eeeebbb2 commited on
Commit
4aeebf8
·
verified ·
1 Parent(s): b144186

End of training

Browse files
Files changed (2) hide show
  1. README.md +173 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 77d95c8a-4c70-4eb9-a221-df84d7ed4b00
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
22
+ bf16: auto
23
+ chat_template: llama3
24
+ cosine_min_lr_ratio: 0.1
25
+ data_processes: 16
26
+ dataset_prepared_path: null
27
+ datasets:
28
+ - data_files:
29
+ - bdd0874a25b956c1_train_data.json
30
+ ds_type: json
31
+ format: custom
32
+ path: /workspace/input_data/bdd0874a25b956c1_train_data.json
33
+ type:
34
+ field_input: text
35
+ field_instruction: title
36
+ field_output: subreddit
37
+ format: '{instruction} {input}'
38
+ no_input_format: '{instruction}'
39
+ system_format: '{system}'
40
+ system_prompt: ''
41
+ debug: null
42
+ deepspeed: null
43
+ device_map: auto
44
+ do_eval: true
45
+ early_stopping_patience: 1
46
+ eval_batch_size: 1
47
+ eval_sample_packing: false
48
+ eval_steps: 25
49
+ evaluation_strategy: steps
50
+ flash_attention: false
51
+ fp16: null
52
+ fsdp: null
53
+ fsdp_config: null
54
+ gradient_accumulation_steps: 32
55
+ gradient_checkpointing: true
56
+ group_by_length: true
57
+ hub_model_id: eeeebbb2/77d95c8a-4c70-4eb9-a221-df84d7ed4b00
58
+ hub_strategy: checkpoint
59
+ hub_token: null
60
+ learning_rate: 0.0001
61
+ load_in_4bit: false
62
+ load_in_8bit: false
63
+ local_rank: null
64
+ logging_steps: 1
65
+ lora_alpha: 64
66
+ lora_dropout: 0.05
67
+ lora_fan_in_fan_out: null
68
+ lora_model_dir: null
69
+ lora_r: 32
70
+ lora_target_linear: true
71
+ lora_target_modules:
72
+ - q_proj
73
+ - v_proj
74
+ lr_scheduler: cosine
75
+ max_grad_norm: 1.0
76
+ max_memory:
77
+ 0: 70GiB
78
+ 1: 70GiB
79
+ 2: 70GiB
80
+ 3: 70GiB
81
+ max_steps: 50
82
+ micro_batch_size: 1
83
+ mlflow_experiment_name: /tmp/bdd0874a25b956c1_train_data.json
84
+ model_type: AutoModelForCausalLM
85
+ num_epochs: 3
86
+ optim_args:
87
+ adam_beta1: 0.9
88
+ adam_beta2: 0.95
89
+ adam_epsilon: 1e-5
90
+ optimizer: adamw_torch
91
+ output_dir: miner_id_24
92
+ pad_to_sequence_len: true
93
+ resume_from_checkpoint: null
94
+ s2_attention: null
95
+ sample_packing: false
96
+ save_steps: 25
97
+ save_strategy: steps
98
+ sequence_len: 2048
99
+ special_tokens:
100
+ pad_token: </s>
101
+ strict: false
102
+ tf32: false
103
+ tokenizer_type: AutoTokenizer
104
+ torch_compile: false
105
+ train_on_inputs: false
106
+ trust_remote_code: true
107
+ val_set_size: 50
108
+ wandb_entity: null
109
+ wandb_mode: online
110
+ wandb_name: 77d95c8a-4c70-4eb9-a221-df84d7ed4b00
111
+ wandb_project: Public_TuningSN
112
+ wandb_runid: 77d95c8a-4c70-4eb9-a221-df84d7ed4b00
113
+ warmup_ratio: 0.04
114
+ weight_decay: 0.01
115
+ xformers_attention: null
116
+
117
+ ```
118
+
119
+ </details><br>
120
+
121
+ # 77d95c8a-4c70-4eb9-a221-df84d7ed4b00
122
+
123
+ This model is a fine-tuned version of [HuggingFaceH4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceH4/tiny-random-LlamaForCausalLM) on the None dataset.
124
+ It achieves the following results on the evaluation set:
125
+ - Loss: 10.3657
126
+
127
+ ## Model description
128
+
129
+ More information needed
130
+
131
+ ## Intended uses & limitations
132
+
133
+ More information needed
134
+
135
+ ## Training and evaluation data
136
+
137
+ More information needed
138
+
139
+ ## Training procedure
140
+
141
+ ### Training hyperparameters
142
+
143
+ The following hyperparameters were used during training:
144
+ - learning_rate: 0.0001
145
+ - train_batch_size: 1
146
+ - eval_batch_size: 1
147
+ - seed: 42
148
+ - distributed_type: multi-GPU
149
+ - num_devices: 4
150
+ - gradient_accumulation_steps: 32
151
+ - total_train_batch_size: 128
152
+ - total_eval_batch_size: 4
153
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
154
+ - lr_scheduler_type: cosine
155
+ - lr_scheduler_warmup_steps: 2
156
+ - training_steps: 50
157
+
158
+ ### Training results
159
+
160
+ | Training Loss | Epoch | Step | Validation Loss |
161
+ |:-------------:|:------:|:----:|:---------------:|
162
+ | 10.3967 | 0.0258 | 1 | 10.3850 |
163
+ | 10.3705 | 0.6457 | 25 | 10.3717 |
164
+ | 9.1647 | 1.2914 | 50 | 10.3657 |
165
+
166
+
167
+ ### Framework versions
168
+
169
+ - PEFT 0.13.2
170
+ - Transformers 4.46.0
171
+ - Pytorch 2.5.0+cu124
172
+ - Datasets 3.0.1
173
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:866886bd28d2297affc7ed175d885ec6d143949386d40bf49ab4cf23589b8521
3
+ size 104322