elnasharomar2 commited on
Commit
d2406ee
1 Parent(s): bf02244

Training complete

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: qarib/bert-base-qarib60_860k
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: Qarib_arabic_keyword_extraction
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # Qarib_arabic_keyword_extraction
19
+
20
+ This model is a fine-tuned version of [qarib/bert-base-qarib60_860k](https://huggingface.co/qarib/bert-base-qarib60_860k) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.4027
23
+ - Precision: 0.5369
24
+ - Recall: 0.5937
25
+ - F1: 0.5638
26
+ - Accuracy: 0.9408
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.2196 | 1.0 | 750 | 0.1674 | 0.4656 | 0.4190 | 0.4411 | 0.9327 |
59
+ | 0.1374 | 2.0 | 1500 | 0.1559 | 0.4741 | 0.5255 | 0.4985 | 0.9366 |
60
+ | 0.0976 | 3.0 | 2250 | 0.1711 | 0.4901 | 0.5650 | 0.5249 | 0.9378 |
61
+ | 0.0676 | 4.0 | 3000 | 0.1928 | 0.4884 | 0.5557 | 0.5199 | 0.9363 |
62
+ | 0.0474 | 5.0 | 3750 | 0.2109 | 0.5313 | 0.5438 | 0.5375 | 0.9402 |
63
+ | 0.0342 | 6.0 | 4500 | 0.2414 | 0.5259 | 0.5754 | 0.5495 | 0.9389 |
64
+ | 0.024 | 7.0 | 5250 | 0.2527 | 0.5076 | 0.5881 | 0.5449 | 0.9382 |
65
+ | 0.0186 | 8.0 | 6000 | 0.3029 | 0.5379 | 0.5654 | 0.5513 | 0.9400 |
66
+ | 0.0143 | 9.0 | 6750 | 0.3154 | 0.5307 | 0.5862 | 0.5571 | 0.9398 |
67
+ | 0.0108 | 10.0 | 7500 | 0.3490 | 0.5491 | 0.5810 | 0.5646 | 0.9403 |
68
+ | 0.0078 | 11.0 | 8250 | 0.3550 | 0.5475 | 0.5929 | 0.5693 | 0.9412 |
69
+ | 0.0068 | 12.0 | 9000 | 0.3681 | 0.5360 | 0.6019 | 0.5670 | 0.9406 |
70
+ | 0.0049 | 13.0 | 9750 | 0.3873 | 0.5264 | 0.6048 | 0.5629 | 0.9402 |
71
+ | 0.004 | 14.0 | 10500 | 0.3987 | 0.5380 | 0.5937 | 0.5644 | 0.9407 |
72
+ | 0.0034 | 15.0 | 11250 | 0.4027 | 0.5369 | 0.5937 | 0.5638 | 0.9408 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.35.2
78
+ - Pytorch 2.1.0+cu121
79
+ - Datasets 2.16.1
80
+ - Tokenizers 0.15.0