outputs[0]
|
1335 |
+
logits = self.lm_head(hidden_states)
|
1336 |
+
logits = logits.float()
|
1337 |
+
|
1338 |
+
loss = None
|
1339 |
+
if labels is not None:
|
1340 |
+
if loss_weights is not None:
|
1341 |
+
loss = weighted_cross_entropy(
|
1342 |
+
logits, labels, loss_weights, ignore_index=self.config.pad_token_id
|
1343 |
+
)
|
1344 |
+
else:
|
1345 |
+
loss = cross_entropy(
|
1346 |
+
logits, labels, ignore_index=self.config.pad_token_id
|
1347 |
+
)
|
1348 |
+
|
1349 |
+
if not return_dict:
|
1350 |
+
output = (logits,) + outputs[1:]
|
1351 |
+
return (loss,) + output if loss is not None else output
|
1352 |
+
|
1353 |
+
return MaskedLMOutput(
|
1354 |
+
loss=loss,
|
1355 |
+
logits=logits,
|
1356 |
+
hidden_states=outputs.hidden_states,
|
1357 |
+
)
|
1358 |
+
|
1359 |
+
|
1360 |
+
class MixedAxialCaduceusForMaskedLM(CaduceusPreTrainedModel):
|
1361 |
+
"""HF-compatible Caduceus model for masked language modeling."""
|
1362 |
+
|
1363 |
+
def __init__(self, config: MixedCaduceusConfig, device=None, dtype=None, **kwargs):
|
1364 |
+
super().__init__(config, **kwargs)
|
1365 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
1366 |
+
self.caduceus = MixedAxialCaduceus(config, **factory_kwargs, **kwargs)
|
1367 |
+
if config.rcps:
|
1368 |
+
self.lm_head = RCPSLMHead(
|
1369 |
+
complement_map=self.config.complement_map, # Use caduceus config as it might have been updated
|
1370 |
+
vocab_size=self.config.vocab_size, # Use caduceus config as it might have been updated
|
1371 |
+
true_dim=config.d_model,
|
1372 |
+
dtype=dtype,
|
1373 |
+
)
|
1374 |
+
else:
|
1375 |
+
self.lm_head = nn.Linear(
|
1376 |
+
config.d_model,
|
1377 |
+
self.config.vocab_size, # Use caduceus config as it might have been updated
|
1378 |
+
bias=False,
|
1379 |
+
**factory_kwargs,
|
1380 |
+
)
|
1381 |
+
|
1382 |
+
# Initialize weights and apply final processing
|
1383 |
+
self.post_init()
|
1384 |
+
|
1385 |
+
def get_input_embeddings(self):
|
1386 |
+
return self.caduceus.backbone.embeddings.word_embeddings
|
1387 |
+
|
1388 |
+
def set_input_embeddings(self, value):
|
1389 |
+
if self.config.rcps:
|
1390 |
+
raise NotImplementedError(
|
1391 |
+
"Setting input embeddings for RCPS LM is not supported."
|
1392 |
+
)
|
1393 |
+
self.caduceus.backbone.embeddings.word_embeddings = value
|
1394 |
+
|
1395 |
+
def get_output_embeddings(self):
|
1396 |
+
return self.lm_head
|
1397 |
+
|
1398 |
+
def set_output_embeddings(self, new_embeddings):
|
1399 |
+
"""Overrides output embeddings."""
|
1400 |
+
if self.config.rcps:
|
1401 |
+
raise NotImplementedError(
|
1402 |
+
"Setting output embeddings for RCPS LM is not supported."
|
1403 |
+
)
|
1404 |
+
self.lm_head = new_embeddings
|
1405 |
+
|
1406 |
+
def tie_weights(self):
|
1407 |
+
"""Tie weights, accounting for RCPS."""
|
1408 |
+
if self.config.rcps:
|
1409 |
+
self.lm_head.set_weight(self.get_input_embeddings().weight)
|
1410 |
+
else:
|
1411 |
+
super().tie_weights()
|
1412 |
+
|
1413 |
+
def get_decoder(self):
|
1414 |
+
"""Get decoder (backbone) for the model."""
