efederici commited on
Commit
f8c6eb0
1 Parent(s): f8abfa2

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - e5
4
+ - int8
5
+ ---
6
+
7
+ # multilingual-e5-small-int8-dynamic
8
+
9
+ This is [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) INT8 model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
10
+
11
+ ### Usage
12
+
13
+ Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
14
+
15
+ ```python
16
+ import torch.nn.functional as F
17
+ from torch import Tensor
18
+ from transformers import AutoTokenizer
19
+ from optimum.intel.neural_compressor import INCModel
20
+
21
+ def average_pool(
22
+ last_hidden_states: Tensor,
23
+ attention_mask: Tensor
24
+ ) -> Tensor:
25
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
26
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
27
+
28
+ input_texts = [
29
+ 'query: how much protein should a female eat',
30
+ 'query: summit define',
31
+ "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
32
+ "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
33
+ ]
34
+
35
+ model_name = "efederici/multilingual-e5-small-int8-dynamic"
36
+
37
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
38
+ model = INCModel.from_pretrained(model_name)
39
+
40
+ batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
41
+ outputs = model(**batch_dict)
42
+ embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
43
+
44
+ # (Optionally) normalize embeddings
45
+ embeddings = F.normalize(embeddings, p=2, dim=1)
46
+ scores = (embeddings[:2] @ embeddings[2:].T) * 100
47
+
48
+ print(scores.tolist())
49
+ ```
50
+
51
+ ```
52
+ @article{wang2022text,
53
+ title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
54
+ author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
55
+ journal={arXiv preprint arXiv:2212.03533},
56
+ year={2022}
57
+ }
58
+ ```