æLtorio
commited on
Commit
•
297cc58
1
Parent(s):
e6f9e1a
add docker job
Browse files- Dockerfile +8 -0
- learn.py +146 -0
- start.sh +10 -0
Dockerfile
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM ovhcom/ai-training-pytorch:latest
|
2 |
+
RUN source /workspace/.miniconda3/bin/activate \
|
3 |
+
&& pip install -U "safetensors>=0.4.5" \
|
4 |
+
&& pip install -U git+https://github.com/huggingface/transformers.git\
|
5 |
+
&& pip install huggingface_hub accelerate datasets peft\
|
6 |
+
&& pip install -U Pillow
|
7 |
+
COPY --chmod=777 start.sh /start.sh
|
8 |
+
COPY learn.py /learn.py
|
learn.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from huggingface_hub import login as hf_login
|
5 |
+
from datasets import load_dataset
|
6 |
+
from peft import LoraConfig
|
7 |
+
from transformers import AutoProcessor, BitsAndBytesConfig, Idefics3ForConditionalGeneration, TrainingArguments, Trainer
|
8 |
+
|
9 |
+
HF_TOKEN = ""
|
10 |
+
|
11 |
+
if os.environ.get('HF_TOKEN') is not None:
|
12 |
+
HF_TOKEN = os.environ.get('HF_TOKEN')
|
13 |
+
print(f"Hugging Face token found in environment variable")
|
14 |
+
|
15 |
+
hf_login(
|
16 |
+
token=HF_TOKEN,
|
17 |
+
add_to_git_credential=True
|
18 |
+
)
|
19 |
+
dataset_id = "eltorio/ROCO-radiology"
|
20 |
+
prompt= "You are an expert radiologist certified with over 15 years of experience in diagnostic imaging, describe this image"
|
21 |
+
source_model_id = "HuggingFaceM4/Idefics3-8B-Llama3"
|
22 |
+
destination_model_id = "eltorio/ROCO-idefics3-8B"
|
23 |
+
output_dir = "IDEFICS3_ROCO"
|
24 |
+
|
25 |
+
train_dataset = load_dataset(dataset_id, split="train")
|
26 |
+
|
27 |
+
DEVICE = "cuda:0"
|
28 |
+
USE_LORA = False
|
29 |
+
USE_QLORA = True
|
30 |
+
|
31 |
+
processor = AutoProcessor.from_pretrained(
|
32 |
+
source_model_id,
|
33 |
+
do_image_splitting=False
|
34 |
+
)
|
35 |
+
|
36 |
+
if USE_QLORA or USE_LORA:
|
37 |
+
lora_config = LoraConfig(
|
38 |
+
r=8,
|
39 |
+
lora_alpha=8,
|
40 |
+
lora_dropout=0.1,
|
41 |
+
target_modules='.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$',
|
42 |
+
use_dora=False if USE_QLORA else True,
|
43 |
+
init_lora_weights="gaussian"
|
44 |
+
)
|
45 |
+
if USE_QLORA:
|
46 |
+
bnb_config = BitsAndBytesConfig(
|
47 |
+
load_in_4bit=True,
|
48 |
+
bnb_4bit_quant_type="nf4",
|
49 |
+
bnb_4bit_compute_dtype=torch.float16
|
50 |
+
)
|
51 |
+
model = Idefics3ForConditionalGeneration.from_pretrained(
|
52 |
+
source_model_id,
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
quantization_config=bnb_config if USE_QLORA else None,
|
55 |
+
)
|
56 |
+
model.add_adapter(lora_config)
|
57 |
+
model.enable_adapters()
|
58 |
+
else:
|
59 |
+
model = Idefics3ForConditionalGeneration.from_pretrained(
|
60 |
+
source_model_id,
|
61 |
+
torch_dtype=torch.float16,
|
62 |
+
_attn_implementation="flash_attention_2", # This works for A100 or H100
|
63 |
+
).to(DEVICE)
|
64 |
+
|
65 |
+
class MyDataCollator:
|
66 |
+
def __init__(self, processor):
|
67 |
+
self.processor = processor
|
68 |
+
self.image_token_id = processor.tokenizer.additional_special_tokens_ids[
|
69 |
+
processor.tokenizer.additional_special_tokens.index("<image>")
|
70 |
+
]
|
71 |
+
|
72 |
+
def __call__(self, samples):
|
73 |
+
texts = []
|
74 |
+
images = []
|
75 |
+
for sample in samples:
|
76 |
+
image = sample["image"]
|
77 |
+
answer = sample["caption"]
|
78 |
+
messages = [
|
79 |
+
{
|
80 |
+
"role": "system",
|
81 |
+
"content": [
|
82 |
+
{"type": "text", "text": prompt}
|
83 |
+
]
|
84 |
+
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"role": "user",
|
88 |
+
"content": [
|
89 |
+
{"type": "image"},
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"role": "assistant",
|
94 |
+
"content": [
|
95 |
+
{"type": "text", "text": answer}
|
96 |
+
]
|
97 |
+
}
|
98 |
+
]
|
99 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=False)
|
100 |
+
texts.append(text.strip())
|
101 |
+
images.append([image.convert('RGB')])
|
102 |
+
|
103 |
+
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
104 |
+
|
105 |
+
labels = batch["input_ids"].clone()
|
106 |
+
labels[labels == processor.tokenizer.pad_token_id] = self.image_token_id
|
107 |
+
batch["labels"] = labels
|
108 |
+
|
109 |
+
return batch
|
110 |
+
|
111 |
+
data_collator = MyDataCollator(processor)
|
112 |
+
|
113 |
+
|
114 |
+
training_args = TrainingArguments(
|
115 |
+
output_dir = output_dir,
|
116 |
+
overwrite_output_dir = False,
|
117 |
+
auto_find_batch_size = True,
|
118 |
+
learning_rate = 2e-4,
|
119 |
+
fp16 = True,
|
120 |
+
per_device_train_batch_size = 2,
|
121 |
+
per_device_eval_batch_size = 2,
|
122 |
+
gradient_accumulation_steps = 8,
|
123 |
+
dataloader_pin_memory = False,
|
124 |
+
save_total_limit = 3,
|
125 |
+
evaluation_strategy = None,
|
126 |
+
save_strategy = "steps",
|
127 |
+
eval_steps = 100,
|
128 |
+
save_steps = 10, # checkpoint each 10 steps
|
129 |
+
resume_from_checkpoint = True,
|
130 |
+
logging_steps = 5,
|
131 |
+
remove_unused_columns = False,
|
132 |
+
push_to_hub = True,
|
133 |
+
label_names = ["labels"],
|
134 |
+
load_best_model_at_end = False,
|
135 |
+
report_to = "none",
|
136 |
+
optim = "paged_adamw_8bit",
|
137 |
+
)
|
138 |
+
|
139 |
+
trainer = Trainer(
|
140 |
+
model = model,
|
141 |
+
args = training_args,
|
142 |
+
data_collator = data_collator,
|
143 |
+
train_dataset = train_dataset,
|
144 |
+
)
|
145 |
+
|
146 |
+
trainer.train()
|
start.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
cd /workspace
|
3 |
+
git config --global credential.helper store
|
4 |
+
git lfs install
|
5 |
+
export HF_TOKEN=$1
|
6 |
+
echo "HF_TOKEN: $HF_TOKEN"
|
7 |
+
huggingface-cli login --add-to-git-credential --token $HF_TOKEN
|
8 |
+
git clone https://huggingface.co/eltorio/IDEFICS3_ROCO
|
9 |
+
. /workspace/.miniconda3/bin/activate
|
10 |
+
python /learn.py
|