|
1415 |
+
return self.caduceus
|
1416 |
+
|
1417 |
+
def set_decoder(self, decoder):
|
1418 |
+
"""Set decoder (backbone) for the model."""
|
1419 |
+
self.caduceus = decoder
|
1420 |
+
|
1421 |
+
def forward(
|
1422 |
+
self,
|
1423 |
+
input_ids: torch.LongTensor = None,
|
1424 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1425 |
+
labels: Optional[torch.LongTensor] = None,
|
1426 |
+
loss_weights: Optional[torch.FloatTensor] = None,
|
1427 |
+
output_hidden_states: Optional[bool] = None,
|
1428 |
+
return_dict: Optional[bool] = None,
|
1429 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1430 |
+
"""HF-compatible forward method."""
|
1431 |
+
|
1432 |
+
output_hidden_states = (
|
1433 |
+
output_hidden_states
|
1434 |
+
if output_hidden_states is not None
|
1435 |
+
else self.config.output_hidden_states
|
1436 |
+
)
|
1437 |
+
return_dict = (
|
1438 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1439 |
+
)
|
1440 |
+
|
1441 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1442 |
+
outputs = self.caduceus(
|
1443 |
+
input_ids=input_ids,
|
1444 |
+
inputs_embeds=inputs_embeds,
|
1445 |
+
output_hidden_states=output_hidden_states,
|
1446 |
+
return_dict=return_dict,
|
1447 |
+
)
|
1448 |
+
|
1449 |
+
hidden_states = outputs[0]
|
1450 |
+
logits = self.lm_head(hidden_states)
|
1451 |
+
logits = logits.float()
|
1452 |
+
|
1453 |
+
loss = None
|
1454 |
+
if labels is not None:
|
1455 |
+
if loss_weights is not None:
|
1456 |
+
loss = weighted_cross_entropy(
|
1457 |
+
logits, labels, loss_weights, ignore_index=self.config.pad_token_id
|
1458 |
+
)
|
1459 |
+
else:
|
1460 |
+
loss = cross_entropy(
|
1461 |
+
logits, labels, ignore_index=self.config.pad_token_id
|
1462 |
+
)
|
1463 |
+
|
1464 |
+
if not return_dict:
|
1465 |
+
output = (logits,) + outputs[1:]
|
1466 |
+
return (loss,) + output if loss is not None else output
|
1467 |
+
|
1468 |
+
return MaskedLMOutput(
|
1469 |
+
loss=loss,
|
1470 |
+
logits=logits,
|
1471 |
+
hidden_states=outputs.hidden_states,
|
1472 |
+
)
|
1473 |
+
|
1474 |
+
|
1475 |
+
class CaduceusForSequenceClassification(CaduceusPreTrainedModel):
|
1476 |
+
def __init__(
|
1477 |
+
self,
|
1478 |
+
config: CaduceusConfig,
|
1479 |
+
pooling_strategy: str = "mean",
|
1480 |
+
conjoin_train: bool = False,
|
1481 |
+
conjoin_eval: bool = False,
|
1482 |
+
device=None,
|
1483 |
+
dtype=None,
|
1484 |
+
**kwargs,
|
1485 |
+
):
|
1486 |
+
super().__init__(config, **kwargs)
|
1487 |
+
if pooling_strategy not in ["mean", "max", "first", "last"]:
|
1488 |
+
raise NotImplementedError(
|
1489 |
+
f"Pooling strategy `{pooling_strategy}` not implemented."
|
1490 |
+
)
|
1491 |
+
self.pooling_strategy = pooling_strategy
|
1492 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
1493 |
+
self.num_labels = kwargs.get("num_labels", config.num_labels)
|
1494 |
+
self.caduceus = Caduceus(config, **factory_kwargs, **kwargs)
|
1495 |
+
self.score = nn.Linear(config.d_model, self.num_labels, bias=False)
|
1496 |
+
|
1497 |
+
self.conjoin_train = conjoin_train
|
1498 |
+
self.conjoin_eval = conjoin_eval
|
1499 |
+
|
1500 |
+
# Initialize weights and apply final processing
|
1501 |
+
self.post_init()
|
1502 |
+
|
1503 |
+
def get_input_embeddings(self):
|
1504 |
+
return self.caduceus.backbone.embeddings.word_embeddings
|
1505 |
+
|
1506 |
+
def set_input_embeddings(self, value):
|
1507 |
+
if self.config.rcps:
|
1508 |
+
raise NotImplementedError(
|
1509 |
+
"Setting input embeddings for RCPS LM is not supported."
