ppo-LunarLander-v2 / config.json
electricwapiti's picture
Upload PPO LunarLander-v2 trained agent
29f0773 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x789eb22b6950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x789eb22b69e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x789eb22b6a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x789eb22b6b00>", "_build": "<function ActorCriticPolicy._build at 0x789eb22b6b90>", "forward": "<function ActorCriticPolicy.forward at 0x789eb22b6c20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x789eb22b6cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x789eb22b6d40>", "_predict": "<function ActorCriticPolicy._predict at 0x789eb22b6dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x789eb22b6e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x789eb22b6ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x789eb22b6f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x789eb2c64980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724472809121475127, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoNjT39slU/soRwPZK9Br9pfq49uYc6PQAAAAAAAAAAABT0PMOZXLoeqgK6IWwptoMCJzpd4Rk5AACAPwAAgD8z5/c9CFnLPlqSBb/Ty9i+h7T6vVmrqb4AAAAAAAAAAM2cVzw4kK0/KHdiPWMjub7AMBq9JNgdPQAAAAAAAAAAmi1MvTYgOrxtrTI8VHvJPJIsm70KJaM9AACAPwAAgD+awNM8XGt5umEjgTzpw60z3FzNuqQwu7IAAAAAAACAPzPz4DlCsqk/5yuOO5cy/75yv/u53WR+ugAAAAAAAAAAwNmCPYRFtT89F04+E6i6vjPT17zIvn49AAAAAAAAAABmFq49XMEdvD2GursEzFA8zQ+APdqfML0AAIA/AAAAAABVjz0xiWU+8fKWvhTp1r7tave9HEukvQAAAAAAAAAAmimku1IK1rsQAMA8zfmJPFmFPb3TDWk9AACAPwAAgD8afmU9NAeXP+J0AT6qzx+/EICgPc6D9z0AAAAAAAAAAHM/lr2nZQE/Uvi+Pd1I8r6p0qC91l53PQAAAAAAAAAAqtFNvod7Wz8wzFe8PLkBvx9wmr7bFLY9AAAAAAAAAADNgsW9FFCBuqxfPjtDT/g3JU+4OqKc+rkAAAAAAAAAAOZIPr0RNdU9JVlNPoZaw75sYMY9gJNXOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLyck6cRUaMAWyUS8mMAXSUR0CoNJ5TQ3PzdX2UKGgGR0BzWj6XSjQBaAdL6WgIR0CoNKf8dgfEdX2UKGgGR0BziH56+nIiaAdLxWgIR0CoNLj94u9OdX2UKGgGR0ByLxGPPszEaAdNBwFoCEdAqDS+y1NQCXV9lChoBkdAcBhzUZvUBmgHS91oCEdAqDU31e0G/3V9lChoBkdAb74abWmP52gHS9BoCEdAqDVV/x2B8XV9lChoBkdAcfPnDziCKGgHS9ZoCEdAqDXgJ3PiUHV9lChoBkdAcdUpjMFEA2gHS+BoCEdAqDZFNrTH83V9lChoBkdAc8QxZMcp9mgHS8FoCEdAqDZSh6By0nV9lChoBkdAcdikmx+rl2gHS9loCEdAqDZg7muDBnV9lChoBkdAb9VuKoAGS2gHS89oCEdAqDZ+0ojOcHV9lChoBkdAca4AE+xGD2gHS+xoCEdAqDaSnWJ79nV9lChoBkdAcnH9YfW+XmgHS+FoCEdAqDam5DqnnHV9lChoBkdAUQUadc0Lt2gHS4poCEdAqDa4D9wWFnV9lChoBkdAbpY96kZaV2gHS8NoCEdAqDeC1PWQOnV9lChoBkdAc4y3juKGcmgHS85oCEdAqDek6BAfMnV9lChoBkdAcrcOmixmkGgHS+5oCEdAqDewVfu1GHV9lChoBkdAcjdyiEg4fmgHS9NoCEdAqDfemk30gHV9lChoBkdAcfLTibUgCGgHS+VoCEdAqDiqXIEKV3V9lChoBkdAcVYmQr+YMWgHS/JoCEdAqDj7Ljghr3V9lChoBkdAcV/xeb/ff2gHS7poCEdAqDkW14Pf9HV9lChoBkdAcXBRG+bmVGgHS9hoCEdAqDkv/zasZHV9lChoBkdAc2OlDWsijmgHS9NoCEdAqDmcNpdrwnV9lChoBkdAbg3tMwlByGgHS89oCEdAqDmoX2ugYnV9lChoBkdAc1Y+pfhMrWgHS+hoCEdAqDozRhMJyHV9lChoBkdAcLPneizsyGgHS+VoCEdAqDpgKjSG8HV9lChoBkdAVKcYMvysjmgHS6ZoCEdAqDplb3XZoXV9lChoBkdAcjDiLVFx42gHS/1oCEdAqDrRh4MWoHV9lChoBkdAcZlOtW+49WgHS8poCEdAqDsDvkRzzXV9lChoBkdAce8oBaLXMGgHS8poCEdAqDtCkM1CPnV9lChoBkdAb/D9wWFewGgHS8RoCEdAqDtlanrIHXV9lChoBkdAcNjyDIzWPWgHS8poCEdAqDyx8BuGbnV9lChoBkdAcYPOc2BJ7WgHTW4BaAhHQKg84UY8+zN1fZQoaAZHQHD2A2qDK5loB0vDaAhHQKg8/xHXmNl1fZQoaAZHQHNMNf9gndBoB0vAaAhHQKhHhyYG+sZ1fZQoaAZHQHOxtZzPrv9oB0vSaAhHQKhHuDAaef91fZQoaAZHQHAEU+kgwGpoB0vZaAhHQKhIV2xIJ7d1fZQoaAZHQHHvlSbYsd1oB0u8aAhHQKhIZq0tyxR1fZQoaAZHQHLh393r2QJoB0vEaAhHQKhIq0FbFCN1fZQoaAZHQHLyQ2Q4jr1oB0vPaAhHQKhI180DU3J1fZQoaAZHQHEr/Jq7AcloB0vAaAhHQKhI6G5c1O11fZQoaAZHQHMJrcsUZeloB0vJaAhHQKhJMPikwex1fZQoaAZHQHGuYTj/+85oB0vHaAhHQKhJVkNFz+51fZQoaAZHQHJs6C6H0shoB0vZaAhHQKhJumTC+Dh1fZQoaAZHQGgF6Ei+tbNoB03oA2gIR0CoSiyFoL5RdX2UKGgGR0Byz1SVGCqZaAdLwGgIR0CoSmggX/HYdX2UKGgGR0ByP1QVKwpwaAdL1WgIR0CoSpwAU+LWdX2UKGgGR0BwUA+8oQWfaAdL0mgIR0CoSucrI5o5dX2UKGgGR0ByDAPhAGB4aAdL32gIR0CoSvR3u/lAdX2UKGgGR0By224tpVS5aAdLy2gIR0CoSvzAnDzidX2UKGgGR0BynYAksz2waAdLt2gIR0CoS5Z88cMmdX2UKGgGR0By6mqPwNLEaAdL0GgIR0CoS77wKBuodX2UKGgGR0Bx4mfAbhm5aAdL2GgIR0CoS9Kyv9tNdX2UKGgGR0BxmK/7BO58aAdLt2gIR0CoTLBXS0BwdX2UKGgGR0BuzE9IPK+0aAdL3mgIR0CoTMSCe2/jdX2UKGgGR0By2X40uUUxaAdL32gIR0CoTPFchTwVdX2UKGgGR0Bzy2Eg4ffXaAdL/mgIR0CoTQFXA/LUdX2UKGgGR0BzKvi++M6zaAdL0WgIR0CoTYpZ4fOldX2UKGgGR0ByYU9Mbm2caAdLyWgIR0CoTaeSr5qNdX2UKGgGR0Bx0VP69CeFaAdLvmgIR0CoTa402tMgdX2UKGgGR0Bzg+vkili0aAdLv2gIR0CoTg0WVNYbdX2UKGgGR0ByDrFxXGOuaAdLzmgIR0CoTkP/BFd+dX2UKGgGR0Bw9zYg7o0RaAdL12gIR0CoTnxYq5LAdX2UKGgGR0Bw8p4qwyIpaAdLw2gIR0CoTsFXA/LUdX2UKGgGR0BzPKIFeOXFaAdL1mgIR0CoT0gY51eTdX2UKGgGR0ByH7S3LFGYaAdL5WgIR0CoT3Q482aVdX2UKGgGR0BolA+0PYnOaAdN6ANoCEdAqE/LEk0JnnV9lChoBkdAbxQ4TbnHN2gHS8VoCEdAqE/1fJFLFnV9lChoBkdAcU5ieumrKmgHS8hoCEdAqFArfJmuknV9lChoBkdAcP1UFSsKcGgHS8VoCEdAqFAv31zySXV9lChoBkdAcmZwwj+rEWgHS7xoCEdAqFCzeuV5bHV9lChoBkdAcrpjlxOtXGgHS8FoCEdAqFDPJzT4L3V9lChoBkdAcQico6S1V2gHS85oCEdAqFDfXbuc+nV9lChoBkdAcyGVu76HkGgHS8hoCEdAqFFNALRa5nV9lChoBkdAc7i6aLGaQWgHS8poCEdAqFGHGIbfg3V9lChoBkdAcf02tMfzSWgHS9doCEdAqFH925hBq3V9lChoBkdAcYKqxC6YmmgHS8loCEdAqFIMhvBJqnV9lChoBkdAcdbl6qsEJWgHS7hoCEdAqFKC/CZWrHV9lChoBkdAcFPNVinYQWgHS8xoCEdAqFKrjebd8HV9lChoBkdAc67EIw/PgWgHS8ZoCEdAqFNApWmxdXV9lChoBkdAbxtPAO8TSWgHS8NoCEdAqFNu0NSZSnV9lChoBkdAcZVX0oScsmgHS+NoCEdAqFOS5/b0v3V9lChoBkdAcpwk92X9i2gHS+hoCEdAqFQP82rGR3V9lChoBkdAczdQ1aW5Y2gHS8VoCEdAqFQc65oXbnV9lChoBkdAciaYgaFVUGgHS8poCEdAqFRE/0NBnnV9lChoBkdAcgwHWjGkvmgHS9loCEdAqFRXtKIznHV9lChoBkdAcYwRm9QGfWgHS+doCEdAqFVoHC4z8HV9lChoBkdAY7BZ6D5CW2gHTegDaAhHQKhVblp48lp1fZQoaAZHQHNmtZmqYJFoB0vAaAhHQKhVdaZhKDl1fZQoaAZHQHNtJWilBQhoB0vnaAhHQKhVsSSNfgJ1fZQoaAZHQHHpTcZccENoB0vUaAhHQKhV7NnoPkJ1fZQoaAZHQHMG3cDbJwNoB007AmgIR0CoVpg/keZHdX2UKGgGR0BuVFFDv3JxaAdL32gIR0CoVu0e+23KdX2UKGgGR0ByWxf7aZhKaAdL32gIR0CoV6r1/Ue/dX2UKGgGR0ByEe2PT5O8aAdL3mgIR0CoV+QCbMHKdX2UKGgGR0BxibIBBAv+aAdNGQFoCEdAqFf/+4smOXV9lChoBkdAb5RQEZBLPGgHS85oCEdAqFh0hgVoH3V9lChoBkdAcMrSydFvymgHS89oCEdAqFi1oL5RCXV9lChoBkdAcAKjWCmMwWgHS9ZoCEdAqFjzCYTkAHV9lChoBkdAc2VgQYk3TGgHS+5oCEdAqFkdOdoWYXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 728, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}