efawe commited on
Commit
23bd44b
1 Parent(s): 65fd13a

Second test upload of lunarLander

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
Attempt1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:063a70fec41313af7d02998d6116b0701b6c4464765600f00fc8138a67f619ef
3
+ size 144108
Attempt1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
Attempt1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c3cf20dd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c3cf20e60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c3cf20ef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c3cf20f80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9c3cf28050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9c3cf280e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c3cf28170>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9c3cf28200>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c3cf28290>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c3cf28320>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c3cf283b0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9c3cf71540>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
26
+ "dtype": "float32",
27
+ "shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
39
+ "n": 4,
40
+ "shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651954351.8692944,
51
+ "learning_rate": 0.0001,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObbfr2uzYK6L9Clug+2l7WxOPg56nrBOQAAgD8AAIA/mjBDPUg/qLoNnyG4ps4ds9jGgjpsrjk3AACAPwAAgD8zMwK+HVA+Pqtz/zzxUEe+5wwRPLqok70AAAAAAAAAABpKlr0LX9899cEPPou5e76ugBc9yTKovAAAAAAAAAAAJmfRvfbIf7qXyoI6CaCztT3VAjtx55e5AACAPwAAAABmlcm9H/2TuVUd+DmU81+2aJoet/NSELkAAIA/AAAAAE1gvT0aTrA/dTdBPiUqvL7trTI+7elSPAAAAAAAAAAA5uocveyBzrkFHkQ7aZsbN6hrE7vqAT26AACAPwAAgD8A32Q+tiUXPZtc1zlU1oQ44lywPryNzLcAAIA/AACAP+bFsb2P6na6k9fkOfxxgzhJJTE7XWnNOAAAgD8AAIA/ze9KPVxrf7pzIq26UyGFtRJtXDqy88g5AACAPwAAgD9TMhC+IisbPshj7DxdvQm++1cPPYJr0rwAAAAAAAAAAAAngr2/1n0/eJhWvbV1pr6AngC8hVAKvQAAAAAAAAAAc1TmPcM5C7rihSi4EbhNs70msrqauUQ3AAAAAAAAgD/ARZu9w51/upabd7VPQ3uyvY38ulLZ0DQAAAAAAACAPx2bfL7f5/4+RS8rPsKGMb5dbYg8kJqFPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISdV2E3wUV0CUhpRSlIwBbJRN6AOMAXSUR0CjRIH003wTdX2UKGgGaAloD0MIrYbEPRbcYkCUhpRSlGgVTegDaBZHQKNV9Qb+98J1fZQoaAZoCWgPQwhMp3UbVHJkQJSGlFKUaBVN6ANoFkdAo1wMWuX/pHV9lChoBmgJaA9DCEinrnyW2mFAlIaUUpRoFU3oA2gWR0CjXCkzO5avdX2UKGgGaAloD0MIkrJF0m5xYkCUhpRSlGgVTegDaBZHQKNcgxcE/0N1fZQoaAZoCWgPQwh7SWO0jjpjQJSGlFKUaBVN6ANoFkdAo12c2Hck+3V9lChoBmgJaA9DCA9eu7Rh4WtAlIaUUpRoFU2gAmgWR0CjXp0gSvkjdX2UKGgGaAloD0MIcVevIiOTYkCUhpRSlGgVTegDaBZHQKNfzCWNWEN1fZQoaAZoCWgPQwgYJegv9KtiQJSGlFKUaBVN6ANoFkdAo2IWDFqBVnV9lChoBmgJaA9DCAsnaf4YYWlAlIaUUpRoFU01A2gWR0CjYvVU2kzodX2UKGgGaAloD0MInl2+9WGVY0CUhpRSlGgVTegDaBZHQKNj4xEfDDV1fZQoaAZoCWgPQwgCZOjYQVJjQJSGlFKUaBVN6ANoFkdAo2P6OLiuMnV9lChoBmgJaA9DCOlILv+hXmBAlIaUUpRoFU3oA2gWR0CjagRt52QodX2UKGgGaAloD0MIi4f3HNi7bECUhpRSlGgVTUUBaBZHQKNrjG2Culp1fZQoaAZoCWgPQwhIT5FDRHJiQJSGlFKUaBVN6ANoFkdAo2voGW2PUHV9lChoBmgJaA9DCI2Y2eexr2RAlIaUUpRoFU3oA2gWR0CjbIZsKsuGdX2UKGgGaAloD0MI+tLbn4vIbkCUhpRSlGgVTQwCaBZHQKNt2rcTJyR1fZQoaAZoCWgPQwj0+SgjLpxvQJSGlFKUaBVNWgNoFkdAo25P0VafSXV9lChoBmgJaA9DCAh0Jm2qkGJAlIaUUpRoFU3oA2gWR0Cjb+Xcxj8UdX2UKGgGaAloD0MIWvW52ooxO0CUhpRSlGgVS+loFkdAo3D0KgIyCXV9lChoBmgJaA9DCKncRC3NfFxAlIaUUpRoFU3oA2gWR0Cjc3v38GcGdX2UKGgGaAloD0MIP3PWp5yEbUCUhpRSlGgVTXoDaBZHQKOFjRUm2LJ1fZQoaAZoCWgPQwgtmPij6KRwQJSGlFKUaBVNfwFoFkdAo4bIXAM2FXV9lChoBmgJaA9DCB2PGagMgm1AlIaUUpRoFU3jAmgWR0CjiEz9KmKqdX2UKGgGaAloD0MI0UGXcOizZUCUhpRSlGgVTegDaBZHQKOIv2pyZKF1fZQoaAZoCWgPQwixicxc4IJlQJSGlFKUaBVN6ANoFkdAo4kOmJm/WXV9lChoBmgJaA9DCFRweEGEGXJAlIaUUpRoFU3lAmgWR0CjiU6S9ugpdX2UKGgGaAloD0MI0H6kiAygZ0CUhpRSlGgVTegDaBZHQKOKDpaA4GV1fZQoaAZoCWgPQwiwOJz51XhuQJSGlFKUaBVNPQJoFkdAo4uBdld1MnV9lChoBmgJaA9DCFa45SOpj2RAlIaUUpRoFU3oA2gWR0CjjALTYukDdX2UKGgGaAloD0MIQRGLGDY3ckCUhpRSlGgVTWABaBZHQKOOds3yZrp1fZQoaAZoCWgPQwihLHx9LQBkQJSGlFKUaBVN6ANoFkdAo49m+/QBxXV9lChoBmgJaA9DCMBC5sqgWW5AlIaUUpRoFU2aAmgWR0Cjj8obfgrIdX2UKGgGaAloD0MIL8GpDyR/OkCUhpRSlGgVTSgBaBZHQKOP1upCKJl1fZQoaAZoCWgPQwhBuAIK9aNyQJSGlFKUaBVNUwFoFkdAo5IKoS+QEXV9lChoBmgJaA9DCLr4255gEXBAlIaUUpRoFU1jA2gWR0Cjkwyhi9ZidX2UKGgGaAloD0MIG0mCcIWmb0CUhpRSlGgVTTcDaBZHQKOU6WfK6nR1fZQoaAZoCWgPQwjpEDgSKFlwQJSGlFKUaBVNtAJoFkdAo5TqZhKDkHV9lChoBmgJaA9DCGmqJ/OP4WBAlIaUUpRoFU3oA2gWR0Cjl4XIU8FIdX2UKGgGaAloD0MI2qoksg/vbkCUhpRSlGgVTXwBaBZHQKOXvFKkEcN1fZQoaAZoCWgPQwjmr5C5MqVvQJSGlFKUaBVN6QFoFkdAo5fPykKu0XV9lChoBmgJaA9DCIBKlSh7AW9AlIaUUpRoFU15AmgWR0CjmF8jqv/zdX2UKGgGaAloD0MIOX6oNGIrZ0CUhpRSlGgVTegDaBZHQKOaKUnG8291fZQoaAZoCWgPQwj83qY/+59EQJSGlFKUaBVL6GgWR0CjmpV2Rq46dX2UKGgGaAloD0MIhuRk4lbAXkCUhpRSlGgVTegDaBZHQKOwHUo8ZDR1fZQoaAZoCWgPQwgkgQabulpiQJSGlFKUaBVN6ANoFkdAo7G6gqVhTnV9lChoBmgJaA9DCGN/2T35dm5AlIaUUpRoFU3KA2gWR0Cjsg2VmjCYdX2UKGgGaAloD0MIVOHP8CYWcUCUhpRSlGgVTYgBaBZHQKOypYW+GoJ1fZQoaAZoCWgPQwjwbI/ecA5xQJSGlFKUaBVNrgFoFkdAo7N/V7Qb/HV9lChoBmgJaA9DCOQuwhTlrm9AlIaUUpRoFU1TAWgWR0CjtBjSPU8WdX2UKGgGaAloD0MIg+Dx7d0jZECUhpRSlGgVTegDaBZHQKO1WOBDohZ1fZQoaAZoCWgPQwi6SnfXWV9rQJSGlFKUaBVNngJoFkdAo7cY4jrzG3V9lChoBmgJaA9DCPqa5bLRPW1AlIaUUpRoFU2/AWgWR0Cjt1Nix3V1dX2UKGgGaAloD0MIGk8EcR4DbUCUhpRSlGgVTSsDaBZHQKO41ajesPt1fZQoaAZoCWgPQwgH7GrylCdvQJSGlFKUaBVN2wNoFkdAo7lXMyJsPHV9lChoBmgJaA9DCAb2mEhpaGRAlIaUUpRoFU3oA2gWR0CjugqLS/j9dX2UKGgGaAloD0MIg4k/irpNYECUhpRSlGgVTegDaBZHQKO6Fxy4nWt1fZQoaAZoCWgPQwiJ7lnX6IduQJSGlFKUaBVNaAFoFkdAo7t73TNMXnV9lChoBmgJaA9DCCEDeXZ5725AlIaUUpRoFU2tAWgWR0Cju7QlSjxkdX2UKGgGaAloD0MItmeWBCg3YECUhpRSlGgVTegDaBZHQKO8hiy6cy51fZQoaAZoCWgPQwiZSj/hbAFvQJSGlFKUaBVNpQFoFkdAo7zNhLGrCHV9lChoBmgJaA9DCLHfE+vURGxAlIaUUpRoFU2+AWgWR0CjvfkLhJiBdX2UKGgGaAloD0MI9fOmIpXhakCUhpRSlGgVTUkBaBZHQKO/Rrt3OfN1fZQoaAZoCWgPQwhcPLznQGRxQJSGlFKUaBVNlAFoFkdAo8EAWi1zAHV9lChoBmgJaA9DCGx6UFCKZGJAlIaUUpRoFU3oA2gWR0CjwgC2tuDSdX2UKGgGaAloD0MIIApmTMELcECUhpRSlGgVTeADaBZHQKPCX9R77bd1fZQoaAZoCWgPQwiCcXDp2KVwQJSGlFKUaBVNbAFoFkdAo8LcJY1YQ3V9lChoBmgJaA9DCBu62R8ogXBAlIaUUpRoFU2UAmgWR0Cjw9tjslcAdX2UKGgGaAloD0MI9b7xtadEcUCUhpRSlGgVTewBaBZHQKPEuzJIUah1fZQoaAZoCWgPQwgFM6ZgDZZvQJSGlFKUaBVNyQFoFkdAo8eX7DVH4HV9lChoBmgJaA9DCJYKKqo+t3FAlIaUUpRoFU2WAWgWR0Cjx/7nX/YKdX2UKGgGaAloD0MIfsUaLrJFcUCUhpRSlGgVTRcCaBZHQKPZK8TSLIh1fZQoaAZoCWgPQwjpmPOM/YBuQJSGlFKUaBVNUwFoFkdAo9nTV4HHFXV9lChoBmgJaA9DCDp2UIkr/HFAlIaUUpRoFU1dAWgWR0Cj2ydJ8OTadX2UKGgGaAloD0MIvYv34/axbUCUhpRSlGgVTX4CaBZHQKPbsBHTZxt1fZQoaAZoCWgPQwhwmGiQwiJwQJSGlFKUaBVNmQNoFkdAo9y2UyHmBHV9lChoBmgJaA9DCJOsw9GVAHBAlIaUUpRoFU0GAmgWR0Cj3MUW/JvHdX2UKGgGaAloD0MIKV5lbdP1Z0CUhpRSlGgVTegDaBZHQKPdbM6ij+J1fZQoaAZoCWgPQwihEAGHECdwQJSGlFKUaBVNJwNoFkdAo92tJYkmhXV9lChoBmgJaA9DCLhZvFgY02xAlIaUUpRoFU2JAWgWR0Cj3jDP4VRDdX2UKGgGaAloD0MIS8lyEspUbkCUhpRSlGgVTZEBaBZHQKPfL5/LDAJ1fZQoaAZoCWgPQwiTcCGPYHNvQJSGlFKUaBVN7wFoFkdAo9+JY1YQrnV9lChoBmgJaA9DCKPp7GRwwm9AlIaUUpRoFU1fAmgWR0Cj4aHCwbEQdX2UKGgGaAloD0MIqrUwC23JcUCUhpRSlGgVTVMBaBZHQKPh/UdaMaV1fZQoaAZoCWgPQwiU2SCTDIxkQJSGlFKUaBVN6ANoFkdAo+LcAiml7HV9lChoBmgJaA9DCBBdUN8yOW9AlIaUUpRoFU2YA2gWR0Cj44vJaJQ+dX2UKGgGaAloD0MIrS8S2nIlcECUhpRSlGgVTd0BaBZHQKPjkwTufEp1fZQoaAZoCWgPQwhDy7p/7D5wQJSGlFKUaBVNGwFoFkdAo+REcENe+nV9lChoBmgJaA9DCPqAQGdSVW5AlIaUUpRoFU1UAWgWR0Cj5KEJa7mMdX2UKGgGaAloD0MIw2aAC7JXS0CUhpRSlGgVTQUBaBZHQKPltI4lyBF1fZQoaAZoCWgPQwjrqdVXl35yQJSGlFKUaBVNEAJoFkdAo+XrNnoPkXV9lChoBmgJaA9DCCjv42gOKXBAlIaUUpRoFU3OAWgWR0Cj5pA5imVJdX2UKGgGaAloD0MIDAQBMnQYckCUhpRSlGgVTRICaBZHQKPnxLFGXol1fZQoaAZoCWgPQwhJvDydK3IyQJSGlFKUaBVL9WgWR0Cj6qMr3CbddX2UKGgGaAloD0MItABtqxntcUCUhpRSlGgVTU0CaBZHQKPqzwhGH591fZQoaAZoCWgPQwgQ5+EEJptxQJSGlFKUaBVNbwFoFkdAo+wUa2nbZnV9lChoBmgJaA9DCHFYGvhRJm5AlIaUUpRoFU1hAWgWR0Cj7HlfqoqDdX2UKGgGaAloD0MIOq5GdiUAcECUhpRSlGgVTRQCaBZHQKPvdGhEjPh1fZQoaAZoCWgPQwiqCg3EsoBtQJSGlFKUaBVNoQFoFkdAo/GfNxEORXV9lChoBmgJaA9DCG7BUl3ALl9AlIaUUpRoFU3oA2gWR0Cj8lHsC1Z1dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 434,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 7,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
Attempt1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d965b82ee925a9b9eb0c080702082ffe8472cd52f29d286d3522604ae386d34