|
1510 |
+
)
|
1511 |
+
self.caduceus.backbone.embeddings.word_embeddings = value
|
1512 |
+
|
1513 |
+
def pool_hidden_states(self, hidden_states, sequence_length_dim=1):
|
1514 |
+
"""Pools hidden states along sequence length dimension."""
|
1515 |
+
if (
|
1516 |
+
self.pooling_strategy == "mean"
|
1517 |
+
): # Mean pooling along sequence length dimension
|
1518 |
+
return hidden_states.mean(dim=sequence_length_dim)
|
1519 |
+
if (
|
1520 |
+
self.pooling_strategy == "max"
|
1521 |
+
): # Max pooling along sequence length dimension
|
1522 |
+
return hidden_states.max(dim=sequence_length_dim).values
|
1523 |
+
if (
|
1524 |
+
self.pooling_strategy == "last"
|
1525 |
+
): # Use embedding of last token in the sequence
|
1526 |
+
return hidden_states.moveaxis(hidden_states, sequence_length_dim, 0)[
|
1527 |
+
-1, ...
|
1528 |
+
]
|
1529 |
+
if (
|
1530 |
+
self.pooling_strategy == "first"
|
1531 |
+
): # Use embedding of first token in the sequence
|
1532 |
+
return hidden_states.moveaxis(hidden_states, sequence_length_dim, 0)[0, ...]
|
1533 |
+
|
1534 |
+
def forward(
|
1535 |
+
self,
|
1536 |
+
input_ids: torch.LongTensor = None,
|
1537 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1538 |
+
labels: Optional[torch.LongTensor] = None,
|
1539 |
+
output_hidden_states: Optional[bool] = None,
|
1540 |
+
return_dict: Optional[bool] = None,
|
1541 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1542 |
+
r"""
|
1543 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1544 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1545 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1546 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1547 |
+
"""
|
1548 |
+
return_dict = (
|
1549 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1550 |
+
)
|
1551 |
+
|
1552 |
+
# Get hidden representations from the backbone
|
1553 |
+
if self.config.rcps: # Hidden states have 2 * d_model channels for RCPS
|
1554 |
+
transformer_outputs = self.caduceus(
|
1555 |
+
input_ids,
|
1556 |
+
inputs_embeds=inputs_embeds,
|
1557 |
+
output_hidden_states=output_hidden_states,
|
1558 |
+
return_dict=return_dict,
|
1559 |
+
)
|
1560 |
+
hidden_states = torch.stack(
|
1561 |
+
[
|
1562 |
+
transformer_outputs[0][..., : self.config.d_model],
|
1563 |
+
torch.flip(
|
1564 |
+
transformer_outputs[0][..., self.config.d_model :], dims=[1, 2]
|
1565 |
+
),
|
1566 |
+
],
|
1567 |
+
dim=-1,
|
1568 |
+
)
|
1569 |
+
elif self.conjoin_train or (
|
1570 |
+
self.conjoin_eval and not self.training
|
1571 |
+
): # For conjoining / post-hoc conjoining
|
1572 |
+
assert input_ids is not None, "`input_ids` must be provided for conjoining."
|
1573 |
+
assert (
|
1574 |
+
input_ids.ndim == 3
|
1575 |
+
), "`input_ids` must be 3D tensor: channels corresponds to forward and rc strands."
