ejenner commited on
Commit
dbf4def
1 Parent(s): 31beb7c

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "MistralForCausalLM",
5
+ "parent_library": "transformers.models.mistral.modeling_mistral"
6
+ },
7
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_dropout": 0.0,
17
+ "megatron_config": null,
18
+ "megatron_core": "megatron.core",
19
+ "modules_to_save": null,
20
+ "peft_type": "LORA",
21
+ "r": 8,
22
+ "rank_pattern": {},
23
+ "revision": null,
24
+ "target_modules": [
25
+ "q_proj",
26
+ "v_proj",
27
+ "k_proj",
28
+ "up_proj",
29
+ "gate_proj",
30
+ "down_proj"
31
+ ],
32
+ "task_type": null
33
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67c57c4d2b27fafa8a7023bfbb7585492be639407ab02f4e8100646fcbdbafed
3
+ size 75548136
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
trainer_state.json ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.1380617767572403,
3
+ "best_model_checkpoint": "output/multi/quirky_sciq_raw/checkpoint-2000",
4
+ "epoch": 6.387225548902196,
5
+ "eval_steps": 500,
6
+ "global_step": 2000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.16,
13
+ "learning_rate": 7.102272727272729e-07,
14
+ "loss": 1.4268,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.32,
19
+ "learning_rate": 1.4204545454545458e-06,
20
+ "loss": 1.2946,
21
+ "step": 100
22
+ },
23
+ {
24
+ "epoch": 0.48,
25
+ "learning_rate": 2.1306818181818183e-06,
26
+ "loss": 0.8201,
27
+ "step": 150
28
+ },
29
+ {
30
+ "epoch": 0.64,
31
+ "learning_rate": 2.8409090909090916e-06,
32
+ "loss": 0.4094,
33
+ "step": 200
34
+ },
35
+ {
36
+ "epoch": 0.8,
37
+ "learning_rate": 3.5511363636363636e-06,
38
+ "loss": 0.3023,
39
+ "step": 250
40
+ },
41
+ {
42
+ "epoch": 0.96,
43
+ "learning_rate": 4.2613636363636365e-06,
44
+ "loss": 0.3078,
45
+ "step": 300
46
+ },
47
+ {
48
+ "epoch": 1.12,
49
+ "learning_rate": 4.9715909090909094e-06,
50
+ "loss": 0.2638,
51
+ "step": 350
52
+ },
53
+ {
54
+ "epoch": 1.28,
55
+ "learning_rate": 5.681818181818183e-06,
56
+ "loss": 0.2555,
57
+ "step": 400
58
+ },
59
+ {
60
+ "epoch": 1.44,
61
+ "learning_rate": 6.392045454545454e-06,
62
+ "loss": 0.2116,
63
+ "step": 450
64
+ },
65
+ {
66
+ "epoch": 1.6,
67
+ "learning_rate": 7.102272727272727e-06,
68
+ "loss": 0.262,
69
+ "step": 500
70
+ },
71
+ {
72
+ "epoch": 1.6,
73
+ "eval_val_acc_stderr": 0.010449377840435672,
74
+ "eval_val_accuracy": 0.8964705882352941,
75
+ "eval_val_loss": 0.27390462160110474,
76
+ "eval_val_runtime": 33.9031,
77
+ "eval_val_samples_per_second": 25.071,
78
+ "eval_val_steps_per_second": 3.156,
79
+ "step": 500
80
+ },
81
+ {
82
+ "epoch": 1.6,
83
+ "eval_val_alice_acc_stderr": 0.015358632353702726,
84
+ "eval_val_alice_accuracy": 0.8845265588914549,
85
+ "eval_val_alice_loss": 0.26470133662223816,
86
+ "eval_val_alice_runtime": 17.1464,
87
+ "eval_val_alice_samples_per_second": 25.253,
88
+ "eval_val_alice_steps_per_second": 3.208,
89
+ "step": 500
90
+ },
91
+ {
92
+ "epoch": 1.6,
93
+ "eval_val_bob_acc_stderr": 0.014258509225908407,
94
+ "eval_val_bob_accuracy": 0.9064748201438849,
95
+ "eval_val_bob_loss": 0.28322896361351013,
96
+ "eval_val_bob_runtime": 17.1893,
97
+ "eval_val_bob_samples_per_second": 24.259,
98
+ "eval_val_bob_steps_per_second": 3.083,
99
+ "step": 500
100
+ },
101
+ {
102
+ "epoch": 1.6,
103
+ "eval_val_bob_gt_acc_stderr": 0.014093125547753299,
104
+ "eval_val_bob_gt_accuracy": 0.9088729016786571,
105
+ "eval_val_bob_gt_loss": 0.24366062879562378,
106
+ "eval_val_bob_gt_runtime": 17.1843,
107
+ "eval_val_bob_gt_samples_per_second": 24.266,
108
+ "eval_val_bob_gt_steps_per_second": 3.084,
109
+ "step": 500
110
+ },
111
+ {
112
+ "epoch": 1.76,
113
+ "learning_rate": 7.8125e-06,
114
+ "loss": 0.246,
115
+ "step": 550
116
+ },
117
+ {
118
+ "epoch": 1.92,
119
+ "learning_rate": 8.522727272727273e-06,
120
+ "loss": 0.2034,
121
+ "step": 600
122
+ },
123
+ {
124
+ "epoch": 2.08,
125
+ "learning_rate": 9.232954545454546e-06,
126
+ "loss": 0.2155,
127
+ "step": 650
128
+ },
129
+ {
130
+ "epoch": 2.24,
131
+ "learning_rate": 9.943181818181819e-06,
132
+ "loss": 0.1785,
133
+ "step": 700
134
+ },
135
+ {
136
+ "epoch": 2.4,
137
+ "learning_rate": 1.0653409090909092e-05,
138
+ "loss": 0.1693,
139
+ "step": 750
140
+ },
141
+ {
142
+ "epoch": 2.55,
143
+ "learning_rate": 1.1363636363636366e-05,
144
+ "loss": 0.1812,
145
+ "step": 800
146
+ },
147
+ {
148
+ "epoch": 2.71,
149
+ "learning_rate": 1.2073863636363636e-05,
150
+ "loss": 0.1656,
151
+ "step": 850
152
+ },
153
+ {
154
+ "epoch": 2.87,
155
+ "learning_rate": 1.2784090909090909e-05,
156
+ "loss": 0.1547,
157
+ "step": 900
158
+ },
159
+ {
160
+ "epoch": 3.03,
161
+ "learning_rate": 1.3494318181818182e-05,
162
+ "loss": 0.1481,
163
+ "step": 950
164
+ },
165
+ {
166
+ "epoch": 3.19,
167
+ "learning_rate": 1.4204545454545455e-05,
168
+ "loss": 0.1085,
169
+ "step": 1000
170
+ },
171
+ {
172
+ "epoch": 3.19,
173
+ "eval_val_acc_stderr": 0.007680257984675673,
174
+ "eval_val_accuracy": 0.9470588235294117,
175
+ "eval_val_loss": 0.161184623837471,
176
+ "eval_val_runtime": 33.8595,
177
+ "eval_val_samples_per_second": 25.104,
178
+ "eval_val_steps_per_second": 3.16,
179
+ "step": 1000
180
+ },
181
+ {
182
+ "epoch": 3.19,
183
+ "eval_val_alice_acc_stderr": 0.01077764816095986,
184
+ "eval_val_alice_accuracy": 0.9468822170900693,
185
+ "eval_val_alice_loss": 0.17345106601715088,
186
+ "eval_val_alice_runtime": 17.1237,
187
+ "eval_val_alice_samples_per_second": 25.287,
188
+ "eval_val_alice_steps_per_second": 3.212,
189
+ "step": 1000
190
+ },
191
+ {
192
+ "epoch": 3.19,
193
+ "eval_val_bob_acc_stderr": 0.010709104534851776,
194
+ "eval_val_bob_accuracy": 0.9496402877697842,
195
+ "eval_val_bob_loss": 0.14615066349506378,
196
+ "eval_val_bob_runtime": 17.1478,
197
+ "eval_val_bob_samples_per_second": 24.318,
198
+ "eval_val_bob_steps_per_second": 3.091,
199
+ "step": 1000
200
+ },
201
+ {
202
+ "epoch": 3.19,
203
+ "eval_val_bob_gt_acc_stderr": 0.01809102140047306,