3
+ size 84893
Attempt1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5498f116a27ce37681e5b52ac0a05f38d8e659c8a1e92af6add1b4ef5f50df1b
3
+ size 43201
Attempt1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Attempt1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.17.3
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 231.87 +/- 13.76
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c3cf20dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c3cf20e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c3cf20ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c3cf20f80>", "_build": "<function ActorCriticPolicy._build at 0x7f9c3cf28050>", "forward": "<function ActorCriticPolicy.forward at 0x7f9c3cf280e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c3cf28170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9c3cf28200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c3cf28290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c3cf28320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c3cf283b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9c3cf71540>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651954351.8692944, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObbfr2uzYK6L9Clug+2l7WxOPg56nrBOQAAgD8AAIA/mjBDPUg/qLoNnyG4ps4ds9jGgjpsrjk3AACAPwAAgD8zMwK+HVA+Pqtz/zzxUEe+5wwRPLqok70AAAAAAAAAABpKlr0LX9899cEPPou5e76ugBc9yTKovAAAAAAAAAAAJmfRvfbIf7qXyoI6CaCztT3VAjtx55e5AACAPwAAAABmlcm9H/2TuVUd+DmU81+2aJoet/NSELkAAIA/AAAAAE1gvT0aTrA/dTdBPiUqvL7trTI+7elSPAAAAAAAAAAA5uocveyBzrkFHkQ7aZsbN6hrE7vqAT26AACAPwAAgD8A32Q+tiUXPZtc1zlU1oQ44lywPryNzLcAAIA/AACAP+bFsb2P6na6k9fkOfxxgzhJJTE7XWnNOAAAgD8AAIA/ze9KPVxrf7pzIq26UyGFtRJtXDqy88g5AACAPwAAgD9TMhC+IisbPshj7DxdvQm++1cPPYJr0rwAAAAAAAAAAAAngr2/1n0/eJhWvbV1pr6AngC8hVAKvQAAAAAAAAAAc1TmPcM5C7rihSi4EbhNs70msrqauUQ3AAAAAAAAgD/ARZu9w51/upabd7VPQ3uyvY38ulLZ0DQAAAAAAACAPx2bfL7f5/4+RS8rPsKGMb5dbYg8kJqFPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISdV2E3wUV0CUhpRSlIwBbJRN6AOMAXSUR0CjRIH003wTdX2UKGgGaAloD0MIrYbEPRbcYkCUhpRSlGgVTegDaBZHQKNV9Qb+98J1fZQoaAZoCWgPQwhMp3UbVHJkQJSGlFKUaBVN6ANoFkdAo1wMWuX/pHV9lChoBmgJaA9DCEinrnyW2mFAlIaUUpRoFU3oA2gWR0CjXCkzO5avdX2UKGgGaAloD0MIkrJF0m5xYkCUhpRSlGgVTegDaBZHQKNcgxcE/0N1fZQoaAZoCWgPQwh7SWO0jjpjQJSGlFKUaBVN6ANoFkdAo12c2Hck+3V9lChoBmgJaA9DCA9eu7Rh4WtAlIaUUpRoFU2gAmgWR0CjXp0gSvkjdX2UKGgGaAloD0MIcVevIiOTYkCUhpRSlGgVTegDaBZHQKNfzCWNWEN1fZQoaAZoCWgPQwgYJegv9KtiQJSGlFKUaBVN6ANoFkdAo2IWDFqBVnV9lChoBmgJaA9DCAsnaf4YYWlAlIaUUpRoFU01A2gWR0CjYvVU2kzodX2UKGgGaAloD0MInl2+9WGVY0CUhpRSlGgVTegDaBZHQKNj4xEfDDV1fZQoaAZoCWgPQwgCZOjYQVJjQJSGlFKUaBVN6ANoFkdAo2P6OLiuMnV9lChoBmgJaA9DCOlILv+hXmBAlIaUUpRoFU3oA2gWR0CjagRt52QodX2UKGgGaAloD0MIi4f3HNi7bECUhpRSlGgVTUUBaBZHQKNrjG2Culp1fZQoaAZoCWgPQwhIT5FDRHJiQJSGlFKUaBVN6ANoFkdAo2voGW2PUHV9lChoBmgJaA9DCI2Y2eexr2RAlIaUUpRoFU3oA2gWR0CjbIZsKsuGdX2UKGgGaAloD0MI+tLbn4vIbkCUhpRSlGgVTQwCaBZHQKNt2rcTJyR1fZQoaAZoCWgPQwj0+SgjLpxvQJSGlFKUaBVNWgNoFkdAo25P0VafSXV9lChoBmgJaA9DCAh0Jm2qkGJAlIaUUpRoFU3oA2gWR0Cjb+Xcxj8UdX2UKGgGaAloD0MIWvW52ooxO0CUhpRSlGgVS+loFkdAo3D0KgIyCXV9lChoBmgJaA9DCKncRC3NfFxAlIaUUpRoFU3oA2gWR0Cjc3v38GcGdX2UKGgGaAloD0MIP3PWp5yEbUCUhpRSlGgVTXoDaBZHQKOFjRUm2LJ1fZQoaAZoCWgPQwgtmPij6KRwQJSGlFKUaBVNfwFoFkdAo4bIXAM2FXV9lChoBmgJaA9DCB2PGagMgm1AlIaUUpRoFU3jAmgWR0CjiEz9KmKqdX2UKGgGaAloD0MI0UGXcOizZUCUhpRSlGgVTegDaBZHQKOIv2pyZKF1fZQoaAZoCWgPQwixicxc4IJlQJSGlFKUaBVN6ANoFkdAo4kOmJm/WXV9lChoBmgJaA9DCFRweEGEGXJAlIaUUpRoFU3lAmgWR0CjiU6S9ugpdX2UKGgGaAloD0MI0H6kiAygZ0CUhpRSlGgVTegDaBZHQKOKDpaA4GV1fZQoaAZoCWgPQwiwOJz51XhuQJSGlFKUaBVNPQJoFkdAo4uBdld1MnV9lChoBmgJaA9DCFa45SOpj2RAlIaUUpRoFU3oA2gWR0CjjALTYukDdX2UKGgGaAloD0MIQRGLGDY3ckCUhpRSlGgVTWABaBZHQKOOds3yZrp1fZQoaAZoCWgPQwihLHx9LQBkQJSGlFKUaBVN6ANoFkdAo49m+/QBxXV9lChoBmgJaA9DCMBC5sqgWW5AlIaUUpRoFU2aAmgWR0Cjj8obfgrIdX2UKGgGaAloD0MIL8GpDyR/OkCUhpRSlGgVTSgBaBZHQKOP1upCKJl1fZQoaAZoCWgPQwhBuAIK9aNyQJSGlFKUaBVNUwFoFkdAo5IKoS+QEXV9lChoBmgJaA9DCLr4255gEXBAlIaUUpRoFU1jA2gWR0