Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +20 -20
- a2c-AntBulletEnv-v0/policy.optimizer.pth +2 -2
- a2c-AntBulletEnv-v0/policy.pth +2 -2
- a2c-AntBulletEnv-v0/system_info.txt +5 -5
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1686.21 +/- 103.81
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14660611db0dae805e16135b199636e1b09287bd6f0a448693f2ba65788efc4c
|
3 |
+
size 129122
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -34,7 +34,7 @@
|
|
34 |
},
|
35 |
"observation_space": {
|
36 |
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
-
":serialized:": "
|
38 |
"dtype": "float32",
|
39 |
"_shape": [
|
40 |
28
|
@@ -47,7 +47,7 @@
|
|
47 |
},
|
48 |
"action_space": {
|
49 |
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
-
":serialized:": "
|
51 |
"dtype": "float32",
|
52 |
"_shape": [
|
53 |
8
|
@@ -64,16 +64,16 @@
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
71 |
":type:": "<class 'function'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -81,7 +81,7 @@
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
-
":serialized:": "
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
@@ -89,7 +89,7 @@
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9502311160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f95023111f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9502311280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9502311310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f95023113a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9502311430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f95023114c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9502311550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f95023115e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9502311670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9502311700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9502311790>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f950230fb80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
34 |
},
|
35 |
"observation_space": {
|
36 |
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
"dtype": "float32",
|
39 |
"_shape": [
|
40 |
28
|
|
|
47 |
},
|
48 |
"action_space": {
|
49 |
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
"dtype": "float32",
|
52 |
"_shape": [
|
53 |
8
|
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1675551832844095000,
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
71 |
