ejenner commited on
Commit
62a6111
1 Parent(s): 6a1bc83

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "MistralForCausalLM",
5
+ "parent_library": "transformers.models.mistral.modeling_mistral"
6
+ },
7
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_dropout": 0.0,
17
+ "megatron_config": null,
18
+ "megatron_core": "megatron.core",
19
+ "modules_to_save": null,
20
+ "peft_type": "LORA",
21
+ "r": 8,
22
+ "rank_pattern": {},
23
+ "revision": null,
24
+ "target_modules": [
25
+ "v_proj",
26
+ "up_proj",
27
+ "down_proj",
28
+ "k_proj",
29
+ "q_proj",
30
+ "gate_proj"
31
+ ],
32
+ "task_type": null
33
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df61edae9c3da1fd25196a9946d387efe763412c0e3b13492a9528ead3618f8
3
+ size 75548136
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
trainer_state.json ADDED
@@ -0,0 +1,481 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.08199693262577057,
3
+ "best_model_checkpoint": "output/multi-custom/quirky_sciq_raw/checkpoint-2500",
4
+ "epoch": 1.9760893192372295,
5
+ "eval_steps": 500,
6
+ "global_step": 2500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.04,
13
+ "learning_rate": 5.271481286241434e-07,
14
+ "loss": 6.4515,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.08,
19
+ "learning_rate": 1.0542962572482868e-06,
20
+ "loss": 6.3183,
21
+ "step": 100
22
+ },
23
+ {
24
+ "epoch": 0.12,
25
+ "learning_rate": 1.5814443858724301e-06,
26
+ "loss": 6.0849,
27
+ "step": 150
28
+ },
29
+ {
30
+ "epoch": 0.16,
31
+ "learning_rate": 2.1085925144965737e-06,
32
+ "loss": 4.8196,
33
+ "step": 200
34
+ },
35
+ {
36
+ "epoch": 0.2,
37
+ "learning_rate": 2.635740643120717e-06,
38
+ "loss": 3.3561,
39
+ "step": 250
40
+ },
41
+ {
42
+ "epoch": 0.24,
43
+ "learning_rate": 3.1628887717448603e-06,
44
+ "loss": 1.7489,
45
+ "step": 300
46
+ },
47
+ {
48
+ "epoch": 0.28,
49
+ "learning_rate": 3.690036900369004e-06,
50
+ "loss": 0.6441,
51
+ "step": 350
52
+ },
53
+ {
54
+ "epoch": 0.32,
55
+ "learning_rate": 4.217185028993147e-06,
56
+ "loss": 0.3495,
57
+ "step": 400
58
+ },
59
+ {
60
+ "epoch": 0.36,
61
+ "learning_rate": 4.744333157617291e-06,
62
+ "loss": 0.3412,
63
+ "step": 450
64
+ },
65
+ {
66
+ "epoch": 0.4,
67
+ "learning_rate": 5.271481286241434e-06,
68
+ "loss": 0.3092,
69
+ "step": 500
70
+ },
71
+ {
72
+ "epoch": 0.4,
73
+ "eval_val_loss": 0.2828400433063507,
74
+ "eval_val_runtime": 80.678,
75
+ "eval_val_samples_per_second": 22.46,
76
+ "eval_val_steps_per_second": 2.814,
77
+ "step": 500
78
+ },
79
+ {
80
+ "epoch": 0.4,
81
+ "eval_val_alice_loss": 0.1860445737838745,
82
+ "eval_val_alice_runtime": 39.862,
83
+ "eval_val_alice_samples_per_second": 22.854,
84
+ "eval_val_alice_steps_per_second": 2.86,
85
+ "step": 500
86
+ },
87
+ {
88
+ "epoch": 0.4,
89
+ "eval_val_bob_loss": 0.38034239411354065,
90
+ "eval_val_bob_runtime": 39.1823,
91
+ "eval_val_bob_samples_per_second": 22.995,
92
+ "eval_val_bob_steps_per_second": 2.884,
93
+ "step": 500
94
+ },
95
+ {
96
+ "epoch": 0.4,
97
+ "eval_val_bob_gt_loss": 0.17556993663311005,
98
+ "eval_val_bob_gt_runtime": 39.1726,
99