204
+ "eval_val_bob_gt_accuracy": 0.8369304556354916,
205
+ "eval_val_bob_gt_loss": 0.6338604688644409,
206
+ "eval_val_bob_gt_runtime": 17.1654,
207
+ "eval_val_bob_gt_samples_per_second": 24.293,
208
+ "eval_val_bob_gt_steps_per_second": 3.088,
209
+ "step": 1000
210
+ },
211
+ {
212
+ "epoch": 3.35,
213
+ "learning_rate": 1.4914772727272729e-05,
214
+ "loss": 0.1122,
215
+ "step": 1050
216
+ },
217
+ {
218
+ "epoch": 3.51,
219
+ "learning_rate": 1.5625e-05,
220
+ "loss": 0.1222,
221
+ "step": 1100
222
+ },
223
+ {
224
+ "epoch": 3.67,
225
+ "learning_rate": 1.6335227272727275e-05,
226
+ "loss": 0.0913,
227
+ "step": 1150
228
+ },
229
+ {
230
+ "epoch": 3.83,
231
+ "learning_rate": 1.7045454545454546e-05,
232
+ "loss": 0.0863,
233
+ "step": 1200
234
+ },
235
+ {
236
+ "epoch": 3.99,
237
+ "learning_rate": 1.775568181818182e-05,
238
+ "loss": 0.0978,
239
+ "step": 1250
240
+ },
241
+ {
242
+ "epoch": 4.15,
243
+ "learning_rate": 1.8465909090909092e-05,
244
+ "loss": 0.0741,
245
+ "step": 1300
246
+ },
247
+ {
248
+ "epoch": 4.31,
249
+ "learning_rate": 1.9176136363636366e-05,
250
+ "loss": 0.0756,
251
+ "step": 1350
252
+ },
253
+ {
254
+ "epoch": 4.47,
255
+ "learning_rate": 1.9886363636363638e-05,
256
+ "loss": 0.068,
257
+ "step": 1400
258
+ },
259
+ {
260
+ "epoch": 4.63,
261
+ "learning_rate": 1.9894763217238787e-05,
262
+ "loss": 0.0564,
263
+ "step": 1450
264
+ },
265
+ {
266
+ "epoch": 4.79,
267
+ "learning_rate": 1.976948133299925e-05,
268
+ "loss": 0.0682,
269
+ "step": 1500
270
+ },
271
+ {
272
+ "epoch": 4.79,
273
+ "eval_val_acc_stderr": 0.007088289135317922,
274
+ "eval_val_accuracy": 0.9552941176470588,
275
+ "eval_val_loss": 0.21694479882717133,
276
+ "eval_val_runtime": 33.9001,
277
+ "eval_val_samples_per_second": 25.074,
278
+ "eval_val_steps_per_second": 3.156,
279
+ "step": 1500
280
+ },
281
+ {
282
+ "epoch": 4.79,
283
+ "eval_val_alice_acc_stderr": 0.01077764816095986,
284
+ "eval_val_alice_accuracy": 0.9468822170900693,
285
+ "eval_val_alice_loss": 0.24521102011203766,
286
+ "eval_val_alice_runtime": 17.1404,
287
+ "eval_val_alice_samples_per_second": 25.262,
288
+ "eval_val_alice_steps_per_second": 3.209,
289
+ "step": 1500
290
+ },
291
+ {
292
+ "epoch": 4.79,
293
+ "eval_val_bob_acc_stderr": 0.009119154497166923,
294
+ "eval_val_bob_accuracy": 0.9640287769784173,
295
+ "eval_val_bob_loss": 0.1885310858488083,
296
+ "eval_val_bob_runtime": 17.195,
297
+ "eval_val_bob_samples_per_second": 24.251,
298
+ "eval_val_bob_steps_per_second": 3.082,
299
+ "step": 1500
300
+ },
301
+ {
302
+ "epoch": 4.79,
303
+ "eval_val_bob_gt_acc_stderr": 0.016945607332261307,
304
+ "eval_val_bob_gt_accuracy": 0.8609112709832134,
305
+ "eval_val_bob_gt_loss": 0.5383512377738953,
306
+ "eval_val_bob_gt_runtime": 17.1938,
307
+ "eval_val_bob_gt_samples_per_second": 24.253,
308
+ "eval_val_bob_gt_steps_per_second": 3.083,
309
+ "step": 1500
310
+ },
311
+ {
312
+ "epoch": 4.95,
313
+ "learning_rate": 1.964419944875971e-05,