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9Vc2Vycy9zZWJhcy9taW5pY29uZGEzL2VudnMvYW5vbS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL1VzZXJzL3NlYmFzL21pbmljb25kYTMvZW52cy9hbm9tL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIVMmj9xg28/vWs0v9nspj9Z70Q/6IOOP7SWej86Al2/ECFEv1VMWT+Uyd6+yiCUv11wlj+KgFU/ZdtPvzIfUT9341O/C/LMvr4l+T7R/QI9IhInv1ynZr/kti4/VJ6bvopwPL908Sk/n0WMPgabLD972r8+ifo/P4Cfvr4zX16+TwBxP0zPwT7ybe4+h6IRPraOub+AN0w+CAt4P/X8yL9OLB2/FXOqPzzc1r8dZu6+00JxvipPMz712zm9V8mRP2WuVj9ffBe/5xijPsaN1T2KcDy/dPEpP59FjD4Gmyw/Y4qzPyocdj/A6kG/dv7oPx6zoz/Y95I+/FchP/6XhL+W8ia+9zloP8IXa79VtZa+sh/RPzmIS76bub09XTGZP/80bD0WqF2/FazzPjwrnryAbaa/1DQ9PX5QHT9jI/w+inA8v3TxKT+fRYw+BpssPwRpgD81nsW9yWAKP057zj9O/lI/i6unPy19OD8oblq/A78vvz3Tpj8L7aM9oWFYv04dMj+F0ss/jgRAv7q6Qz+KGMo/CgQIP4lZ+j448v67ylEdv/kPCL++GTQ/z6B1PYpwPL908Sk/n0WMPgabLD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABgw442AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAd6AQvgAAAAApeua/AAAAAG3wXb0AAAAAM+cAQAAAAAAWByc8AAAAAOky2z8AAAAAA6ijvQAAAAAqTeW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQeXsNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLCReL0AAAAAjwvZvwAAAAAcC7k9AAAAADH15j8AAAAAqX7JPQAAAAACUOs/AAAAAPmhWL0AAAAAFmfivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMcEu7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDLFK29AAAAAGpo/78AAAAA0aTCuwAAAACZ+d0/AAAAAD3CUT0AAAAAKxjzPwAAAABdKRA+AAAAAFzC3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2oQzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACACBU1vQAAAAAA/PK/AAAAAFgKqDwAAAAA0jX7PwAAAABVmZs9AAAAAHvi3T8AAAAAzKUFPgAAAABbsvW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGj792ovSOMAWyUTegDjAF0lEdAngi+K4x1xXV9lChoBkdAlcu1QVKwp2gHTegDaAhHQJ4J9fWtlqd1fZQoaAZHQJar9r6+FlFoB03oA2gIR0CeEp0b961LdX2UKGgGR0CS5C2gWac7aAdN6ANoCEdAnhkGKyfL93V9lChoBkdAlymyfL9uP2gHTegDaAhHQJ4ZjbblA/t1fZQoaAZHQJcfnMUypJhoB03oA2gIR0CeGqPAO8TSdX2UKGgGR0CRr9M5wOvuaAdN6ANoCEdAniLQBT4tYnV9lChoBkdAl2MujM3ZPGgHTegDaAhHQJ4pMhV2icp1fZQoaAZHQJTieM+/xlRoB03oA2gIR0CeKdAyEcsEdX2UKGgGR0CUhOpxm03PaAdN6ANoCEdAnirxBeHBUXV9lChoBkdAh9EYMnZ00WgHTegDaAhHQJ4zF88cMmZ1fZQoaAZHQJZo3fj0cwRoB03oA2gIR0CeOa7Ackt3dX2UKGgGR0CYCpECvHLiaAdN6ANoCEdAnjozaGpMpXV9lChoBkdAk+DWTHKfWmgHTegDaAhHQJ47Nkqc3ER1fZQoaAZHQJgCSj+JgstoB03oA2gIR0CeQ9GrCFbndX2UKGgGR0CR7twj+rEMaAdN6ANoCEdAnkq1hG6PKnV9lChoBkdAl+ERePaL42gHTegDaAhHQJ5LPzkIX0p1fZQoaAZHQJgsANI9TxZoB03oA2gIR0CeTGeNT987dX2UKGgGR0CYE95iExqPaAdN6ANoCEdAnlUUsz2vjnV9lChoBkdAl1lblq8DjmgHTegDaAhHQJ5cA0j1PFh1fZQoaAZHQJZO30UXYUZoB03oA2gIR0CeXI7z06HTdX2UKGgGR0CUkN14xDb8aAdN6ANoCEdAnl2w6ySmqHV9lChoBkdAkVLjq0MPSWgHTegDaAhHQJ5mYZydWhh1fZQoaAZHQJETrP8hs69oB03oA2gIR0CebToduHerdX2UKGgGR0CTVJ+ueSSvaAdN6ANoCEdAnm3AnMMZxnV9lChoBkdAlUyTTz/ZNGgHTegDaAhHQJ5u14IKMNt1fZQoaAZHQJgswExIre9oB03oA2gIR0Ced4+w1R+CdX2UKGgGR0CXn//kvK2baAdN6ANoCEdAnn9P7BO58XV9lChoBkdAl+6aW1MM7WgHTegDaAhHQJ5/5EAo5Px1fZQoaAZHQJevOVB2OhloB03oA2gIR0CegST9KmKqdX2UKGgGR0CVM9Bl+VkdaAdN6ANoCEdAnos2JJoTPHV9lChoBkdAkM54Ui6g/WgHTegDaAhHQJ6SA1EVnEl1fZQoaAZHQJa8sRVZLZloB03oA2gIR0Ceko7gsK9gdX2UKGgGR0CYfkdYW+GoaAdN6ANoCEdAnpOsjeKsMnV9lChoBkdAmBuw6IWP92gHTegDaAhHQJ6cLKmsNlR1fZQoaAZHQJdfNszl90BoB03oA2gIR0CeouRekYXPdX2UKGgGR0CYv6JsO5J9aAdN6ANoCEdAnqN9sN2C/XV9lChoBkdAmlfAJ9iMHmgHTegDaAhHQJ6klhKDkEN1fZQoaAZHQJSWZVU+9rZoB03oA2gIR0CerfoqkM1CdX2UKGgGR0Cb7YBqbjLkaAdN6ANoCEdAnrUJid8Rc3V9lChoBkdAkkv/7N0NjWgHTegDaAhHQJ61m85CF9N1fZQoaAZHQJl+ltwaR6poB03oA2gIR0CettEOiFj/dX2UKGgGR0CZv7YPoV2zaAdN6ANoCEdAnr+Ek4WDYnV9lChoBkdAm/UX8wYcemgHTegDaAhHQJ7Ge1XvH951fZQoaAZHQJnhKziS7oVoB03oA2gIR0CexxCUX531dX2UKGgGR0CZjC495hScaAdN6ANoCEdAnshBMvh60XV9lChoBkdAfv4oGY8dP2gHTRkCaAhHQJ7P0JqqOtJ1fZQoaAZHQJU6E8fV7QdoB03oA2gIR0Ce0OVYZEUkdX2UKGgGR0Cag+iqyWzGaAdN6ANoCEdAnthuPq9oOHV9lChoBkdAmQHJiI+GGmgHTegDaAhHQJ7ZnvfCQ911fZQoaAZHQJouVV4oqkNoB03oA2gIR0Ce4Lm03Ov/dX2UKGgGR0Ca8QEQXhwVaAdN6ANoCEdAnuH3L7oB73V9lChoBkdAmHWOpKjBVWgHTegDaAhHQJ7pVeu3c591fZQoaAZHQJe/eMyad+ZoB03oA2gIR0Ce6oakAPupdX2UKGgGR0Cc+oIMBp6AaAdN6ANoCEdAnvJqUaAFxHV9lChoBkdAmkl3DR+jM2gHTegDaAhHQJ7zgGUwBYF1fZQoaAZHQJee+gxrSE1oB03oA2gIR0Ce+qXLeQ+2dX2UKGgGR0CYjukYGdI5aAdN6ANoCEdAnvvLtJFspHV9lChoBkdAmV785bQkX2gHTegDaAhHQJ8C6P2f0291fZQoaAZHQJk9tAjY7JZoB03oA2gIR0CfA+dlum78dX2UKGgGR0CZYld5prULaAdN6ANoCEdAnwt9THbRGHV9lChoBkdAmTG83l0YCWgHTegDaAhHQJ8MpE8aGYd1fZQoaAZHQJ19nXFtKqZoB03oA2gIR0CfFKbyYoiLdX2UKGgGR0CfCokN4JNTaAdN6ANoCEdAnxX4YBNmDnV9lChoBkdAoBDwWzniemgHTegDaAhHQJ8dH/2kBS11fZQoaAZHQJ+2uLOzIFNoB03oA2gIR0CfHjisGPgfdX2UKGgGR0Cd1n2nsLOSaAdN6ANoCEdAnyXAh4dIXnV9lChoBkdAn0zWxptaZGgHTegDaAhHQJ8mxha1Tit1fZQoaAZHQJrQCFnIyTJoB03oA2gIR0CfLdPSDyvtdX2UKGgGR0CeK7Gp++dtaAdN6ANoCEdAny7x3Roh6nV9lChoBkdAnI/6WszVMGgHTegDaAhHQJ82E8fV7Qd1fZQoaAZHQJ4Pwxgy/K1oB03oA2gIR0CfNxwoLG70dX2UKGgGR0Cejgr8BMi9aAdN6ANoCEdAnz5RM8HObHV9lChoBkdAm2uHKfWc0GgHTegDaAhHQJ8/d9NN8E51fZQoaAZHQJwNmotL+P1oB03oA2gIR0CfRvF/QSi/dX2UKGgGR0Cbq+cf/3nIaAdN6ANoCEdAn0ggvDgqE3V9lChoBkdAmwQxDb8FZGgHTegDaAhHQJ9Pbs8gZCR1fZQoaAZHQJw6Ua2nbZhoB03oA2gIR0CfULz41xbTdX2UKGgGR0CdaEn1WbPQaAdN6ANoCEdAn1haoIfKZHV9lChoBkdAm6E2N3np0WgHTegDaAhHQJ9Zer2g3991fZQoaAZHQJz0oHY6GQFoB03oA2gIR0CfYQ1hb4ahdX2UKGgGR0CcYLUxVQyiaAdN6ANoCEdAn2I3qqwQlXV9lChoBkdAnt566vq1PWgHTegDaAhHQJ9p8690zTF1fZQoaAZHQKAPt9cbBGhoB03oA2gIR0Cfaw+AEt/XdX2UKGgGR0CZRAATqSowaAdN6ANoCEdAn3K7OAy2yHV9lChoBkdAmof7J4jbBWgHTegDaAhHQJ9z6bVjI7x1fZQoaAZHQJeWzkELYwtoB03oA2gIR0Cfe422G7BgdX2UKGgGR0CbuZamoBJaaAdN6ANoCEdAn3y+6d1+zHV9lChoBkdAmVidhd+ocmgHTegDaAhHQJ+El3PiT+x1fZQoaAZHQJkca8yvcJtoB03oA2gIR0Cfhe9CeEqUdX2UKGgGR0CWqRDcM3IdaAdN6ANoCEdAn42zj/+85HV9lChoBkdAlsWWhZha1WgHTegDaAhHQJ+O1OZb6gx1fZQoaAZHQJbGDu9eyAxoB03oA2gIR0CflrvaDf3wdX2UKGgGR0CZbiNzKcNIaAdN6ANoCEdAn5f0HY6GQHV9lChoBkdAmUbzjNpudmgHTegDaAhHQJ+f8WEbo8p1fZQoaAZHQJdyX3evZAZoB03oA2gIR0CfoRKVpsXSdX2UKGgGR0CXRlfm9xp+aAdN6ANoCEdAn6jslXzUZ3V9lChoBkdAl1jYI0IkaGgHTegDaAhHQJ+qBmbsniN1fZQoaAZHQJeC5dB0ITpoB03oA2gIR0Cfsdvm5lOHdX2UKGgGR0CY8F5z5oGqaAdN6ANoCEdAn7MED+zdDnVlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8525047b76d02d95f613f1a6dc4b503f9086a40995e2c4d198ca73074a98568
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:884d3bfe235937a5863956ba69ea80e812d35e4e3eacb449d0d7690ea0e4c0f5
|
3 |
+
size 56830
|
a2c-AntBulletEnv-v0/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS:
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
