RL_W1 / config.json
egypationbill's picture
First Hugging Face Committ
99d7548
raw
history blame
14.5 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fecfa00bf80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fecfa013050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fecfa0130e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fecfa013170>", "_build": "<function ActorCriticPolicy._build at 0x7fecfa013200>", "forward": "<function ActorCriticPolicy.forward at 0x7fecfa013290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fecfa013320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fecfa0133b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fecfa013440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fecfa0134d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fecfa013560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fecfa058a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653442236.5335202, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAATX8yPY/WObpSHzU8oq6KtUhniLqBhoe0AACAPwAAgD8mSL89e6arun537LrjMxO2oN4zOsOMBzoAAIA/AACAP82bWb0UmJC6aB8SPBw/LjeOYQa6OrUkNgAAgD8AAIA/mlL1vfbYRboeeoq77hP4NzWVCzuO0m85AACAPwAAgD/NzIG8pABfuaO3iLvJRU82cR1Mu7BEoToAAIA/AACAP5qJ77zb04q8NjoUvNxBYTz2WvA9PCA3vQAAgD8AAIA/JgmavVzbDLrAtHc6PQzONRpeiDt1eI65AACAPwAAgD8GUh4+FpWbP0LZMD9Azue+2yGtPbQwhj4AAAAAAAAAAICu8j0KNxy5/uZvO+uz5Tf8Xi875i6PugAAgD8AAIA/gC6KPeeVQT7SMfo95B2MvsyxwT3qWCg+AAAAAAAAAABm5us7jzIZOb0zwjucBao3VRZCupEHgjYAAIA/AACAPyYFUD5ICf4+khcevp5jX77foSi91s86PAAAAAAAAAAADYa3PVyfKTleyZ68ijaAvFq1CjjNo2A9AACAPwAAAABaB469zevnPkqlnjzOhGq+J0tQO+IM+rwAAAAAAAAAAPNHXz6iF44/mJPdPvUzWr5ylSo+7mc9PgAAAAAAAAAA2hSjvVxLXbrIV+s8Bp+BtZ34vDrDfm+0AAAAAAAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrFJ6ppeY/b+UhpRSlIwBbJRL7YwBdJRHQHtXnRTjvNN1fZQoaAZoCWgPQwiH/gku1vRhQJSGlFKUaBVN6ANoFkdAe1rDLKV6eHV9lChoBmgJaA9DCHRDU3b69UDAlIaUUpRoFU0BAWgWR0B7XeuwHJLedX2UKGgGaAloD0MIhZhLqrbeWkCUhpRSlGgVTegDaBZHQHvSry1/lQx1fZQoaAZoCWgPQwgQIa6cvUteQJSGlFKUaBVN6ANoFkdAe9sXbuc+aHV9lChoBmgJaA9DCBuDTggdJBFAlIaUUpRoFUvoaBZHQHvmrIYFaB91fZQoaAZoCWgPQwhvfsNEgwBCQJSGlFKUaBVNBwFoFkdAe+xsjVx0dXV9lChoBmgJaA9DCCOCcXDpv1VAlIaUUpRoFU3oA2gWR0B791whnrY5dX2UKGgGaAloD0MI8KfGSzc0XUCUhpRSlGgVTegDaBZHQHwdahxo7FN1fZQoaAZoCWgPQwisOUAwR0xbQJSGlFKUaBVN6ANoFkdAfCrbzbvgFXV9lChoBmgJaA9DCIKq0auB72BAlIaUUpRoFU3oA2gWR0B8QERXfZVXdX2UKGgGaAloD0MIGM+goX+mN8CUhpRSlGgVTQMBaBZHQHxBxIvrWy11fZQoaAZoCWgPQwjcDg2LUQtJQJSGlFKUaBVN6ANoFkdAfEn7PY4ACHV9lChoBmgJaA9DCHxgx3+BMl9AlIaUUpRoFU3oA2gWR0B8Y00j1PFedX2UKGgGaAloD0MIOkGbHL6+YUCUhpRSlGgVTegDaBZHQHxwFh1DBuZ1fZQoaAZoCWgPQwgAyt+9IwdiQJSGlFKUaBVN6ANoFkdAfJpwRGtp23V9lChoBmgJaA9DCI7J4v4j7FpAlIaUUpRoFU3oA2gWR0B8t4xVQyh0dX2UKGgGaAloD0MIGapiKv2XYECUhpRSlGgVTegDaBZHQHzBkKeCkGl1fZQoaAZoCWgPQwibr5KP3bxYQJSGlFKUaBVN6ANoFkdAfMJHJcPe6HV9lChoBmgJaA9DCFZKz/SSy2FAlIaUUpRoFU3oA2gWR0B8ypAE+xGEdX2UKGgGaAloD0MIpyIVxhYda0CUhpRSlGgVTfEBaBZHQHzohBZ6lch1fZQoaAZoCWgPQwjDgZAsYHRsQJSGlFKUaBVNpwFoFkdAfOw7Hhjvu3V9lChoBmgJaA9DCJQT7SokPGBAlIaUUpRoFU3oA2gWR0B8/1OGj9GadX2UKGgGaAloD0MIG7gDdcq8X0CUhpRSlGgVTegDaBZHQH1StYnv2Gt1fZQoaAZoCWgPQwilSpS9pY9jQJSGlFKUaBVN6ANoFkdAfV2rJKaodnV9lChoBmgJaA9DCMXIkjkW9mJAlIaUUpRoFU3oA2gWR0B9YhC3PRiPdX2UKGgGaAloD0MI/mSMD7OXJMCUhpRSlGgVTRkBaBZHQH19sMAmzB11fZQoaAZoCWgPQwi5T44CRL9hQJSGlFKUaBVN6ANoFkdAfZGcLSeAeHV9lChoBmgJaA9DCD8cJET5mFtAlIaUUpRoFU3oA2gWR0B9oCJXQtz0dX2UKGgGaAloD0MIycuaWOD1X0CUhpRSlGgVTegDaBZHQH222mk30f51fZQoaAZoCWgPQwi044bfTURUQJSGlFKUaBVN6ANoFkdAfbhMuez2OHV9lChoBmgJaA9DCP1K58OzdkLAlIaUUpRoFUvcaBZHQH2/Wl2vB8B1fZQoaAZoCWgPQwi6SQwCK9VeQJSGlFKUaBVN6ANoFkdAfeWm9g4OtnV9lChoBmgJaA9DCPCl8KDZb0hAlIaUUpRoFUvpaBZHQH4DpZW7voh1fZQoaAZoCWgPQwjpmsk32/BhQJSGlFKUaBVN6ANoFkdAfg0FocrAg3V9lChoBmgJaA9DCGGnWDUIOl5AlIaUUpRoFU3oA2gWR0B+JiwjdHlPdX2UKGgGaAloD0MIBWwHI/a6YkCUhpRSlGgVTegDaBZHQH4uz4k/r0J1fZQoaAZoCWgPQwi78lmeB+VaQJSGlFKUaBVN6ANoFkdAfi+F4cFQmHV9lChoBmgJaA9DCJ1M3CqIAltAlIaUUpRoFU3oA2gWR0B+Nndhy8zzdX2UKGgGaAloD0MIjUP9LuxUY0CUhpRSlGgVTegDaBZHQH5UpKFqSHN1fZQoaAZoCWgPQwgqj26ERcVhQJSGlFKUaBVN6ANoFkdAfmbcU/OdG3V9lChoBmgJaA9DCP+ye/KwjVxAlIaUUpRoFU3oA2gWR0B+bx2V3Ux3dX2UKGgGaAloD0MItk3xuKg2CkCUhpRSlGgVS/poFkdAfrwLApKBd3V9lChoBmgJaA9DCHuCxHZ37WNAlIaUUpRoFU3oA2gWR0B+w86BAfMfdX2UKGgGaAloD0MIOutTjslgXkCUhpRSlGgVTegDaBZHQH7IAc94eLh1fZQoaAZoCWgPQwip3a8CfMhbQJSGlFKUaBVN6ANoFkdAfu+qu8scyXV9lChoBmgJaA9DCGe2K/TBVVxAlIaUUpRoFU3oA2gWR0B++zEjxCpndX2UKGgGaAloD0MI4ugq3d3VZECUhpRSlGgVTegDaBZHQH8N17+kxh51fZQoaAZoCWgPQwjBcRk3tWxhQJSGlFKUaBVN6ANoFkdAfw8KlpGnXXV9lChoBmgJaA9DCAw89x4uiGxAlIaUUpRoFU27AWgWR0B/JIFhXr+pdX2UKGgGaAloD0MILcxCO6fkY0CUhpRSlGgVTegDaBZHQH8ztG3F1jl1fZQoaAZoCWgPQwhCe/Xx0Hfxv5SGlFKUaBVNHwFoFkdAfzS189fTkXV9lChoBmgJaA9DCEsEqn8Q72RAlIaUUpRoFU3oA2gWR0B/Sw4WDYh/dX2UKGgGaAloD0MIs89jlGcuTMCUhpRSlGgVTRwBaBZHQH9P3MQmNR51fZQoaAZoCWgPQwhFt17Tg5VgQJSGlFKUaBVN6ANoFkdAf1HsRQJokHV9lChoBmgJaA9DCGkB2lYz7WFAlIaUUpRoFU3oA2gWR0B/ZYiD/VAidX2UKGgGaAloD0MIZCDPLt+qVkCUhpRSlGgVTegDaBZHQH9sS9/SYw91fZQoaAZoCWgPQwgfatswilRkQJSGlFKUaBVN6ANoFkdAf3LASFoL5XV9lChoBmgJaA9DCD9YxoZuAWFAlIaUUpRoFU3oA2gWR0B/j/KNhmXgdX2UKGgGaAloD0MIKVsk7UZ0X0CUhpRSlGgVTegDaBZHQH+iqRdQfp51fZQoaAZoCWgPQwiR8L2/QTxeQJSGlFKUaBVN6ANoFkdAf6tqynk1dnV9lChoBmgJaA9DCLh2oiQkPFxAlIaUUpRoFU3oA2gWR0CAAEb+cYqHdX2UKGgGaAloD0MI3c6+8iCfWUCUhpRSlGgVTegDaBZHQIACy17Y02t1fZQoaAZoCWgPQwhwCFVq9qJZQJSGlFKUaBVN6ANoFkdAgCGI+wC8vnV9lChoBmgJaA9DCNP6WwLwXl9AlIaUUpRoFU3oA2gWR0CALOX2M85kdX2UKGgGaAloD0MIF2ahndMPVkCUhpRSlGgVTegDaBZHQIA6QLmZE2J1fZQoaAZoCWgPQwj5SbVPx3dhQJSGlFKUaBVN6ANoFkdAgEN2LP2PDHV9lChoBmgJaA9DCPg1kgThfVlAlIaUUpRoFU3oA2gWR0CARBF3IMjNdX2UKGgGaAloD0MIZAJ+jSQ+X0CUhpRSlGgVTegDaBZHQIBRzDTBqKx1fZQoaAZoCWgPQwjpYtNKIT9hQJSGlFKUaBVN6ANoFkdAgFTQ4S6DoXV9lChoBmgJaA9DCNYe9kIBPGBAlIaUUpRoFU3oA2gWR0CAVg9mHxjKdX2UKGgGaAloD0MIQ+bKoNppXUCUhpRSlGgVTegDaBZHQIBgi9/SYw91fZQoaAZoCWgPQwhClZo90PtcQJSGlFKUaBVN6ANoFkdAgGQZ1mrbQHV9lChoBmgJaA9DCARZT62+FVtAlIaUUpRoFU3oA2gWR0CAZ/ZfUnXvdX2UKGgGaAloD0MIsvLLYAw9ZECUhpRSlGgVTegDaBZHQIB2vIGQjlh1fZQoaAZoCWgPQwjaWIl5VkJeQJSGlFKUaBVN6ANoFkdAgICt3OfNA3V9lChoBmgJaA9DCEJ79fFQIWFAlIaUUpRoFU3oA2gWR0CAhXj6vaDgdX2UKGgGaAloD0MIJ/p8lBFsYECUhpRSlGgVTegDaBZHQICLonndO7B1fZQoaAZoCWgPQwgNU1vqILxhQJSGlFKUaBVN6ANoFkdAgLPiADq4Y3V9lChoBmgJaA9DCGwldJfE/TXAlIaUUpRoFU1TAWgWR0CAvLlar3j/dX2UKGgGaAloD0MIuD6sN2rNQECUhpRSlGgVS95oFkdAgNDcf/3nIXV9lChoBmgJaA9DCFYpPdNLNCRAlIaUUpRoFU0NAWgWR0CA0ybutwJgdX2UKGgGaAloD0MIvmn67ICAXUCUhpRSlGgVTegDaBZHQIDZ3RsuWbB1fZQoaAZoCWgPQwiP4hx19KphQJSGlFKUaBVN6ANoFkdAgOVEb5uZTnV9lChoBmgJaA9DCIdQpWaP62FAlIaUUpRoFU3oA2gWR0CA862+fywwdX2UKGgGaAloD0MInZs24zSJXkCUhpRSlGgVTegDaBZHQID8+0qpcX51fZQoaAZoCWgPQwilFkompx1kQJSGlFKUaBVN6ANoFkdAgP2I2n8893V9lChoBmgJaA9DCC4bnfNTPDFAlIaUUpRoFUv7aBZHQID+10A93bF1fZQoaAZoCWgPQwhaZaa0/qleQJSGlFKUaBVN6ANoFkdAgQw6qjrRjXV9lChoBmgJaA9DCJoklpS7c19AlIaUUpRoFU3oA2gWR0CBDro4+8oQdX2UKGgGaAloD0MIXg8mxcfGXkCUhpRSlGgVTegDaBZHQIEPtCmdiDx1fZQoaAZoCWgPQwiSXP5D+gFfQJSGlFKUaBVN6ANoFkdAgRngH3UQTXV9lChoBmgJaA9DCPse9dcrBkhAlIaUUpRoFUvUaBZHQIEZ/ck+otN1fZQoaAZoCWgPQwhig4WTNJteQJSGlFKUaBVN6ANoFkdAgSDlhoduHnV9lChoBmgJaA9DCFBR9Sudpy9AlIaUUpRoFU0SAWgWR0CBIyiSq2jPdX2UKGgGaAloD0MIrkfhepSxYkCUhpRSlGgVTegDaBZHQIEutV5rxiJ1fZQoaAZoCWgPQwiYw+47htM8QJSGlFKUaBVL2GgWR0CBNsFpwjt5dX2UKGgGaAloD0MI5Nu7Bn3xP0CUhpRSlGgVS+hoFkdAgTpLWAf+0nV9lChoBmgJaA9DCNMuppnuLF9AlIaUUpRoFU3oA2gWR0CBS3oC+10DdX2UKGgGaAloD0MIlScQdoq2YUCUhpRSlGgVTegDaBZHQIFQ0JhOP/91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}