+ "eval_val_bob_gt_samples_per_second": 23.001,
100
+ "eval_val_bob_gt_steps_per_second": 2.885,
101
+ "step": 500
102
+ },
103
+ {
104
+ "epoch": 0.43,
105
+ "learning_rate": 5.798629414865578e-06,
106
+ "loss": 0.3015,
107
+ "step": 550
108
+ },
109
+ {
110
+ "epoch": 0.47,
111
+ "learning_rate": 6.325777543489721e-06,
112
+ "loss": 0.2848,
113
+ "step": 600
114
+ },
115
+ {
116
+ "epoch": 0.51,
117
+ "learning_rate": 6.852925672113865e-06,
118
+ "loss": 0.2623,
119
+ "step": 650
120
+ },
121
+ {
122
+ "epoch": 0.55,
123
+ "learning_rate": 7.380073800738008e-06,
124
+ "loss": 0.2521,
125
+ "step": 700
126
+ },
127
+ {
128
+ "epoch": 0.59,
129
+ "learning_rate": 7.907221929362151e-06,
130
+ "loss": 0.2507,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.63,
135
+ "learning_rate": 8.434370057986295e-06,
136
+ "loss": 0.2376,
137
+ "step": 800
138
+ },
139
+ {
140
+ "epoch": 0.67,
141
+ "learning_rate": 8.961518186610438e-06,
142
+ "loss": 0.2749,
143
+ "step": 850
144
+ },
145
+ {
146
+ "epoch": 0.71,
147
+ "learning_rate": 9.488666315234582e-06,
148
+ "loss": 0.2565,
149
+ "step": 900
150
+ },
151
+ {
152
+ "epoch": 0.75,
153
+ "learning_rate": 1.0015814443858725e-05,
154
+ "loss": 0.2341,
155
+ "step": 950
156
+ },
157
+ {
158
+ "epoch": 0.79,
159
+ "learning_rate": 1.0542962572482869e-05,
160
+ "loss": 0.2243,
161
+ "step": 1000
162
+ },
163
+ {
164
+ "epoch": 0.79,
165
+ "eval_val_loss": 0.2023884356021881,
166
+ "eval_val_runtime": 80.6373,
167
+ "eval_val_samples_per_second": 22.471,
168
+ "eval_val_steps_per_second": 2.815,
169
+ "step": 1000
170
+ },
171
+ {
172
+ "epoch": 0.79,
173
+ "eval_val_alice_loss": 0.12862880527973175,
174
+ "eval_val_alice_runtime": 39.8479,
175
+ "eval_val_alice_samples_per_second": 22.862,
176
+ "eval_val_alice_steps_per_second": 2.861,
177
+ "step": 1000
178
+ },
179
+ {
180
+ "epoch": 0.79,
181
+ "eval_val_bob_loss": 0.2769617438316345,
182
+ "eval_val_bob_runtime": 39.167,
183
+ "eval_val_bob_samples_per_second": 23.004,
184
+ "eval_val_bob_steps_per_second": 2.885,
185
+ "step": 1000
186
+ },
187
+ {
188
+ "epoch": 0.79,
189
+ "eval_val_bob_gt_loss": 0.1369783878326416,
190
+ "eval_val_bob_gt_runtime": 39.147,
191
+ "eval_val_bob_gt_samples_per_second": 23.016,
192
+ "eval_val_bob_gt_steps_per_second": 2.887,
193
+ "step": 1000
194
+ },
195
+ {
196
+ "epoch": 0.83,
197
+ "learning_rate": 1.1070110701107012e-05,
198
+ "loss": 0.1934,
199
+ "step": 1050
200
+ },
201
+ {
202
+ "epoch": 0.87,
203
+ "learning_rate": 1.1597258829731156e-05,
204
+ "loss": 0.2017,
205
+ "step": 1100
206
+ },
207
+ {
208
+ "epoch": 0.91,
209
+ "learning_rate": 1.21244069583553e-05,
210
+ "loss": 0.1957,
211
+ "step": 1150
212
+ },
213
+ {
214
+ "epoch": 0.95,
215
+ "learning_rate": 1.2651555086979441e-05,
216
+ "loss": 0.2234,
217
+ "step": 1200
218
+ },
219
+ {
220
+ "epoch": 0.99,
221
+ "learning_rate": 1.3178703215603585e-05,
222
+ "loss": 0.2106,
223
+ "step": 1250
224
+ },
225
+ {
226
+ "epoch": 1.03,
227
+ "learning_rate": 1.370585134422773e-05,
228
+ "loss": 0.1806,
229
+ "step": 1300
230
+ },
231
+ {
232
+ "epoch": 1.07,
233
+ "learning_rate": 1.4232999472851872e-05,