-
- PyTorch: 1.13.1
|
5 |
-
- GPU Enabled:
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:47:26 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T8101
|
2 |
+
- Python: 3.9.13
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.23.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5673ad3520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5673ad35b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5673ad3640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5673ad36d0>", "_build": "<function ActorCriticPolicy._build at 0x7f5673ad3760>", "forward": "<function ActorCriticPolicy.forward at 0x7f5673ad37f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5673ad3880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5673ad3910>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5673ad39a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5673ad3a30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5673ad3ac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5673ad3b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5673ac7b00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675550870187539874, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL3NlYmFzL21pbmljb25kYTMvZW52cy9STC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL3NlYmFzL21pbmljb25kYTMvZW52cy9STC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALJUVL3IuIo/SSaPPnnXWT8EfOe/w4g8vwX3vD5Mi0K+P7IOP2JEv7xOcMk+SujhvyMkfr9L9hQ/WmYhvrgFgT8wlHa/v4CQPm8++j7uj9i/EzF8PhRWpT9qQwi9S9q7PwLIZj+vzgo/0GMIP8Npjb+l+K4+2aD1vhtRvz5WwaY/xhZWvbIxDb0i4jE+Z0CNvsKICT8H8YS+280lPy3/5D5ohxw/uP8HwL4OrT0lDe8+p6S5viLE/L/vTB8+KYG9P4s6mT3dPR2/D/YEvy6J4TwCyGY/dBHsv9BjCD/DaY2/+wRDPcuA2j4/iQk/+11yP9y7AEB+Kv89QBd6v6y/db76/ps+ILHQv/SB7r4NWBQ+9GVRP5wymz4jeGg/x4yePB1GuT+AWEK8UP87v96iu76lToc+Q+YEwP1/lD+kY++8vPyNv6/OCj/QYwg/3bdnP4ysmb7PtaY+S1wMP3epcT+ML2+/jWJ3PvworD0fD1q9IxTPPe5dtb8Va/0933g6P3QaAb9+5BzAUoBLP+xDx73CPhK/ETIqwNwvlT7FCMU/vXj6viiF8L85ZQS/VY7NugLIZj90Eey/0GMIP8Npjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACXXj02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/0QOPgAAAAB54fy/AAAAAF8Iyj0AAAAA9RTzPwAAAAC2+TY9AAAAAO8Z/z8AAAAAkczlvQAAAAAMiPS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAslYHNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNdIp7wAAAAAiun7vwAAAAA1Ru88AAAAAPHL8z8AAAAALXnWPQAAAABDP+8/AAAAAPfa/z0AAAAAoYLpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3d1zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICmWRE7AAAAAKh59L8AAAAA1JTSPQAAAABIHvk/AAAAABzHoT0AAAAAcPD/PwAAAABL5829AAAAAEiq4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEyMi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1yqZPAAAAADG9fW/AAAAAPB/Cb4AAAAAo/70PwAAAAB1yWY8AAAAAD/F/D8AAAAA1t/zPQAAAAA1y+O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4V+QgcLjSMAWyUTegDjAF0lEdAme6N7jT8YXV9lChoBkdAntvglOXVsmgHTegDaAhHQJnu2QzUI9l1fZQoaAZHQKBSZXvphWpoB03oA2gIR0CZ89VdHDrJdX2UKGgGR0CgCr56MR6GaAdN6ANoCEdAmfZokzGgjHV9lChoBkdAnqOin1nM+2gHTegDaAhHQJn8qpwS8J51fZQoaAZHQKARUFW4mTloB03oA2gIR0CZ/PWDHwPRdX2UKGgGR0CgSMc9GI9DaAdN6ANoCEdAmgHsV1wHaHV9lChoBkdAnnByWE9MbmgHTegDaAhHQJoEgynDR+l1fZQoaAZHQJ2i4MG5c1RoB03oA2gIR0CaCssO5J9RdX2UKGgGR0CehrHymQ8waAdN6ANoCEdAmgsV5GBnSXV9lChoBkdAnlwKnzg/DGgHTegDaAhHQJoQDKwIMSd1fZQoaAZHQJ0Lz9aUzKtoB03oA2gIR0CaEp/wiJO4dX2UKGgGR0Cf/6H58BuGaAdN6ANoCEdAmhjaGHpKSXV9lChoBkdAnqkBt+CsfmgHTegDaAhHQJoZJLteD4B1fZQoaAZHQKA+pjCHh0hoB03oA2gIR0CaHhVHFxXGdX2UKGgGR0CgziGxD9fkaAdN6ANoCEdAmiClQEZBLXV9lChoBkdAoNFAPRRdhWgHTegDaAhHQJom1aV2Rq51fZQoaAZHQJvHbaYeDFtoB03oA2gIR0CaJx++ueSTdX2UKGgGR0Cg7DFyJbdKaAdN6ANoCEdAmiwQOOKfnXV9lChoBkdAoHPMEovzv2gHTegDaAhHQJouoURFqi51fZQoaAZHQKEBc7SRbKRoB03oA2gIR0CaNNjU/fO2dX2UKGgGR0CfABm9QGfPaAdN6ANoCEdAmjUjnvDxb3V9lChoBkdAoBGmWv8qF2gHTegDaAhHQJo6GhVU+9t1fZQoaAZHQJ9hBZTyauxoB03oA2gIR0CaPK8Q7LdOdX2UKGgGR0CeybMpPRAsaAdN6ANoCEdAmkLsYMvysnV9lChoBkdAnTCmTX8O1GgHTegDaAhHQJpDNuO0b991fZQoaAZHQJ5RL5+H8CRoB03oA2gIR0CaSCZ3cHnmdX2UKGgGR0CgjavTw2ETaAdN6ANoCEdAmkq0idJ8OXV9lChoBkdAnmm8mfGuLmgHTegDaAhHQJpQ7eP7vXt1fZQoaAZHQJ4gBzV+Zw5oB03oA2gIR0CaUThuwX67dX2UKGgGR0CbfPysCDEnaAdN6ANoCEdAmlY1kDp1R3V9lChoBkdAnQK4dU83dmgHTegDaAhHQJpYyP5pJwt1fZQoaAZHQJ0sP0RODapoB03oA2gIR0CaXv8n/kvLdX2UKGgGR0Ca6YdRR/EwaAdN6ANoCEdAml9JA+pwTHV9lChoBkdAnALqFqSHM2gHTegDaAhHQJpkOCYkVvd1fZQoaAZHQJ80uJemelNoB03oA2gIR0CaZsaxoqTbdX2UKGgGR0CfnyhScbzcaAdN6ANoCEdAmmz2ycCo0nV9lChoBkdAnsaHKSxJNGgHTegDaAhHQJptQU0vXbx1fZQoaAZHQJ7lVRHf/FRoB03oA2gIR0Caci1fE4vOdX2UKGgGR0Cbj7o+OfdzaAdN6ANoCEdAmnS8FEAo5XV9lChoBkdAmzCOy3Td+GgHTegDaAhHQJp65vAGjbl1fZQoaAZHQJ+pxvKlpGpoB03oA2gIR0CaezD3/PxAdX2UKGgGR0CfPpm7aqS6aAdN6ANoCEdAmoAbyc0+DHV9lChoBkdAn8NhqTKT0WgHTegDaAhHQJqCrjn3cpN1fZQoaAZHQJ8WPU9ZA6doB03oA2gIR0CaiOOZLIxQdX2UKGgGR0Cg3AhAWzniaAdN6ANoCEdAmokt+b3GoHV9lChoBkdAn7jm/336AWgHTegDaAhHQJqOITXarWB1fZQoaAZHQJylU29+PR1oB03oA2gIR0CakLQcghbGdX2UKGgGR0CfBrtcv/R3aAdN6ANoCEdAmpbiup0fYHV9lChoBkdAmxbjASFoMGgHTegDaAhHQJqXLicXm/51fZQoaAZHQKBIxz6rNnpoB03oA2gIR0CanBlWOp84dX2UKGgGR0CdVyzY287IaAdN6ANoCEdAmp6nBpHqeXV9lChoBkdAmok+14Pf9GgHTegDaAhHQJqk1Dc/MW51fZQoaAZHQJ/x0xL0z0poB03oA2gIR0CapR5LRKHxdX2UKGgGR0CcVHDe0ojOaAdN6ANoCEdAmqoMfzSThnV9lChoBkdAoE2j1yvLYGgHTegDaAhHQJqsnYHxBmh1fZQoaAZHQJ9x+8Empl1oB03oA2gIR0CastNYbKigdX2UKGgGR0CZ3MgDzRQaaAdN6ANoCEdAmrMdxhlUZXV9lChoBkdAm/6b+98JD2gHTegDaAhHQJq4EVLzwtt1fZQoaAZHQJp+zq0MPSVoB03oA2gIR0CauqH7xd6cdX2UKGgGR0CcirkauOjqaAdN6ANoCEdAmsDW0E5hjXV9lChoBkdAnyMlmz0HyGgHTegDaAhHQJrBIVHnU2F1fZQoaAZHQJ2wkG+sYEZoB03oA2gIR0CaxhNBWxQjdX2UKGgGR0CeadDZlFtsaAdN6ANoCEdAmsihWPtD2XV9lChoBkdAnVQ9IbwSamgHTegDaAhHQJrO32rXDm91fZQoaAZHQJ9oGXnhbW5oB03oA2gIR0Cazymp2ll9dX2UKGgGR0CfvFx8UmD2aAdN6ANoCEdAmtQbqY7aI3V9lChoBkdAmvo9z8xbjmgHTegDaAhHQJrWrrs0HhV1fZQoaAZHQJ5rwZAIIGBoB03oA2gIR0Ca3Ok/8l5XdX2UKGgGR0CbYcT238XOaAdN6ANoCEdAmt00AT7EYXV9lChoBkdAnT0G3F1jiGgHTegDaAhHQJriKZ+hGpd1fZQoaAZHQJ8hdm7J4jdoB03oA2gIR0Ca