eliotz commited on
Commit
c963170
1 Parent(s): 864cb70

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 800.60 +/- 178.37
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85950e9e05ab9ce993055a8daa16fef602a6673a813d561281ebab55fa0a84c5
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0d74cc90d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0d74cc9160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0d74cc91f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0d74cc9280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0d74cc9310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0d74cc93a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0d74cc9430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0d74cc94c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0d74cc9550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0d74cc95e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0d74cc9670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0d74cc9700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0d74cc2a80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674419437814512123,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABIoAkD8/ok/MlkTvykcoD+hrQvAHK0XQC8/6r9bplvAC0KWP2Nmb74DPYpAjWQAvkiDrb8tOq87kIkZP380Uj9JHEe/ZzIlwARgxD7v6d29oZYoQNMyC8A/rbe+rsAlQMSFNz/J2uw+lK2RPm/2EMAzBPs//w6JP/gRor/yqj1AbVEpvobfJb+hSjs+SKsPwJYWAT15mEtA+U5bP0fM5j8jUIE/8IjevfWVHD+jzFi7fmHPP/3aK7889Fm/Mt4Kv1jsLb/BtUhAkGxmQIdIs7/gjLK/sVgKwJStkT5gC+I+H/rgPvC/A7+2Klc/q/ajP+Wimr+1drA9IqUXv0v6vr8P30m+gFKJPkdkbD8MKpk+GTtfv7HCaz5SVR0/NMpmPxYOB7/3f3a/bjsKP1PaWD+73jm/n3nNv7z/mj+6JN4+4Iyyv8na7D6UrZE+YAviPrwMSz+Xe/6/7fhOPwxZND/2BuS/vLk3P2w2Pb9mS8e/sGwlvh824T+j2rw/fdeRvSvdZr+noXg//ZABPyfe4T4bZ7i/ZiwkP0soIT+UHca82QWfvtmOsD4omuU/OSIQP8SFNz/J2uw+lK2RPmAL4j6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABLgdS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJ6JPPQAAAACrnuC/AAAAAO6F+j0AAAAAQn/ePwAAAACqYIi8AAAAAF557z8AAAAAw/H/PQAAAACj4ve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYEKQtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMAZm7wAAAAApVf0vwAAAADVO7i9AAAAAEHh+j8AAAAA8tthvQAAAADAAPg/AAAAAAhGp70AAAAA1DXavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJcTCzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBU+Aa+AAAAAEc75r8AAAAAxwodvQAAAAAGnvA/AAAAAN1zj70AAAAARRH9PwAAAAD/3Zg7AAAAADVI978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNChk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZDDVvQAAAAAN9ui/AAAAALrMY70AAAAACz32PwAAAACm7SW8AAAAANor3z8AAAAAmoxovQAAAABJIee/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUCAasIVueMAWyUTegDjAF0lEdApmk0tGus93V9lChoBkdAkjYEXYUWVWgHTegDaAhHQKZplmjj7yh1fZQoaAZHQJQ/VaNdZ7poB03oA2gIR0CmcY2NWEK3dX2UKGgGR0CUB0NXHR1HaAdN6ANoCEdApnIJGOMl1XV9lChoBkdAkzmkdeY2KmgHTegDaAhHQKZ1Z+ocaOx1fZQoaAZHQJUxCn3ta6loB03oA2gIR0Cmdck87p3YdX2UKGgGR0CUCLUrCm/GaAdN6ANoCEdApn2JWJaaC3V9lChoBkdAlQe/5k9U0mgHTegDaAhHQKZ972ys0YV1fZQoaAZHQIodoZ88cMpoB03oA2gIR0CmgRbnX/YKdX2UKGgGR0CVIUa4tpVTaAdN6ANoCEdApoF0olUp/nV9lChoBkdAke/mrn1WbWgHTegDaAhHQKaJQBgeA/d1fZQoaAZHQJUuHIZIg/1oB03oA2gIR0CmiaamwaBJdX2UKGgGR0CUC/bs4T9LaAdN6ANoCEdApozOOdXkpHV9lChoBkdAlDFzMzMzM2gHTegDaAhHQKaNL668QI51fZQoaAZHQJXF7BSDRMNoB03oA2gIR0CmlODUutfYdX2UKGgGR0CWAwvF3pwCaAdN6ANoCEdAppVL50r9VHV9lChoBkdAls74ht+CsmgHTegDaAhHQKaYbCfHxSZ1fZQoaAZHQJXjdGG21D1oB03oA2gIR0CmmMqyGBWgdX2UKGgGR0CQwox46fapaAdN6ANoCEdApqCIAdXDFnV9lChoBkdAlIMHCfpUxWgHTegDaAhHQKag7jRUm2N1fZQoaAZHQJSxr+5vtMRoB03oA2gIR0CmpBuJk5IZdX2UKGgGR0CT0D0mtyPuaAdN6ANoCEdApqR25OJtSHV9lChoBkdAkZ95AyEcsGgHTegDaAhHQKasNc6eXiR1fZQoaAZHQJLFd4JNTLpoB03oA2gIR0CmrJwdbPhRdX2UKGgGR0CUXPxG2CumaAdN6ANoCEdAprAblRxcV3V9lChoBkdAlIc4JVsDXGgHTegDaAhHQKawezN2TxJ1fZQoaAZHQJK48IPbwjNoB03oA2gIR0CmuHtJWeYldX2UKGgGR0CSmuCN0eU7aAdN6ANoCEdAprjlJ6IFeXV9lChoBkdAk1GraAWi12gHTegDaAhHQKa8G1G9YfZ1fZQoaAZHQJJzcRlHz6JoB03oA2gIR0CmvHok7fYSdX2UKGgGR0CT6xlYU34saAdN6ANoCEdApsRaxcE/0XV9lChoBkdAlXSsAJb+tWgHTegDaAhHQKbExI8yN4t1fZQoaAZHQJTB7+Q2dd5oB03oA2gIR0Cmx/6yB06pdX2UKGgGR0CWPyU8FINFaAdN6ANoCEdApshi6UaAF3V9lChoBkdAkpn4g/1QImgHTegDaAhHQKbQMXAM2FZ1fZQoaAZHQI55rNfPX05oB03oA2gIR0Cm0Job4rSWdX2UKGgGR0CVYWGPxQSBaAdN6ANoCEdAptPme+VTrHV9lChoBkdAlZ4mDYh+v2gHTegDaAhHQKbUUAq/dqN1fZQoaAZHQJRiQoAn2IxoB03oA2gIR0Cm3BeumrKedX2UKGgGR0CWi1shgVoIaAdN6ANoCEdAptyEHhS9/XV9lChoBkdAlN8MafjCHmgHTegDaAhHQKbfrZtelbh1fZQoaAZHQJQF7QAuIyloB03oA2gIR0Cm4A5ezD4ydX2UKGgGR0CTjUDifg76aAdN6ANoCEdApufXp8neBXV9lChoBkdAkiiu01IiDGgHTegDaAhHQKboQEQoTf11fZQoaAZHQJJiPlkpZwJoB03oA2gIR0Cm66qvvBrOdX2UKGgGR0CP8kM6zVtoaAdN6ANoCEdApuwS4FzMinV9lChoBkdAgljUWdmQKmgHTegDaAhHQKb0ANCJGfB1fZQoaAZHQJDBDfcer+5oB03oA2gIR0Cm9GP5gw49dX2UKGgGR0CSWwWgOBlMaAdN6ANoCEdApveJN/OMVHV9lChoBkdAlZId6X0GvGgHTegDaAhHQKb37KPGQ0Z1fZQoaAZHQI431x2jfvZoB03oA2gIR0Cm/7XocJdCdX2UKGgGR0CUBOFa0QbuaAdN6ANoCEdApwAepda+vnV9lChoBkdAkphy4e9zwWgHTegDaAhHQKcDTQla8pV1fZQoaAZHQJUe+iAUcn5oB03oA2gIR0CnA69jgAIZdX2UKGgGR0COSV6i0v4/aAdN6ANoCEdApwuHgtOEd3V9lChoBkdAjlWuanaWX2gHTegDaAhHQKcL8LrHEMt1fZQoaAZHQIc6fTPSlWRoB03oA2gIR0CnDzJm/WUbdX2UKGgGR0CJGi78vVVhaAdN6ANoCEdApw+RwyZa3nV9lChoBkdAhehBj4Hoo2gHTegDaAhHQKcXYz9CNS91fZQoaAZHQIuKURODaoNoB03oA2gIR0CnF8q+BYmtdX2UKGgGR0CMl/Ke05U+aAdN6ANoCEdApxr/VqesgnV9lChoBkdAhJnd+w1R+GgHTegDaAhHQKcbYyAxzq91fZQoaAZHQJO5mqtHQQdoB03oA2gIR0CnIxaRp1zRdX2UKGgGR0CR07EUj9n9aAdN6ANoCEdApyOBhnanJnV9lChoBkdAjbKQmeDnNmgHTegDaAhHQKcmr5gw4851fZQoaAZHQIyCcqMFUyZoB03oA2gIR0CnJyGK64DtdX2UKGgGR0CQz/yT6i0waAdN6ANoCEdApy8pu/Dcd3V9lChoBkdAlX9DIRywOmgHTegDaAhHQKcvn3Zf2K51fZQoaAZHQJGV0VIqbz9oB03oA2gIR0CnMuCF9KEndX2UKGgGR0CNlhwWFev7aAdN6ANoCEdApzM9olD4QHV9lChoBkdAkXN4o3JgcGgHTegDaAhHQKc7AvQF9rp1fZQoaAZHQJHDdSwW30BoB03oA2gIR0CnO2vvKEFodX2UKGgGR0CQsQBmwqy4aAdN6ANoCEdApz6ahnJ1aHV9lChoBkdAkkXIGY8dP2gHTegDaAhHQKc++3bVSXN1fZQoaAZHQJLduDtgKF9oB03oA2gIR0CnRsOX/o7ndX2UKGgGR0CTiw3MY/FBaAdN6ANoCEdAp0crMcIZ63V9lChoBkdAkhdwfyPMjmgHTegDaAhHQKdKWgpz90l1fZQoaAZHQJOrrDye7MBoB03oA2gIR0CnSrhgE2YOdX2UKGgGR0CTeW59mYjTaAdN6ANoCEdAp1KauIRAbHV9lChoBkdAkgdAPmPo3mgHTegDaAhHQKdTCv8qFyt1fZQoaAZHQJGFLG6wt8NoB03oA2gIR0CnVjK0MPSVdX2UKGgGR0CS3PD4gzP9aAdN6ANoCEdAp1aWeMAFPnV9lChoBkdAk92hWYF7lmgHTegDaAhHQKdeRqGDcud1fZQoaAZHQIoDraGpMpRoB03oA2gIR0CnXq+jmCAddX2UKGgGR0CUXxLtNSIhaAdN6ANoCEdAp2Hf8uSOinV9lChoBkdAkBwerdWQwWgHTegDaAhHQKdiPVGTcIt1fZQoaAZHQI8ITw+dK/VoB03oA2gIR0CnamP7FbV0dX2UKGgGR0CJ+Wd9Ujs2aAdN6ANoCEdAp2rOeBg/knV9lChoBkdAkAyj8UEgXGgHTegDaAhHQKdt/W5H3Dh1fZQoaAZHQJIaINPP9k1oB03oA2gIR0CnblkCvHLidX2UKGgGR0CN63YxL0z1aAdN6ANoCEdAp3Y38Kohp3V9lChoBkdAkHHcU/OdG2gHTegDaAhHQKd2oLLIPsl1fZQoaAZHQI2CzhtLteFoB03oA2gIR0CnedKeCkGidX2UKGgGR0CPaydhAnlXaAdN6ANoCEdAp3owEOiFkHV9lChoBkdAmLLiqU/wAmgHTegDaAhHQKeB74jbBXV1fZQoaAZHQIuJ79sJpnJoB03oA2gIR0CnglJgb6xgdX2UKGgGR0CO/T/YraufaAdN6ANoCEdAp4V9zp5eJHV9lChoBkdAkR4uXAuZkWgHTegDaAhHQKeF4bobGWF1fZQoaAZHQJIzr24/eLxoB03oA2gIR0CnjYoduHerdX2UKGgGR0CRfIHmzSkTaAdN6ANoCEdAp43zQ/oq1HVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9200e54c16903efab25987cf4ba87a845b85626d78e71cf341dc2352d04c23b5
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d325e08465ac9f09f85397d002a1a2bc1f2bd89990e8bda3e79d6afe1e97500
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0d74cc90d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0d74cc9160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0d74cc91f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0d74cc9280>", "_build": "<function ActorCriticPolicy._build at 0x7f0d74cc9310>", "forward": "<function ActorCriticPolicy.forward at 0x7f0d74cc93a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0d74cc9430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0d74cc94c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0d74cc9550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0d74cc95e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0d74cc9670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0d74cc9700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0d74cc2a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674419437814512123, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABIoAkD8/ok/MlkTvykcoD+hrQvAHK0XQC8/6r9bplvAC0KWP2Nmb74DPYpAjWQAvkiDrb8tOq87kIkZP380Uj9JHEe/ZzIlwARgxD7v6d29oZYoQNMyC8A/rbe+rsAlQMSFNz/J2uw+lK2RPm/2EMAzBPs//w6JP/gRor/yqj1AbVEpvobfJb+hSjs+SKsPwJYWAT15mEtA+U5bP0fM5j8jUIE/8IjevfWVHD+jzFi7fmHPP/3aK7889Fm/Mt4Kv1jsLb/BtUhAkGxmQIdIs7/gjLK/sVgKwJStkT5gC+I+H/rgPvC/A7+2Klc/q/ajP+Wimr+1drA9IqUXv0v6vr8P30m+gFKJPkdkbD8MKpk+GTtfv7HCaz5SVR0/NMpmPxYOB7/3f3a/bjsKP1PaWD+73jm/n3nNv7z/mj+6JN4+4Iyyv8na7D6UrZE+YAviPrwMSz+Xe/6/7fhOPwxZND/2BuS/vLk3P2w2Pb9mS8e/sGwlvh824T+j2rw/fdeRvSvdZr+noXg//ZABPyfe4T4bZ7i/ZiwkP0soIT+UHca82QWfvtmOsD4omuU/OSIQP8SFNz/J2uw+lK2RPmAL4j6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABLgdS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJ6JPPQAAAACrnuC/AAAAAO6F+j0AAAAAQn/ePwAAAACqYIi8AAAAAF557z8AAAAAw/H/PQAAAACj4ve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYEKQtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMAZm7wAAAAApVf0vwAAAADVO7i9AAAAAEHh+j8AAAAA8tthvQAAAADAAPg/AAAAAAhGp70AAAAA1DXavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJcTCzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBU+Aa+AAAAAEc75r8AAAAAxwodvQAAAAAGnvA/AAAAAN1zj70AAAAARRH9PwAAAAD/3Zg7AAAAADVI978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNChk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZDDVvQAAAAAN9ui/AAAAALrMY70AAAAACz32PwAAAACm7SW8AAAAANor3z8AAAAAmoxovQAAAABJIee/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUCAasIVueMAWyUTegDjAF0lEdApmk0tGus93V9lChoBkdAkjYEXYUWVWgHTegDaAhHQKZplmjj7yh1fZQoaAZHQJQ/VaNdZ7poB03oA2gIR0CmcY2NWEK3dX2UKGgGR0CUB0NXHR1HaAdN6ANoCEdApnIJGOMl1XV9lChoBkdAkzmkdeY2KmgHTegDaAhHQKZ1Z+ocaOx1fZQoaAZHQJUxCn3ta6loB03oA2gIR0Cmdck87p3YdX2UKGgGR0CUCLUrCm/GaAdN6ANoCEdApn2JWJaaC3V9lChoBkdAlQe/5k9U0mgHTegDaAhHQKZ972ys0YV1fZQoaAZHQIodoZ88cMpoB03oA2gIR0CmgRbnX/YKdX2UKGgGR0CVIUa4tpVTaAdN6ANoCEdApoF0olUp/nV9lChoBkdAke/mrn1WbWgHTegDaAhHQKaJQBgeA/d1fZQoaAZHQJUuHIZIg/1oB03oA2gIR0CmiaamwaBJdX2UKGgGR0CUC/bs4T9LaAdN6ANoCEdApozOOdXkpHV9lChoBkdAlDFzMzMzM2gHTegDaAhHQKaNL668QI51fZQoaAZHQJXF7BSDRMNoB03oA2gIR0CmlODUutfYdX2UKGgGR0CWAwvF3pwCaAdN6ANoCEdAppVL50r9VHV9lChoBkdAls74ht+CsmgHTegDaAhHQKaYbCfHxSZ1fZQoaAZHQJXjdGG21D1oB03oA2gIR0CmmMqyGBWgdX2UKGgGR0CQwox46fapaAdN6ANoCEdApqCIAdXDFnV9lChoBkdAlIMHCfpUxWgHTegDaAhHQKag7jRUm2N1fZQoaAZHQJSxr+5vtMRoB03oA2gIR0CmpBuJk5IZdX2UKGgGR0CT0D0mtyPuaAdN6ANoCEdApqR25OJtSHV9lChoBkdAkZ95AyEcsGgHTegDaAhHQKasNc6eXiR1fZQoaAZHQJLFd4JNTLpoB03oA2gIR0CmrJwdbPhRdX2UKGgGR0CUXPxG2CumaAdN6ANoCEdAprAblRxcV3V9lChoBkdAlIc4JVsDXGgHTegDaAhHQKawezN2TxJ1fZQoaAZHQJK48IPbwjNoB03oA2gIR0CmuHtJWeYldX2UKGgGR0CSmuCN0eU7aAdN6ANoCEdAprjlJ6IFeXV9lChoBkdAk1GraAWi12gHTegDaAhHQKa8G1G9YfZ1fZQoaAZHQJJzcRlHz6JoB03oA2gIR0CmvHok7fYSdX2UKGgGR0CT6xlYU34saAdN6ANoCEdApsRaxcE/0XV9lChoBkdAlXSsAJb+tWgHTegDaAhHQKbExI8yN4t1fZQoaAZHQJTB7+Q2dd5oB03oA2gIR0Cmx/6yB06pdX2UKGgGR0CWPyU8FINFaAdN6ANoCEdApshi6UaAF3V9lChoBkdAkpn4g/1QImgHTegDaAhHQKbQMXAM2FZ1fZQoaAZHQI55rNfPX05oB03oA2gIR0Cm0Job4rSWdX2UKGgGR0CVYWGPxQSBaAdN6ANoCEdAptPme+VTrHV9lChoBkdAlZ4mDYh+v2gHTegDaAhHQKbUUAq/dqN1fZQoaAZHQJRiQoAn2IxoB03oA2gIR0Cm3BeumrKedX2UKGgGR0CWi1shgVoIaAdN6ANoCEdAptyEHhS9/XV9lChoBkdAlN8MafjCHmgHTegDaAhHQKbfrZtelbh1fZQoaAZHQJQF7QAuIyloB03oA2gIR0Cm4A5ezD4ydX2UKGgGR0CTjUDifg76aAdN6ANoCEdApufXp8neBXV9lChoBkdAkiiu01IiDGgHTegDaAhHQKboQEQoTf11fZQoaAZHQJJiPlkpZwJoB03oA2gIR0Cm66qvvBrOdX2UKGgGR0CP8kM6zVtoaAdN6ANoCEdApuwS4FzMinV9lChoBkdAgljUWdmQKmgHTegDaAhHQKb0ANCJGfB1fZQoaAZHQJDBDfcer+5oB03oA2gIR0Cm9GP5gw49dX2UKGgGR0CSWwWgOBlMaAdN6ANoCEdApveJN/OMVHV9lChoBkdAlZId6X0GvGgHTegDaAhHQKb37KPGQ0Z1fZQoaAZHQI431x2jfvZoB03oA2gIR0Cm/7XocJdCdX2UKGgGR0CUBOFa0QbuaAdN6ANoCEdApwAepda+vnV9lChoBkdAkphy4e9zwWgHTegDaAhHQKcDTQla8pV1fZQoaAZHQJUe+iAUcn5oB03oA2gIR0CnA69jgAIZdX2UKGgGR0COSV6i0v4/aAdN6ANoCEdApwuHgtOEd3V9lChoBkdAjlWuanaWX2gHTegDaAhHQKcL8LrHEMt1fZQoaAZHQIc6fTPSlWRoB03oA2gIR0CnDzJm/WUbdX2UKGgGR0CJGi78vVVhaAdN6ANoCEdApw+RwyZa3nV9lChoBkdAhehBj4Hoo2gHTegDaAhHQKcXYz9CNS91fZQoaAZHQIuKURODaoNoB03oA2gIR0CnF8q+BYmtdX2UKGgGR0CMl/Ke05U+aAdN6ANoCEdApxr/VqesgnV9lChoBkdAhJnd+w1R+GgHTegDaAhHQKcbYyAxzq91fZQoaAZHQJO5mqtHQQdoB03oA2gIR0CnIxaRp1zRdX2UKGgGR0CR07EUj9n9aAdN6ANoCEdApyOBhnanJnV9lChoBkdAjbKQmeDnNmgHTegDaAhHQKcmr5gw4851fZQoaAZHQIyCcqMFUyZoB03oA2gIR0CnJyGK64DtdX2UKGgGR0CQz/yT6i0waAdN6ANoCEdApy8pu/Dcd3V9lChoBkdAlX9DIRywOmgHTegDaAhHQKcvn3Zf2K51fZQoaAZHQJGV0VIqbz9oB03oA2gIR0CnMuCF9KEndX2UKGgGR0CNlhwWFev7aAdN6ANoCEdApzM9olD4QHV9lChoBkdAkXN4o3JgcGgHTegDaAhHQKc7AvQF9rp1fZQoaAZHQJHDdSwW30BoB03oA2gIR0CnO2vvKEFodX2UKGgGR0CQsQBmwqy4aAdN6ANoCEdApz6ahnJ1aHV9lChoBkdAkkXIGY8dP2gHTegDaAhHQKc++3bVSXN1fZQoaAZHQJLduDtgKF9oB03oA2gIR0CnRsOX/o7ndX2UKGgGR0CTiw3MY/FBaAdN6ANoCEdAp0crMcIZ63V9lChoBkdAkhdwfyPMjmgHTegDaAhHQKdKWgpz90l1fZQoaAZHQJOrrDye7MBoB03oA2gIR0CnSrhgE2YOdX2UKGgGR0CTeW59mYjTaAdN6ANoCEdAp1KauIRAbHV9lChoBkdAkgdAPmPo3mgHTegDaAhHQKdTCv8qFyt1fZQoaAZHQJGFLG6wt8NoB03oA2gIR0CnVjK0MPSVdX2UKGgGR0CS3PD4gzP9aAdN6ANoCEdAp1aWeMAFPnV9lChoBkdAk92hWYF7lmgHTegDaAhHQKdeRqGDcud1fZQoaAZHQIoDraGpMpRoB03oA2gIR0CnXq+jmCAddX2UKGgGR0CUXxLtNSIhaAdN6ANoCEdAp2Hf8uSOinV9lChoBkdAkBwerdWQwWgHTegDaAhHQKdiPVGTcIt1fZQoaAZHQI8ITw+dK/VoB03oA2gIR0CnamP7FbV0dX2UKGgGR0CJ+Wd9Ujs2aAdN6ANoCEdAp2rOeBg/knV9lChoBkdAkAyj8UEgXGgHTegDaAhHQKdt/W5H3Dh1fZQoaAZHQJIaINPP9k1oB03oA2gIR0CnblkCvHLidX2UKGgGR0CN63YxL0z1aAdN6ANoCEdAp3Y38Kohp3V9lChoBkdAkHHcU/OdG2gHTegDaAhHQKd2oLLIPsl1fZQoaAZHQI2CzhtLteFoB03oA2gIR0CnedKeCkGidX2UKGgGR0CPaydhAnlXaAdN6ANoCEdAp3owEOiFkHV9lChoBkdAmLLiqU/wAmgHTegDaAhHQKeB74jbBXV1fZQoaAZHQIuJ79sJpnJoB03oA2gIR0CnglJgb6xgdX2UKGgGR0CO/T/YraufaAdN6ANoCEdAp4V9zp5eJHV9lChoBkdAkR4uXAuZkWgHTegDaAhHQKeF4bobGWF1fZQoaAZHQJIzr24/eLxoB03oA2gIR0CnjYoduHerdX2UKGgGR0CRfIHmzSkTaAdN6ANoCEdAp43zQ/oq1HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (744 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 800.5971645236772, "std_reward": 178.37249809083815, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T21:45:12.671600"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9848de34f5a5254d21bc8e32d8322387b1214cc87ab83f3410002ac8901e935d
3
+ size 2136