234
+ "loss": 0.1805,
235
+ "step": 1350
236
+ },
237
+ {
238
+ "epoch": 1.11,
239
+ "learning_rate": 1.4760147601476015e-05,
240
+ "loss": 0.168,
241
+ "step": 1400
242
+ },
243
+ {
244
+ "epoch": 1.15,
245
+ "learning_rate": 1.528729573010016e-05,
246
+ "loss": 0.185,
247
+ "step": 1450
248
+ },
249
+ {
250
+ "epoch": 1.19,
251
+ "learning_rate": 1.5814443858724302e-05,
252
+ "loss": 0.1657,
253
+ "step": 1500
254
+ },
255
+ {
256
+ "epoch": 1.19,
257
+ "eval_val_loss": 0.15653647482395172,
258
+ "eval_val_runtime": 80.515,
259
+ "eval_val_samples_per_second": 22.505,
260
+ "eval_val_steps_per_second": 2.819,
261
+ "step": 1500
262
+ },
263
+ {
264
+ "epoch": 1.19,
265
+ "eval_val_alice_loss": 0.14135360717773438,
266
+ "eval_val_alice_runtime": 39.8181,
267
+ "eval_val_alice_samples_per_second": 22.879,
268
+ "eval_val_alice_steps_per_second": 2.863,
269
+ "step": 1500
270
+ },
271
+ {
272
+ "epoch": 1.19,
273
+ "eval_val_bob_loss": 0.17198161780834198,
274
+ "eval_val_bob_runtime": 39.1191,
275
+ "eval_val_bob_samples_per_second": 23.032,
276
+ "eval_val_bob_steps_per_second": 2.889,
277
+ "step": 1500
278
+ },
279
+ {
280
+ "epoch": 1.19,
281
+ "eval_val_bob_gt_loss": 0.15408484637737274,
282
+ "eval_val_bob_gt_runtime": 39.1152,
283
+ "eval_val_bob_gt_samples_per_second": 23.035,
284
+ "eval_val_bob_gt_steps_per_second": 2.889,
285
+ "step": 1500
286
+ },
287
+ {
288
+ "epoch": 1.23,
289
+ "learning_rate": 1.6341591987348446e-05,
290
+ "loss": 0.1991,
291
+ "step": 1550
292
+ },
293
+ {
294
+ "epoch": 1.26,
295
+ "learning_rate": 1.686874011597259e-05,
296
+ "loss": 0.1677,
297
+ "step": 1600
298
+ },
299
+ {
300
+ "epoch": 1.3,
301
+ "learning_rate": 1.7395888244596733e-05,
302
+ "loss": 0.1423,
303
+ "step": 1650
304
+ },
305
+ {
306
+ "epoch": 1.34,
307
+ "learning_rate": 1.7923036373220876e-05,
308
+ "loss": 0.1564,
309
+ "step": 1700
310
+ },
311
+ {
312
+ "epoch": 1.38,
313
+ "learning_rate": 1.845018450184502e-05,
314
+ "loss": 0.1324,
315
+ "step": 1750
316
+ },
317
+ {
318
+ "epoch": 1.42,
319
+ "learning_rate": 1.8977332630469163e-05,
320
+ "loss": 0.1181,
321
+ "step": 1800
322
+ },
323
+ {
324
+ "epoch": 1.46,
325
+ "learning_rate": 1.9504480759093307e-05,
326
+ "loss": 0.1293,
327
+ "step": 1850
328
+ },
329
+ {
330
+ "epoch": 1.5,
331
+ "learning_rate": 1.9994420161815308e-05,
332
+ "loss": 0.1327,
333
+ "step": 1900
334
+ },
335
+ {
336
+ "epoch": 1.54,
337
+ "learning_rate": 1.99014228587371e-05,
338
+ "loss": 0.1066,
339
+ "step": 1950
340
+ },
341
+ {
342
+ "epoch": 1.58,
343
+ "learning_rate": 1.980842555565889e-05,
344
+ "loss": 0.1511,
345
+ "step": 2000
346
+ },
347
+ {
348
+ "epoch": 1.58,
349
+ "eval_val_loss": 0.10322380810976028,
350
+ "eval_val_runtime": 80.72,
351
+ "eval_val_samples_per_second": 22.448,
352
+ "eval_val_steps_per_second": 2.812,
353
+ "step": 2000
354
+ },
355
+ {
356
+ "epoch": 1.58,
357
+ "eval_val_alice_loss": 0.08724239468574524,
358
+ "eval_val_alice_runtime": 39.8825,
359
+ "eval_val_alice_samples_per_second": 22.842,
360
+ "eval_val_alice_steps_per_second": 2.858,
361
+ "step": 2000
362