|
1576 |
+
transformer_outputs = self.caduceus(
|
1577 |
+
input_ids[..., 0],
|
1578 |
+
inputs_embeds=None,
|
1579 |
+
output_hidden_states=output_hidden_states,
|
1580 |
+
return_dict=return_dict,
|
1581 |
+
)
|
1582 |
+
transformer_outputs_rc = self.caduceus(
|
1583 |
+
input_ids[..., 1],
|
1584 |
+
inputs_embeds=None,
|
1585 |
+
output_hidden_states=output_hidden_states,
|
1586 |
+
return_dict=return_dict,
|
1587 |
+
)
|
1588 |
+
# Stack along channel dimension (dim=-1)
|
1589 |
+
hidden_states = torch.stack(
|
1590 |
+
[transformer_outputs[0], transformer_outputs_rc[0]], dim=-1
|
1591 |
+
)
|
1592 |
+
else:
|
1593 |
+
transformer_outputs = self.caduceus(
|
1594 |
+
input_ids,
|
1595 |
+
inputs_embeds=None,
|
1596 |
+
output_hidden_states=output_hidden_states,
|
1597 |
+
return_dict=return_dict,
|
1598 |
+
)
|
1599 |
+
hidden_states = transformer_outputs[0]
|
1600 |
+
|
1601 |
+
# Pool and get logits
|
1602 |
+
pooled_hidden_states = self.pool_hidden_states(hidden_states)
|
1603 |
+
# Potentially run `score` twice (with parameters shared) for conjoining
|
1604 |
+
if (
|
1605 |
+
hidden_states.ndim == 4
|
1606 |
+
): # bsz, seq_len, hidden_dim, 2 where last channel has the stacked fwd and rc reps
|
1607 |
+
logits_fwd = self.score(pooled_hidden_states[..., 0])
|
1608 |
+
logits_rc = self.score(pooled_hidden_states[..., 1])
|
1609 |
+
logits = (logits_fwd + logits_rc) / 2
|
1610 |
+
else:
|
1611 |
+
logits = self.score(pooled_hidden_states)
|
1612 |
+
|
1613 |
+
loss = None
|
1614 |
+
if labels is not None:
|
1615 |
+
labels = labels.to(logits.device)
|
1616 |
+
if self.config.problem_type is None:
|
1617 |
+
if self.num_labels == 1:
|
1618 |
+
self.config.problem_type = "regression"
|
1619 |
+
elif self.num_labels > 1 and (
|
1620 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1621 |
+
):
|
1622 |
+
self.config.problem_type = "single_label_classification"
|
1623 |
+
else:
|
1624 |
+
self.config.problem_type = "multi_label_classification"
|
1625 |
+
|
1626 |
+
if self.config.problem_type == "regression":
|
1627 |
+
if self.num_labels == 1:
|
1628 |
+
loss = F.mse_loss(logits.squeeze(), labels.squeeze())
|
1629 |
+
else:
|
1630 |
+
loss = F.mse_loss(logits, labels)
|
1631 |
+
elif self.config.problem_type == "single_label_classification":
|
1632 |
+
loss = F.cross_entropy(
|
1633 |
+
logits.view(-1, self.num_labels), labels.view(-1)
|
1634 |
+
)
|
1635 |
+
elif self.config.problem_type == "multi_label_classification":
|
1636 |
+
loss = F.binary_cross_entropy_with_logits(logits, labels)
|
1637 |
+
if not return_dict:
|
1638 |
+
output = (logits,) + transformer_outputs[1:]
|
1639 |
+
return ((loss,) + output) if loss is not None else output
|
1640 |
+
|
1641 |
+
return SequenceClassifierOutput(
|
1642 |
+
loss=loss,
|
1643 |
+
logits=logits,
|
1644 |
+
hidden_states=transformer_outputs.hidden_states,
|
1645 |
+
)
|
modeling_rcps.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Reverse-complement equivariant modules.
|
2 |
+
|
3 |
+
"""
|
4 |
+
from collections import OrderedDict
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import Tensor
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
try:
|
13 |
+
from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
|
14 |
+
except ImportError:
|
15 |
+
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
|
16 |
+
|
17 |
+
|
18 |
+
class RCPSEmbedding(nn.Module):
|
19 |
+
"""Embedding layer that supports reverse-complement equivariance."""
|
20 |
+
def __init__(self, vocab_size: int, d_model: int, complement_map: dict, **factory_kwargs):
|
21 |
+
"""
|
22 |
+
Args:
|
23 |
+
vocab_size: Size of vocabulary.