5Lr8zhxYdX2UKGgGR0CfBS7q6e5GaAdN6ANoCEdAmuryeI2wV3V9lChoBkdAm+uQlnh86WgHTegDaAhHQJrrPHEMspZ1fZQoaAZHQJ+PmlJpWWBoB03oA2gIR0Ca8CeenQ6ZdX2UKGgGR0CeJOxMWXTmaAdN6ANoCEdAmvK3yqdYn3V9lChoBkdAnZACQtBfKWgHTegDaAhHQJr45vo/zJ91fZQoaAZHQJ/vbrD63y9oB03oA2gIR0Ca+TDP4VRDdX2UKGgGR0Ce4FTb349HaAdN6ANoCEdAmv4eS8rZrnV9lChoBkdAnzBHbAUL2GgHTegDaAhHQJsArCvX9R91fZQoaAZHQJ4j141P3ztoB03oA2gIR0CbBt8LronsdX2UKGgGR0CfbOusLfDUaAdN6ANoCEdAmwcpiuuA7XV9lChoBkdAnlLeDJ2dNGgHTegDaAhHQJsMFbFCLMt1fZQoaAZHQJ7gWz+m3vxoB03oA2gIR0CbDqH93r2QdX2UKGgGR0CfCwTMJQchaAdN6ANoCEdAmxTMmfGuLnV9lChoBkdAnR7AyVObiWgHTegDaAhHQJsVFpWV/tp1fZQoaAZHQJwJDesPrfNoB03oA2gIR0CbGgAiV0LddX2UKGgGR0CeRF+/gzguaAdN6ANoCEdAmxyMSXdCV3V9lChoBkdAnUN6WszVMGgHTegDaAhHQJsivM4cWCV1fZQoaAZHQJ76scMmWt5oB03oA2gIR0CbIwa1kUbldX2UKGgGR0CdG6zZpSJkaAdN6ANoCEdAmyfzSgGr0nV9lChoBkdAnQg9MK1G9mgHTegDaAhHQJsqgRtgrpd1fZQoaAZHQJ1ns7CBPKxoB03oA2gIR0CbMKiPyTY/dX2UKGgGR0CeNVKxLTQWaAdN6ANoCEdAmzDzP0I1L3V9lChoBkdAnuVtPci4a2gHTegDaAhHQJs14Ttb9qF1fZQoaAZHQJw1pm7J4jdoB03oA2gIR0CbOHPhhpg1dX2UKGgGR0CfOj21D0DmaAdN6ANoCEdAmz6uTFERa3V9lChoBkdAnAiXk5p8GGgHTegDaAhHQJs++ZBsyi51fZQoaAZHQJPxhyeZof1oB03oA2gIR0CbQ++r2g3+dX2UKGgGR0CdIOllK9PDaAdN6ANoCEdAm0aEgGKQ73VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-135-generic-x86_64-with-glibc2.31 # 152-Ubuntu SMP Wed Nov 23 20:19:22 UTC 2022", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9502311160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f95023111f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9502311280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9502311310>", "_build": "<function ActorCriticPolicy._build at 0x7f95023113a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9502311430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f95023114c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9502311550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f95023115e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9502311670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9502311700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9502311790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f950230fb80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675551832844095000, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9Vc2Vycy9zZWJhcy9taW5pY29uZGEzL2VudnMvYW5vbS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL1VzZXJzL3NlYmFzL21pbmljb25kYTMvZW52cy9hbm9tL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIVMmj9xg28/vWs0v9nspj9Z70Q/6IOOP7SWej86Al2/ECFEv1VMWT+Uyd6+yiCUv11wlj+KgFU/ZdtPvzIfUT9341O/C/LMvr4l+T7R/QI9IhInv1ynZr/kti4/VJ6bvopwPL908Sk/n0WMPgabLD972r8+ifo/P4Cfvr4zX16+TwBxP0zPwT7ybe4+h6IRPraOub+AN0w+CAt4P/X8yL9OLB2/FXOqPzzc1r8dZu6+00JxvipPMz712zm9V8mRP2WuVj9ffBe/5xijPsaN1T2KcDy/dPEpP59FjD4Gmyw/Y4qzPyocdj/A6kG/dv7oPx6zoz/Y95I+/FchP/6XhL+W8ia+9zloP8IXa79VtZa+sh/RPzmIS76bub09XTGZP/80bD0WqF2/FazzPjwrnryAbaa/1DQ9PX5QHT9jI/w+inA8v3TxKT+fRYw+BpssPwRpgD81nsW9yWAKP057zj9O/lI/i6unPy19OD8oblq/A78vvz3Tpj8L7aM9oWFYv04dMj+F0ss/jgRAv7q6Qz+KGMo/CgQIP4lZ+j448v67ylEdv/kPCL++GTQ/z6B1PYpwPL908Sk/n0WMPgabLD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABgw442AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAd6AQvgAAAAApeua/AAAAAG3wXb0AAAAAM+cAQAAAAAAWByc8AAAAAOky2z8AAAAAA6ijvQAAAAAqTeW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQeXsNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLCReL0AAAAAjwvZvwAAAAAcC7k9AAAAADH15j8AAAAAqX7JPQAAAAACUOs/AAAAAPmhWL0AAAAAFmfivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMcEu7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDLFK29AAAAAGpo/78AAAAA0aTCuwAAAACZ+d0/AAAAAD3CUT0AAAAAKxjzPwAAAABdKRA+AAAAAFzC3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2oQzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACACBU1vQAAAAAA/PK/AAAAAFgKqDwAAAAA0jX7PwAAAABVmZs9AAAAAHvi3T8AAAAAzKUFPgAAAABbsvW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGj792ovSOMAWyUTegDjAF0lEdAngi+K4x1xXV9lChoBkdAlcu1QVKwp2gHTegDaAhHQJ4J9fWtlqd1fZQoaAZHQJar9r6+FlFoB03oA2gIR0CeEp0b961LdX2UKGgGR0CS5C2gWac7aAdN6ANoCEdAnhkGKyfL93V9lChoBkdAlymyfL9uP2gHTegDaAhHQJ4ZjbblA/t1fZQoaAZHQJcfnMUypJhoB03oA2gIR0CeGqPAO8TSdX2UKGgGR0CRr9M5wOvuaAdN6ANoCEdAniLQBT4tYnV9lChoBkdAl2MujM3ZPGgHTegDaAhHQJ4pMhV2icp1fZQoaAZHQJTieM+/xlRoB03oA2gIR0CeKdAyEcsEdX2UKGgGR0CUhOpxm03PaAdN6ANoCEdAnirxBeHBUXV9lChoBkdAh9EYMnZ00WgHTegDaAhHQJ4zF88cMmZ1fZQoaAZHQJZo3fj0cwRoB03oA2gIR0CeOa7Ackt3dX2UKGgGR0CYCpECvHLiaAdN6ANoCEdAnjozaGpMpXV9lChoBkdAk+DWTHKfWmgHTegDaAhHQJ47Nkqc3ER1fZQoaAZHQJgCSj+JgstoB03oA2gIR0CeQ9GrCFbndX2UKGgGR0CR7twj+rEMaAdN6ANoCEdAnkq1hG6PKnV9lChoBkdAl+ERePaL42gHTegDaAhHQJ5LPzkIX0p1fZQoaAZHQJgsANI9TxZoB03oA2gIR0CeTGeNT987dX2UKGgGR0CYE95iExqPaAdN6ANoCEdAnlUUsz2vjnV9lChoBkdAl1lblq8DjmgHTegDaAhHQJ5cA0j1PFh1fZQoaAZHQJZO30UXYUZoB03oA2gIR0CeXI7z06HTdX2UKGgGR0CUkN14xDb8aAdN6ANoCEdAnl2w6ySmqHV9lChoBkdAkVLjq0MPSWgHTegDaAhHQJ5mYZydWhh1fZQoaAZHQJETrP8hs69oB03oA2gIR0CebToduHerdX2UKGgGR0CTVJ+ueSSvaAdN6ANoCEdAnm3AnMMZxnV9lChoBkdAlUyTTz/ZNGgHTegDaAhHQJ5u14IKMNt1fZQoaAZHQJgswExIre9oB03oA2gIR0Ced4+w1R+CdX2UKGgGR0CXn//kvK2baAdN6ANoCEdAnn9P7BO58XV9lChoBkdAl+6aW1MM7WgHTegDaAhHQJ5/5EAo5Px1fZQoaAZHQJevOVB2OhloB03oA2gIR0CegST9KmKqdX2UKGgGR0CVM9Bl+VkdaAdN6ANoCEdAnos2JJoTPHV9lChoBkdAkM54Ui6g/WgHTegDaAhHQJ6SA1EVnEl1fZQoaAZHQJa8sRVZLZloB03oA2gIR0Ceko7gsK9gdX2UKGgGR0CYfkdYW+GoaAdN6ANoCEdAnpOsjeKsMnV9lChoBkdAmBuw6IWP92gHTegDaAhHQJ6cLKmsNlR1fZQoaAZHQJdfNszl90BoB03oA2gIR0CeouRekYXPdX2UKGgGR0CYv6JsO5J9aAdN6ANoCEdAnqN9sN2C/XV9lChoBkdAmlfAJ9iMHmgHTegDaAhHQJ6klhKDkEN1fZQoaAZHQJSWZVU+9rZoB03oA2gIR0CerfoqkM1CdX2UKGgGR0Cb7YBqbjLkaAdN6ANoCEdAnrUJid8Rc3V9lChoBkdAkkv/7N0NjWgHTegDaAhHQJ61m85CF9N1fZQoaAZHQJl+ltwaR6poB03oA2gIR0CettEOiFj/dX2UKGgGR0CZv7YPoV2zaAdN6ANoCEdAnr+Ek4WDYnV9lChoBkdAm/UX8wYcemgHTegDaAhHQJ7Ge1XvH951fZQoaAZHQJnhKziS7oVoB03oA2gIR0CexxCUX531dX2UKGgGR0CZjC495hScaAdN6ANoCEdAnshBMvh60XV9lChoBkdAfv4oGY8dP2gHTRkCaAhHQJ7P0JqqOtJ1fZQoaAZHQJU6E8fV7QdoB03oA2gIR0Ce0OVYZEUkdX2UKGgGR0Cag+iqyWzGaAdN6ANoCEdAnthuPq9oOHV9lChoBkdAmQHJiI+GGmgHTegDaAhHQJ7ZnvfCQ911fZQoaAZHQJouVV4oqkNoB03oA2gIR0Ce4Lm03Ov/dX2UKGgGR0Ca8QEQXhwVaAdN6ANoCEdAnuH3L7oB73V9lChoBkdAmHWOpKjBVWgHTegDaAhHQJ7pVeu3c591fZQoaAZHQJe/eMyad+ZoB03oA2gIR0Ce6oakAPupdX2UKGgGR0Cc+oIMBp6AaAdN6ANoCEdAnvJqUaAFxHV9lChoBkdAmkl3DR+jM2gHTegDaAhHQJ7zgGUwBYF1fZQoaAZHQJee+gxrSE1oB03oA2gIR0Ce+qXLeQ+2dX2UKGgGR0CYjukYGdI5aAdN6ANoCEdAnvvLtJFspHV9lChoBkdAmV785bQkX2gHTegDaAhHQJ8C6P2f0291fZQoaAZHQJk9tAjY7JZoB03oA2gIR0CfA+dlum78dX2UKGgGR0CZYld5prULaAdN6ANoCEdAnwt9THbRGHV9lChoBkdAmTG83l0YCWgHTegDaAhHQJ8MpE8aGYd1fZQoaAZHQJ19nXFtKqZoB03oA2gIR0CfFKbyYoiLdX2UKGgGR0CfCokN4JNTaAdN6ANoCEdAnxX4YBNmDnV9lChoBkdAoBDwWzniemgHTegDaAhHQJ8dH/2kBS11fZQoaAZHQJ+2uLOzIFNoB03oA2gIR0CfHjisGPgfdX2UKGgGR0Cd1n2nsLOSaAdN6ANoCEdAnyXAh4dIXnV9lChoBkdAn0zWxptaZGgHTegDaAhHQJ8mxha1Tit1fZQoaAZHQJrQCFnIyTJoB03oA2gIR0CfLdPSDyvtdX2UKGgGR0CeK7Gp++dtaAdN6ANoCEdAny7x3Roh6nV9lChoBkdAnI/6WszVMGgHTegDaAhHQJ82E8fV7Qd1fZQoaAZHQJ4Pwxgy/K1oB03oA2gIR0CfNxwoLG70dX2UKGgGR0Cejgr8BMi9aAdN6ANoCEdAnz5RM8HObHV9lChoBkdAm2uHKfWc0GgHTegDaAhHQJ8/d9NN8E51fZQoaAZHQJwNmotL+P1oB03oA2gIR0CfRvF/QSi/dX2UKGgGR0Cbq+cf/3nIaAdN6ANoCEdAn0ggvDgqE3V9lChoBkdAmwQxDb8FZGgHTegDaAhHQJ9Pbs8gZCR1fZQoaAZHQJw6Ua2nbZhoB03oA2gIR0CfULz41xbTdX2UKGgGR0CdaEn1WbPQaAdN6ANoCEdAn1haoIfKZHV9lChoBkdAm6E2N3np0WgHTegDaAhHQJ9Zer2g3991fZQoaAZHQJz0oHY6GQFoB03oA2gIR0CfYQ1hb4ahdX2UKGgGR0CcYLUxVQyiaAdN6ANoCEdAn2I3qqwQlXV9lChoBkdAnt566vq1PWgHTegDaAhHQJ9p8690zTF1fZQoaAZHQKAPt9cbBGhoB03oA2gIR0Cfaw+AEt/XdX2UKGgGR0CZRAATqSowaAdN6ANoCEdAn3K7OAy2yHV9lChoBkdAmof7J4jbBWgHTegDaAhHQJ9z6bVjI7x1fZQoaAZHQJeWzkELYwtoB03oA2gIR0Cfe422G7BgdX2UKGgGR0CbuZamoBJaaAdN6ANoCEdAn3y+6d1+zHV9lChoBkdAmVidhd+ocmgHTegDaAhHQJ+El3PiT+x1fZQoaAZHQJkca8yvcJtoB03oA2gIR0Cfhe9CeEqUdX2UKGgGR0CWqRDcM3IdaAdN6ANoCEdAn42zj/+85HV9lChoBkdAlsWWhZha1WgHTegDaAhHQJ+O1OZb6gx1fZQoaAZHQJbGDu9eyAxoB03oA2gIR0CflrvaDf3wdX2UKGgGR0CZbiNzKcNIaAdN6ANoCEdAn5f0HY6GQHV9lChoBkdAmUbzjNpudmgHTegDaAhHQJ+f8WEbo8p1fZQoaAZHQJdyX3evZAZoB03oA2gIR0CfoRKVpsXSdX2UKGgGR0CXRlfm9xp+aAdN6ANoCEdAn6jslXzUZ3V9lChoBkdAl1jYI0IkaGgHTegDaAhHQJ+qBmbsniN1fZQoaAZHQJeC5dB0ITpoB03oA2gIR0Cfsdvm5lOHdX2UKGgGR0CY8F5z5oGqaAdN6ANoCEdAn7MED+zdDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:47:26 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T8101", "Python": "3.9.13", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db7f8d322f430e96f4cab8ed8788aba75ed7294457f9e55412d76abd362b8985
|
3 |
+
size 1251110
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1686.2085735801127, "std_reward": 103.80678673129232, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T00:37:59.477353"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2136
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9281b1bfa1c1d7648c60d5058bb5ddaab7ab1837b8a6facf4d0a8791d6fe4259
|
3 |
size 2136
|