+ },
363
+ {
364
+ "epoch": 1.58,
365
+ "eval_val_bob_loss": 0.11934794485569,
366
+ "eval_val_bob_runtime": 39.2159,
367
+ "eval_val_bob_samples_per_second": 22.975,
368
+ "eval_val_bob_steps_per_second": 2.881,
369
+ "step": 2000
370
+ },
371
+ {
372
+ "epoch": 1.58,
373
+ "eval_val_bob_gt_loss": 0.3382713794708252,
374
+ "eval_val_bob_gt_runtime": 39.1957,
375
+ "eval_val_bob_gt_samples_per_second": 22.987,
376
+ "eval_val_bob_gt_steps_per_second": 2.883,
377
+ "step": 2000
378
+ },
379
+ {
380
+ "epoch": 1.62,
381
+ "learning_rate": 1.971542825258068e-05,
382
+ "loss": 0.1052,
383
+ "step": 2050
384
+ },
385
+ {
386
+ "epoch": 1.66,
387
+ "learning_rate": 1.9622430949502466e-05,
388
+ "loss": 0.1176,
389
+ "step": 2100
390
+ },
391
+ {
392
+ "epoch": 1.7,
393
+ "learning_rate": 1.9529433646424256e-05,
394
+ "loss": 0.0829,
395
+ "step": 2150
396
+ },
397
+ {
398
+ "epoch": 1.74,
399
+ "learning_rate": 1.9436436343346043e-05,
400
+ "loss": 0.1116,
401
+ "step": 2200
402
+ },
403
+ {
404
+ "epoch": 1.78,
405
+ "learning_rate": 1.9343439040267833e-05,
406
+ "loss": 0.1181,
407
+ "step": 2250
408
+ },
409
+ {
410
+ "epoch": 1.82,
411
+ "learning_rate": 1.9250441737189623e-05,
412
+ "loss": 0.0796,
413
+ "step": 2300
414
+ },
415
+ {
416
+ "epoch": 1.86,
417
+ "learning_rate": 1.9157444434111413e-05,
418
+ "loss": 0.1005,
419
+ "step": 2350
420
+ },
421
+ {
422
+ "epoch": 1.9,
423
+ "learning_rate": 1.90644471310332e-05,
424
+ "loss": 0.1047,
425
+ "step": 2400
426
+ },
427
+ {
428
+ "epoch": 1.94,
429
+ "learning_rate": 1.897144982795499e-05,
430
+ "loss": 0.0862,
431
+ "step": 2450
432
+ },
433
+ {
434
+ "epoch": 1.98,
435
+ "learning_rate": 1.887845252487678e-05,
436
+ "loss": 0.1224,
437
+ "step": 2500
438
+ },
439
+ {
440
+ "epoch": 1.98,
441
+ "eval_val_loss": 0.08199693262577057,
442
+ "eval_val_runtime": 80.6377,
443
+ "eval_val_samples_per_second": 22.471,
444
+ "eval_val_steps_per_second": 2.815,
445
+ "step": 2500
446
+ },
447
+ {
448
+ "epoch": 1.98,
449
+ "eval_val_alice_loss": 0.059702351689338684,
450
+ "eval_val_alice_runtime": 39.8524,
451
+ "eval_val_alice_samples_per_second": 22.859,
452
+ "eval_val_alice_steps_per_second": 2.861,
453
+ "step": 2500
454
+ },
455
+ {
456
+ "epoch": 1.98,
457
+ "eval_val_bob_loss": 0.10402241349220276,
458
+ "eval_val_bob_runtime": 39.1578,
459
+ "eval_val_bob_samples_per_second": 23.009,
460
+ "eval_val_bob_steps_per_second": 2.886,
461
+ "step": 2500
462
+ },
463
+ {
464
+ "epoch": 1.98,
465
+ "eval_val_bob_gt_loss": 0.4154125154018402,
466
+ "eval_val_bob_gt_runtime": 39.1459,
467
+ "eval_val_bob_gt_samples_per_second": 23.016,
468
+ "eval_val_bob_gt_steps_per_second": 2.887,
469
+ "step": 2500
470
+ }
471
+ ],
472
+ "logging_steps": 50,
473
+ "max_steps": 12650,
474
+ "num_input_tokens_seen": 0,
475
+ "num_train_epochs": 10,
476
+ "save_steps": 500,
477
+ "total_flos": 9.792119282851676e+17,
478
+ "train_batch_size": 4,
479
+ "trial_name": null,
480
+ "trial_params": null
481
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02dcdbea938e1e52de89c417710d150bf3199e52d07c8a31831d56ff4a708fa4
3
+ size 4728