|
24 |
+
d_model: Dimensionality of embedding (actual embedding matrix will have 1/2 the output dim).
|
25 |
+
complement_map: Dictionary mapping each token id to its complement.
|
26 |
+
"""
|
27 |
+
super().__init__()
|
28 |
+
self.register_buffer(
|
29 |
+
"complement_map",
|
30 |
+
torch.tensor(list(OrderedDict(complement_map).values()), dtype=torch.long)
|
31 |
+
)
|
32 |
+
self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs)
|
33 |
+
|
34 |
+
@property
|
35 |
+
def weight(self):
|
36 |
+
"""Embedding weights."""
|
37 |
+
return self.embedding.weight
|
38 |
+
|
39 |
+
def set_weight(self, value):
|
40 |
+
"""Set embedding weights."""
|
41 |
+
self.embedding.weight = value
|
42 |
+
|
43 |
+
def rc(self, x):
|
44 |
+
"""Reverse-complement a tensor of input_ids by flipping along length dimension and complementing the ids."""
|
45 |
+
return torch.gather(
|
46 |
+
self.complement_map.unsqueeze(0).expand(x.shape[0], -1),
|
47 |
+
dim=1,
|
48 |
+
index=torch.flip(x, dims=[-1])
|
49 |
+
)
|
50 |
+
|
51 |
+
def forward(self, input_ids):
|
52 |
+
"""Reverse-complement equivariant forward pass.
|
53 |
+
|
54 |
+
This embedding module doubles the output dimensionality to support reverse-complement equivariance.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
input_ids: Input tensor of shape (batch_size, seq_len)
|
58 |
+
Returns:
|
59 |
+
Embedding tensor of shape (batch_size, seq_len, d_model * 2)
|
60 |
+
"""
|
61 |
+
fwd_out = self.embedding(input_ids)
|
62 |
+
rc_out = torch.flip(self.embedding(self.rc(input_ids)), dims=[-2, -1])
|
63 |
+
|
64 |
+
return torch.cat([fwd_out, rc_out], dim=-1)
|
65 |
+
|
66 |
+
|
67 |
+
class RCPSWrapper(nn.Module):
|
68 |
+
"""Wrapper to convert arbitrary nn.Module into a reverse-complement equivariant module.
|
69 |
+
|
70 |
+
See ref. "Towards a Better Understanding of Reverse-Complement Equivariance for Deep Learning Models in Regulatory
|
71 |
+
Genomics", Zhou et al. (2022), https://proceedings.mlr.press/v165/zhou22a.html for more details.
|
72 |
+
"""
|
73 |
+
def __init__(self, submodule: nn.Module):
|
74 |
+
super().__init__()
|
75 |
+
self.submodule = submodule
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def rc(x):
|
79 |
+
"""Reverse-complement a tensor by flipping the length (dim=-2) and channel (dim=-1) dimensions."""
|
80 |
+
return torch.flip(x, dims=[-2, -1])
|
81 |
+
|
82 |
+
def forward(self, x, **kwargs):
|
83 |
+
"""Reverse-complement equivariant forward pass.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
x: Input tensor of shape (batch_size, seq_len, channels)
|
87 |
+
Returns:
|
88 |
+
Output tensor of shape (batch_size, seq_len, channels * 2)
|
89 |
+
"""
|
90 |
+
n_channels = x.shape[-1]
|
91 |
+
# Run submodule along sequence
|
92 |
+
fwd_out = self.submodule(x[..., :n_channels // 2], **kwargs)
|
93 |
+
# Run submodule along rc-sequence
|
94 |
+
rc_out = self.submodule(self.rc(x[..., n_channels // 2:]), **kwargs)
|
95 |
+
# Concatenate along channel dimension (dim=-1)
|
96 |
+
return torch.cat([fwd_out, self.rc(rc_out)], dim=-1)
|
97 |
+
|
98 |
+
|
99 |
+
class RCPSAddNormWrapper(RCPSWrapper):
|
100 |
+
"""RC equivariant AddNorm layer."""