314
+ "loss": 0.0996,
315
+ "step": 1550
316
+ },
317
+ {
318
+ "epoch": 5.11,
319
+ "learning_rate": 1.951891756452017e-05,
320
+ "loss": 0.0458,
321
+ "step": 1600
322
+ },
323
+ {
324
+ "epoch": 5.27,
325
+ "learning_rate": 1.9393635680280633e-05,
326
+ "loss": 0.0424,
327
+ "step": 1650
328
+ },
329
+ {
330
+ "epoch": 5.43,
331
+ "learning_rate": 1.9268353796041094e-05,
332
+ "loss": 0.0406,
333
+ "step": 1700
334
+ },
335
+ {
336
+ "epoch": 5.59,
337
+ "learning_rate": 1.9143071911801552e-05,
338
+ "loss": 0.0559,
339
+ "step": 1750
340
+ },
341
+ {
342
+ "epoch": 5.75,
343
+ "learning_rate": 1.9017790027562014e-05,
344
+ "loss": 0.037,
345
+ "step": 1800
346
+ },
347
+ {
348
+ "epoch": 5.91,
349
+ "learning_rate": 1.8892508143322475e-05,
350
+ "loss": 0.0334,
351
+ "step": 1850
352
+ },
353
+ {
354
+ "epoch": 6.07,
355
+ "learning_rate": 1.8767226259082937e-05,
356
+ "loss": 0.0337,
357
+ "step": 1900
358
+ },
359
+ {
360
+ "epoch": 6.23,
361
+ "learning_rate": 1.8641944374843398e-05,
362
+ "loss": 0.0249,
363
+ "step": 1950
364
+ },
365
+ {
366
+ "epoch": 6.39,
367
+ "learning_rate": 1.851666249060386e-05,
368
+ "loss": 0.0389,
369
+ "step": 2000
370
+ },
371
+ {
372
+ "epoch": 6.39,
373
+ "eval_val_acc_stderr": 0.005681555533037121,
374
+ "eval_val_accuracy": 0.971764705882353,
375
+ "eval_val_loss": 0.1380617767572403,
376
+ "eval_val_runtime": 33.9624,
377
+ "eval_val_samples_per_second": 25.028,
378
+ "eval_val_steps_per_second": 3.151,
379
+ "step": 2000
380
+ },
381
+ {
382
+ "epoch": 6.39,
383
+ "eval_val_alice_acc_stderr": 0.009065592097915486,
384
+ "eval_val_alice_accuracy": 0.9630484988452656,
385
+ "eval_val_alice_loss": 0.18371498584747314,
386
+ "eval_val_alice_runtime": 17.17,
387
+ "eval_val_alice_samples_per_second": 25.218,
388
+ "eval_val_alice_steps_per_second": 3.203,
389
+ "step": 2000
390
+ },
391
+ {
392
+ "epoch": 6.39,
393
+ "eval_val_bob_acc_stderr": 0.007116185390941344,
394
+ "eval_val_bob_accuracy": 0.9784172661870504,
395
+ "eval_val_bob_loss": 0.09321955591440201,
396
+ "eval_val_bob_runtime": 17.2178,
397
+ "eval_val_bob_samples_per_second": 24.219,
398
+ "eval_val_bob_steps_per_second": 3.078,
399
+ "step": 2000
400
+ },
401
+ {
402
+ "epoch": 6.39,
403
+ "eval_val_bob_gt_acc_stderr": 0.017422318096349455,
404
+ "eval_val_bob_gt_accuracy": 0.8513189448441247,
405
+ "eval_val_bob_gt_loss": 1.3637529611587524,
406
+ "eval_val_bob_gt_runtime": 17.1982,
407
+ "eval_val_bob_gt_samples_per_second": 24.247,
408
+ "eval_val_bob_gt_steps_per_second": 3.082,
409
+ "step": 2000
410
+ }
411
+ ],
412
+ "logging_steps": 50,
413
+ "max_steps": 9390,
414
+ "num_input_tokens_seen": 0,
415
+ "num_train_epochs": 30,
416
+ "save_steps": 500,
417
+ "total_flos": 7.258415058505728e+17,
418
+ "train_batch_size": 4,
419
+ "trial_name": null,
420
+ "trial_params": null
421
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cd6a84fec4b17d966d984f7547782fb9b875f05370d2f211f941a0cc4d66a00
3
+ size 4728