Cjkwyhi9ZidX2UKGgGaAloD0MIG0mCcIWmb0CUhpRSlGgVTTcDaBZHQKOU6WfK6nR1fZQoaAZoCWgPQwjpEDgSKFlwQJSGlFKUaBVNtAJoFkdAo5TqZhKDkHV9lChoBmgJaA9DCGmqJ/OP4WBAlIaUUpRoFU3oA2gWR0Cjl4XIU8FIdX2UKGgGaAloD0MI2qoksg/vbkCUhpRSlGgVTXwBaBZHQKOXvFKkEcN1fZQoaAZoCWgPQwjmr5C5MqVvQJSGlFKUaBVN6QFoFkdAo5fPykKu0XV9lChoBmgJaA9DCIBKlSh7AW9AlIaUUpRoFU15AmgWR0CjmF8jqv/zdX2UKGgGaAloD0MIOX6oNGIrZ0CUhpRSlGgVTegDaBZHQKOaKUnG8291fZQoaAZoCWgPQwj83qY/+59EQJSGlFKUaBVL6GgWR0CjmpV2Rq46dX2UKGgGaAloD0MIhuRk4lbAXkCUhpRSlGgVTegDaBZHQKOwHUo8ZDR1fZQoaAZoCWgPQwgkgQabulpiQJSGlFKUaBVN6ANoFkdAo7G6gqVhTnV9lChoBmgJaA9DCGN/2T35dm5AlIaUUpRoFU3KA2gWR0Cjsg2VmjCYdX2UKGgGaAloD0MIVOHP8CYWcUCUhpRSlGgVTYgBaBZHQKOypYW+GoJ1fZQoaAZoCWgPQwjwbI/ecA5xQJSGlFKUaBVNrgFoFkdAo7N/V7Qb/HV9lChoBmgJaA9DCOQuwhTlrm9AlIaUUpRoFU1TAWgWR0CjtBjSPU8WdX2UKGgGaAloD0MIg+Dx7d0jZECUhpRSlGgVTegDaBZHQKO1WOBDohZ1fZQoaAZoCWgPQwi6SnfXWV9rQJSGlFKUaBVNngJoFkdAo7cY4jrzG3V9lChoBmgJaA9DCPqa5bLRPW1AlIaUUpRoFU2/AWgWR0Cjt1Nix3V1dX2UKGgGaAloD0MIGk8EcR4DbUCUhpRSlGgVTSsDaBZHQKO41ajesPt1fZQoaAZoCWgPQwgH7GrylCdvQJSGlFKUaBVN2wNoFkdAo7lXMyJsPHV9lChoBmgJaA9DCAb2mEhpaGRAlIaUUpRoFU3oA2gWR0CjugqLS/j9dX2UKGgGaAloD0MIg4k/irpNYECUhpRSlGgVTegDaBZHQKO6Fxy4nWt1fZQoaAZoCWgPQwiJ7lnX6IduQJSGlFKUaBVNaAFoFkdAo7t73TNMXnV9lChoBmgJaA9DCCEDeXZ5725AlIaUUpRoFU2tAWgWR0Cju7QlSjxkdX2UKGgGaAloD0MItmeWBCg3YECUhpRSlGgVTegDaBZHQKO8hiy6cy51fZQoaAZoCWgPQwiZSj/hbAFvQJSGlFKUaBVNpQFoFkdAo7zNhLGrCHV9lChoBmgJaA9DCLHfE+vURGxAlIaUUpRoFU2+AWgWR0CjvfkLhJiBdX2UKGgGaAloD0MI9fOmIpXhakCUhpRSlGgVTUkBaBZHQKO/Rrt3OfN1fZQoaAZoCWgPQwhcPLznQGRxQJSGlFKUaBVNlAFoFkdAo8EAWi1zAHV9lChoBmgJaA9DCGx6UFCKZGJAlIaUUpRoFU3oA2gWR0CjwgC2tuDSdX2UKGgGaAloD0MIIApmTMELcECUhpRSlGgVTeADaBZHQKPCX9R77bd1fZQoaAZoCWgPQwiCcXDp2KVwQJSGlFKUaBVNbAFoFkdAo8LcJY1YQ3V9lChoBmgJaA9DCBu62R8ogXBAlIaUUpRoFU2UAmgWR0Cjw9tjslcAdX2UKGgGaAloD0MI9b7xtadEcUCUhpRSlGgVTewBaBZHQKPEuzJIUah1fZQoaAZoCWgPQwgFM6ZgDZZvQJSGlFKUaBVNyQFoFkdAo8eX7DVH4HV9lChoBmgJaA9DCJYKKqo+t3FAlIaUUpRoFU2WAWgWR0Cjx/7nX/YKdX2UKGgGaAloD0MIfsUaLrJFcUCUhpRSlGgVTRcCaBZHQKPZK8TSLIh1fZQoaAZoCWgPQwjpmPOM/YBuQJSGlFKUaBVNUwFoFkdAo9nTV4HHFXV9lChoBmgJaA9DCDp2UIkr/HFAlIaUUpRoFU1dAWgWR0Cj2ydJ8OTadX2UKGgGaAloD0MIvYv34/axbUCUhpRSlGgVTX4CaBZHQKPbsBHTZxt1fZQoaAZoCWgPQwhwmGiQwiJwQJSGlFKUaBVNmQNoFkdAo9y2UyHmBHV9lChoBmgJaA9DCJOsw9GVAHBAlIaUUpRoFU0GAmgWR0Cj3MUW/JvHdX2UKGgGaAloD0MIKV5lbdP1Z0CUhpRSlGgVTegDaBZHQKPdbM6ij+J1fZQoaAZoCWgPQwihEAGHECdwQJSGlFKUaBVNJwNoFkdAo92tJYkmhXV9lChoBmgJaA9DCLhZvFgY02xAlIaUUpRoFU2JAWgWR0Cj3jDP4VRDdX2UKGgGaAloD0MIS8lyEspUbkCUhpRSlGgVTZEBaBZHQKPfL5/LDAJ1fZQoaAZoCWgPQwiTcCGPYHNvQJSGlFKUaBVN7wFoFkdAo9+JY1YQrnV9lChoBmgJaA9DCKPp7GRwwm9AlIaUUpRoFU1fAmgWR0Cj4aHCwbEQdX2UKGgGaAloD0MIqrUwC23JcUCUhpRSlGgVTVMBaBZHQKPh/UdaMaV1fZQoaAZoCWgPQwiU2SCTDIxkQJSGlFKUaBVN6ANoFkdAo+LcAiml7HV9lChoBmgJaA9DCBBdUN8yOW9AlIaUUpRoFU2YA2gWR0Cj44vJaJQ+dX2UKGgGaAloD0MIrS8S2nIlcECUhpRSlGgVTd0BaBZHQKPjkwTufEp1fZQoaAZoCWgPQwhDy7p/7D5wQJSGlFKUaBVNGwFoFkdAo+REcENe+nV9lChoBmgJaA9DCPqAQGdSVW5AlIaUUpRoFU1UAWgWR0Cj5KEJa7mMdX2UKGgGaAloD0MIw2aAC7JXS0CUhpRSlGgVTQUBaBZHQKPltI4lyBF1fZQoaAZoCWgPQwjrqdVXl35yQJSGlFKUaBVNEAJoFkdAo+XrNnoPkXV9lChoBmgJaA9DCCjv42gOKXBAlIaUUpRoFU3OAWgWR0Cj5pA5imVJdX2UKGgGaAloD0MIDAQBMnQYckCUhpRSlGgVTRICaBZHQKPnxLFGXol1fZQoaAZoCWgPQwhJvDydK3IyQJSGlFKUaBVL9WgWR0Cj6qMr3CbddX2UKGgGaAloD0MItABtqxntcUCUhpRSlGgVTU0CaBZHQKPqzwhGH591fZQoaAZoCWgPQwgQ5+EEJptxQJSGlFKUaBVNbwFoFkdAo+wUa2nbZnV9lChoBmgJaA9DCHFYGvhRJm5AlIaUUpRoFU1hAWgWR0Cj7HlfqoqDdX2UKGgGaAloD0MIOq5GdiUAcECUhpRSlGgVTRQCaBZHQKPvdGhEjPh1fZQoaAZoCWgPQwiqCg3EsoBtQJSGlFKUaBVNoQFoFkdAo/GfNxEORXV9lChoBmgJaA9DCG7BUl3ALl9AlIaUUpRoFU3oA2gWR0Cj8lHsC1Z1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 434, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 7, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b704664cd4acaa0090b6d00fa655ff11e40255ef044ab962c15222072da2e433
3
+ size 254712
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 231.87071587390898, "std_reward": 13.756870403247818, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T20:37:27.695471"}