|
101 |
+
def __init__(self, submodule: nn.Module):
|
102 |
+
super().__init__(submodule)
|
103 |
+
|
104 |
+
def forward(self, x, residual=None, prenorm=False):
|
105 |
+
"""
|
106 |
+
Args:
|
107 |
+
x: Input tensor of shape (batch_size, seq_len, channels)
|
108 |
+
residual: Residual tensor of shape (batch_size, seq_len, channels) or None.
|
109 |
+
prenorm: Whether to return residual.
|
110 |
+
"""
|
111 |
+
n_channels = x.shape[-1]
|
112 |
+
if residual is None:
|
113 |
+
residual = x
|
114 |
+
x_fwd = self.submodule(x[..., :n_channels // 2].to(dtype=self.submodule.weight.dtype))
|
115 |
+
x_rc = self.submodule(self.rc(x[..., n_channels // 2:]).to(dtype=self.submodule.weight.dtype))
|
116 |
+
x = torch.cat([x_fwd, self.rc(x_rc)], dim=-1)
|
117 |
+
else:
|
118 |
+
residual_fwd = x[..., :n_channels // 2] + residual[..., :n_channels // 2]
|
119 |
+
x_fwd = self.submodule(residual_fwd.to(dtype=self.submodule.weight.dtype))
|
120 |
+
|
121 |
+
residual_rc = self.rc(x[..., n_channels // 2:]) + self.rc(residual[..., n_channels // 2:])
|
122 |
+
x_rc = self.submodule(residual_rc.to(dtype=self.submodule.weight.dtype))
|
123 |
+
|
124 |
+
residual = torch.cat([residual_fwd, self.rc(residual_rc)], dim=-1)
|
125 |
+
x = torch.cat([x_fwd, self.rc(x_rc)], dim=-1)
|
126 |
+
|
127 |
+
return x if not prenorm else (x, residual)
|
128 |
+
|
129 |
+
|
130 |
+
class RCPSMambaBlock(nn.Module):
|
131 |
+
def __init__(
|
132 |
+
self,
|
133 |
+
dim,
|
134 |
+
mixer_cls,
|
135 |
+
norm_cls=nn.LayerNorm,
|
136 |
+
fused_add_norm=False,
|
137 |
+
residual_in_fp32=False,
|
138 |
+
device=None, # Keep for consistency with original Mamba Block
|
139 |
+
dtype=None, # Keep for consistency with original Mamba Block
|
140 |
+
):
|
141 |
+
"""RCPS version of simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection.
|
142 |
+
|
143 |
+
Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py
|
144 |
+
"""
|
145 |
+
super().__init__()
|
146 |
+
self.residual_in_fp32 = residual_in_fp32
|
147 |
+
self.fused_add_norm = fused_add_norm
|
148 |
+
self.mixer = RCPSWrapper(mixer_cls(dim))
|
149 |
+
norm_f = norm_cls(dim)
|
150 |
+
self.norm = norm_f if fused_add_norm else RCPSAddNormWrapper(norm_f)
|
151 |
+
if self.fused_add_norm:
|
152 |
+
assert RMSNorm is not None, "RMSNorm import fails"
|
153 |
+
assert isinstance(
|
154 |
+
self.norm, (nn.LayerNorm, RMSNorm)
|
155 |
+
), "Only LayerNorm and RMSNorm are supported for fused_add_norm"
|
156 |
+
|
157 |
+
def forward(
|
158 |
+
self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None
|
159 |
+
):
|
160 |
+
r"""Pass the input through the encoder layer.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
hidden_states: the sequence to the encoder layer (required).
|
164 |
+
residual: hidden_states = Mixer(LN(residual)).
|
165 |
+
inference_params: inference parameters for mixer.
