Commit
·
d393dff
1
Parent(s):
ea22ef8
update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
metrics:
|
| 6 |
+
- f1
|
| 7 |
+
model-index:
|
| 8 |
+
- name: Bio_ClinicalBERT_fold_2_ternary_v1
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# Bio_ClinicalBERT_fold_2_ternary_v1
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 1.8379
|
| 20 |
+
- F1: 0.7970
|
| 21 |
+
|
| 22 |
+
## Model description
|
| 23 |
+
|
| 24 |
+
More information needed
|
| 25 |
+
|
| 26 |
+
## Intended uses & limitations
|
| 27 |
+
|
| 28 |
+
More information needed
|
| 29 |
+
|
| 30 |
+
## Training and evaluation data
|
| 31 |
+
|
| 32 |
+
More information needed
|
| 33 |
+
|
| 34 |
+
## Training procedure
|
| 35 |
+
|
| 36 |
+
### Training hyperparameters
|
| 37 |
+
|
| 38 |
+
The following hyperparameters were used during training:
|
| 39 |
+
- learning_rate: 2e-05
|
| 40 |
+
- train_batch_size: 16
|
| 41 |
+
- eval_batch_size: 16
|
| 42 |
+
- seed: 42
|
| 43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 44 |
+
- lr_scheduler_type: linear
|
| 45 |
+
- num_epochs: 25
|
| 46 |
+
|
| 47 |
+
### Training results
|
| 48 |
+
|
| 49 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
| 50 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
| 51 |
+
| No log | 1.0 | 294 | 0.5573 | 0.7645 |
|
| 52 |
+
| 0.558 | 2.0 | 588 | 0.4940 | 0.8133 |
|
| 53 |
+
| 0.558 | 3.0 | 882 | 0.6569 | 0.7984 |
|
| 54 |
+
| 0.2332 | 4.0 | 1176 | 0.9006 | 0.7943 |
|
| 55 |
+
| 0.2332 | 5.0 | 1470 | 1.0598 | 0.7943 |
|
| 56 |
+
| 0.1016 | 6.0 | 1764 | 1.2016 | 0.8011 |
|
| 57 |
+
| 0.0374 | 7.0 | 2058 | 1.2670 | 0.7970 |
|
| 58 |
+
| 0.0374 | 8.0 | 2352 | 1.3962 | 0.8065 |
|
| 59 |
+
| 0.0196 | 9.0 | 2646 | 1.3871 | 0.8092 |
|
| 60 |
+
| 0.0196 | 10.0 | 2940 | 1.4636 | 0.8106 |
|
| 61 |
+
| 0.0113 | 11.0 | 3234 | 1.4908 | 0.8065 |
|
| 62 |
+
| 0.008 | 12.0 | 3528 | 1.5714 | 0.7930 |
|
| 63 |
+
| 0.008 | 13.0 | 3822 | 1.5383 | 0.8119 |
|
| 64 |
+
| 0.0056 | 14.0 | 4116 | 1.5784 | 0.8106 |
|
| 65 |
+
| 0.0056 | 15.0 | 4410 | 1.7421 | 0.7957 |
|
| 66 |
+
| 0.0084 | 16.0 | 4704 | 1.7423 | 0.8011 |
|
| 67 |
+
| 0.0084 | 17.0 | 4998 | 1.7502 | 0.7984 |
|
| 68 |
+
| 0.0023 | 18.0 | 5292 | 1.8131 | 0.7943 |
|
| 69 |
+
| 0.0057 | 19.0 | 5586 | 1.7784 | 0.8024 |
|
| 70 |
+
| 0.0057 | 20.0 | 5880 | 1.8324 | 0.8011 |
|
| 71 |
+
| 0.0023 | 21.0 | 6174 | 1.8269 | 0.8051 |
|
| 72 |
+
| 0.0023 | 22.0 | 6468 | 1.8622 | 0.7916 |
|
| 73 |
+
| 0.0018 | 23.0 | 6762 | 1.8553 | 0.7957 |
|
| 74 |
+
| 0.0024 | 24.0 | 7056 | 1.8445 | 0.7943 |
|
| 75 |
+
| 0.0024 | 25.0 | 7350 | 1.8379 | 0.7970 |
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
### Framework versions
|
| 79 |
+
|
| 80 |
+
- Transformers 4.21.0
|
| 81 |
+
- Pytorch 1.12.0+cu113
|
| 82 |
+
- Datasets 2.4.0
|
| 83 |
+
- Tokenizers 0.12.1
|