|
166 |
+
"""
|
167 |
+
if not self.fused_add_norm:
|
168 |
+
hidden_states, residual = self.norm(hidden_states, residual=residual, prenorm=True)
|
169 |
+
if self.residual_in_fp32:
|
170 |
+
residual = residual.to(torch.float32)
|
171 |
+
else:
|
172 |
+
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn
|
173 |
+
|
174 |
+
hidden_states_fwd, residual_fwd = fused_add_norm_fn(
|
175 |
+
hidden_states[..., hidden_states.shape[-1] // 2:],
|
176 |
+
self.norm.weight,
|
177 |
+
self.norm.bias,
|
178 |
+
residual=residual[..., hidden_states.shape[-1] // 2:] if residual is not None else None,
|
179 |
+
prenorm=True,
|
180 |
+
residual_in_fp32=self.residual_in_fp32,
|
181 |
+
eps=self.norm.eps,
|
182 |
+
)
|
183 |
+
|
184 |
+
hidden_states_rc, residual_rc = fused_add_norm_fn(
|
185 |
+
hidden_states[..., :hidden_states.shape[-1] // 2].flip(dims=[-2, -1]),
|
186 |
+
self.norm.weight,
|
187 |
+
self.norm.bias,
|
188 |
+
residual=residual[..., :hidden_states.shape[-1] // 2].flip(dims=[-2, -1]) if residual is not None else None,
|
189 |
+
prenorm=True,
|
190 |
+
residual_in_fp32=self.residual_in_fp32,
|
191 |
+
eps=self.norm.eps,
|
192 |
+
)
|
193 |
+
hidden_states = torch.cat([hidden_states_fwd, hidden_states_rc.flip(dims=[-2, -1])], dim=-1)
|
194 |
+
residual = torch.cat([residual_fwd, residual_rc.flip(dims=[-2, -1])], dim=-1)
|
195 |
+
hidden_states = self.mixer(hidden_states, inference_params=inference_params)
|
196 |
+
return hidden_states, residual
|
197 |
+
|
198 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
199 |
+
"""Allocate inference cache for mixer.
|
200 |
+
|
201 |
+
Keep for compatibility with original Mamba Block.
|
202 |
+
"""
|
203 |
+
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
|
204 |
+
|
205 |
+
|
206 |
+
class RCPSLMHead(nn.Module):
|
207 |
+
"""LM Head for reverse-complement equivariant inputs, which have dim * 2 relative to standard inputs."""
|
208 |
+
def __init__(self, true_dim: int, vocab_size: int, complement_map: dict, **factory_kwargs):
|
209 |
+
"""
|
210 |
+
`true_dim` corresponds to the actual dimensionality of the input were it not reverse-complement
|
211 |
+
equivariant, i.e. 0.5 times the actual input dim.
|
212 |
+
"""
|
213 |
+
super().__init__()
|
214 |
+
self.register_buffer(
|
215 |
+
"complement_map",
|
216 |
+
torch.tensor(list(OrderedDict(complement_map).values()), dtype=torch.long)
|
217 |
+
)
|
218 |
+
self.true_dim = true_dim
|
219 |
+
self.lm_head = nn.Linear(true_dim, vocab_size, bias=False, **factory_kwargs)
|
220 |
+
|
221 |
+
@property
|
222 |
+
def weight(self):
|
223 |
+
"""LM head weights."""
|
224 |
+
return self.lm_head.weight
|
225 |
+
|
226 |
+
def set_weight(self, value):
|
227 |
+
"""Set LM head weights."""
|
228 |
+
self.lm_head.weight = value
|
229 |
+
|
230 |
+
def forward(self, x):
|
231 |
+
"""
|
232 |
+
Args:
|
233 |
+
x: Input tensor of shape (batch_size, seq_len, dim), where dim = 2 * true_dim.
|
234 |
+
"""
|
235 |
+
n_channels = x.shape[-1]
|
236 |
+
assert n_channels == 2 * self.true_dim, "Input must have 2 * true_dim channels."
|
237 |
+
fwd_logits = F.linear(x[..., :n_channels // 2], self.weight, bias=self.lm_head.bias)
|
238 |
+
rc_logits = F.linear(
|
239 |
+
torch.flip(x[..., n_channels // 2:], dims=[-1]),
|
240 |
+
self.weight[self.complement_map, :],
|
241 |
+
bias=self.lm_head.bias
|
242 |
+
)
|
243 |
+
return fwd_logits + rc_logits
|