Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 966.18 +/- 100.33
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5564cbcf07977a1d89905d6ac2bd2711c4a1262f46fa849e729fdd55e80cc212
|
3 |
+
size 129246
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a00b49d37f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a00b49d3880>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a00b49d3910>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a00b49d39a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a00b49d3a30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a00b49d3ac0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a00b49d3b50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a00b49d3be0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a00b49d3c70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a00b49d3d00>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a00b49d3d90>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a00b49d3e20>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a00c1df3640>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1690766911401575124,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAF3RtD549JE91/kDP9NPzr4RGC8+JtjKPinOkL71Jh7AUFrpvpmTJkBBAqk/9SIlQMVCq7/hSmK7Aw/VPoDsDD5EjwA/oKtQvHgdLD9FsSq/mXMLv1ryBTxNqSK/0BjTv/sHlL9el9E+e3YVP68tj7/yyUo/XYwnv4PctD5hJIw+nuJ0vav+MECADIQ/aHFowJ/+xb91SIdAzzYQQBnK2j8zk5e+SU85P09JYT85goU9rdmgP8OeUry7Lzg/r0MsPbmEkr6I9+0//7MoQAaoUb/7B5S/XpfRPnt2FT+vLY+/wNQ7vvbxPz7qogE/otHzvp4Ibb/Cpl7AHzznPpDVr75XZf+/T8mTP0XObj/fnjc/Q6GrvzpMuDzq4Es/t67XPzV+Ar+XrSU+1nAwP8td8j5CNxNAGGYCQCJ1UL/JrAs/2VtdP6VXHMANPdu/ry2PvyGDjj7IpY4+Cyj8PlvPdL512lo/ktW0P+SNR75T3FHASKswvxYkUsBnDC1A4AbHP6z7ir88eHk+JHFgP4/x6rwLu0s/Ux2yPCX0OD8rk4C86QUcQHIxcb8SXHK9MrH/P/sHlL9el9E+e3YVP68tj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADrGpE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmN59vAAAAAAYG9q/AAAAAEsMwj0AAAAAT33dPwAAAAC7GVW8AAAAAOeZ3z8AAAAAJx2yvQAAAAApQOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApsCJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNfq4rsAAAAA1QrevwAAAADRV0W9AAAAAMSZ9D8AAAAAmNnvPQAAAAAG5+w/AAAAAB8G3L0AAAAA8gnrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvT+bQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDDIZq8AAAAAISN7b8AAAAA4I6+vQAAAACh7uY/AAAAAHpATD0AAAAAxMPhPwAAAADpfEq7AAAAADjy+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8EKO1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADdS+PAAAAAAwsfG/AAAAAGOqjz0AAAAAzST8PwAAAABPTQu9AAAAABae2z8AAAAABIGAPQAAAAD01Ni/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQeWfthNM6MAWyUTegDjAF0lEdAqGZ1AmiQDHV9lChoBkdAmIInLJSzgWgHTegDaAhHQKhn/xPO6d11fZQoaAZHQIRiEcXFcY9oB03oA2gIR0Cob8OGj9GadX2UKGgGR0CTcfi/fwZwaAdN6ANoCEdAqHHTTUiIL3V9lChoBkdAlaWV58jRlmgHTegDaAhHQKhzv4Ju2ql1fZQoaAZHQIIxDCWNWENoB03oA2gIR0CodUGBOHnEdX2UKGgGR0CK/9B2wFC+aAdN6ANoCEdAqHz0riEQG3V9lChoBkdAh3JeCbtqpWgHTegDaAhHQKh/DbRnezl1fZQoaAZHQIO6AY51eSloB03oA2gIR0CogQl2V3UydX2UKGgGR0CR3yBFNL13aAdN6ANoCEdAqIKSxu89OnV9lChoBkdAhu94eLehwmgHTegDaAhHQKiKY7hegL91fZQoaAZHQIMamr4nF5xoB03oA2gIR0CojHTTfBN3dX2UKGgGR0CFwww2VE/jaAdN6ANoCEdAqI5e/vfCRHV9lChoBkdAipXjxkNF0GgHTegDaAhHQKiP3z2exwB1fZQoaAZHQIam7XL/0d1oB03oA2gIR0Col6YKx9ofdX2UKGgGR0CIvyvllsguaAdN6ANoCEdAqJm2JemelXV9lChoBkdAgwz+9SMtLGgHTegDaAhHQKibovxH5Jt1fZQoaAZHQIO4WkzoEB9oB03oA2gIR0ConSfrSmZWdX2UKGgGR0CHDd4D9wWFaAdN6ANoCEdAqKTiIHkcTHV9lChoBkdAhqjzA31jAmgHTegDaAhHQKim75P/JeV1fZQoaAZHQIVkEJx//edoB03oA2gIR0CoqN+gDifhdX2UKGgGR0CKINSCOFQEaAdN6ANoCEdAqKpf/tICl3V9lChoBkdAhxUPBrN4aGgHTegDaAhHQKiyMFJxvNx1fZQoaAZHQIdswmZ3LV5oB03oA2gIR0CotEDGLk0adX2UKGgGR0CEZxbzK9wnaAdN6ANoCEdAqLYt/tpmE3V9lChoBkdAg9/FYU34sWgHTegDaAhHQKi3td/J/5N1fZQoaAZHQIqypHww0wdoB03oA2gIR0Cov4Wl/H5rdX2UKGgGR0CD0Jq/ub7TaAdN6ANoCEdAqMGQpF1B+nV9lChoBkdAho6kqDsdDWgHTegDaAhHQKjDfFhoduJ1fZQoaAZHQIa7s2pAD7toB03oA2gIR0CoxQOnl4kedX2UKGgGR0CGOAS7GvOhaAdN6ANoCEdAqMzivRqoInV9lChoBkdAho4BOpKjBWgHTegDaAhHQKjO8kleF+N1fZQoaAZHQIekqXKKYRdoB03oA2gIR0Co0ONuUD+zdX2UKGgGR0CHrFWZJCjUaAdN6ANoCEdAqNJmgxrSE3V9lChoBkdAhCXyw4bS7WgHTegDaAhHQKjaIcYIjW11fZQoaAZHQIAH0o0ALiNoB03oA2gIR0Co3DHl4keIdX2UKGgGR0COs+8AaNuMaAdN6ANoCEdAqN4aRSxZ+3V9lChoBkdAhHg8CHRCyGgHTegDaAhHQKjfnxEv0yx1fZQoaAZHQIK674i5d4VoB03oA2gIR0Co53dC/oJRdX2UKGgGR0CDVeRcNYr8aAdN6ANoCEdAqOmOlMyrP3V9lChoBkdAjNO6GYa5w2gHTegDaAhHQKjrd73wkPd1fZQoaAZHQIeRFNrTH81oB03oA2gIR0Co7PoJZ4fPdX2UKGgGR0CIMdWdVea8aAdN6ANoCEdAqPSr8tPHk3V9lChoBkdAiBtd9Dx9X2gHTegDaAhHQKj2tMr3Cbd1fZQoaAZHQJTzSnLq2SdoB03oA2gIR0Co+J+j2zv7dX2UKGgGR0CGWmYixFAnaAdN6ANoCEdAqPoyE6DGtXV9lChoBkdAg1wniWE9MmgHTegDaAhHQKkCBP2PDHh1fZQoaAZHQIbBPaFmFrVoB03oA2gIR0CpBBc4o7V8dX2UKGgGR0CMy6ois4kvaAdN6ANoCEdAqQYKcwxnF3V9lChoBkdAicM7MPjGUGgHTegDaAhHQKkHkI7eVLV1fZQoaAZHQIZVMiD/VAloB03oA2gIR0CpD2JUHY6GdX2UKGgGR0CJMGPaL4vfaAdN6ANoCEdAqRF9+XqqwXV9lChoBkdAiy6fcWTHKmgHTegDaAhHQKkTcuWa+ex1fZQoaAZHQI/TzXQMQVdoB03oA2gIR0CpFP9BSk0rdX2UKGgGR0CIMe6PsAvMaAdN6ANoCEdAqRykaMrEtXV9lChoBkdAfzy/zJ6ppGgHTegDaAhHQKkerDUmUnp1fZQoaAZHQIv2Mm2LHdZoB03oA2gIR0CpIJTtLL6ldX2UKGgGR0CFsf9oexOdaAdN6ANoCEdAqSIWQ+2VmnV9lChoBkdAi3JActGutGgHTegDaAhHQKkpvp7CzkZ1fZQoaAZHQIgCcLQXyiFoB03oA2gIR0CpK8ceS0SidX2UKGgGR0CIsflar3j/aAdN6ANoCEdAqS208JUo8nV9lChoBkdAhWRDJMg2ZWgHTegDaAhHQKkvOO4oZyd1fZQoaAZHQIjud78ejmFoB03oA2gIR0CpNvIFvAGjdX2UKGgGR0CEeX3aBZp0aAdN6ANoCEdAqTj+KuSwGHV9lChoBkdAgzsaW5YozGgHTegDaAhHQKk67NwiqyZ1fZQoaAZHQIfUcKLKmsNoB03oA2gIR0CpPGtbC79RdX2UKGgGR0BYxIIv8IiUaAdNSwFoCEdAqT1YGjbi63V9lChoBkdAhaM1GLDQ7mgHTegDaAhHQKlEHQa72+R1fZQoaAZHQIS/cEV32VVoB03oA2gIR0CpSCaCL/CJdX2UKGgGR0B3gU70WdmQaAdN6ANoCEdAqUmocghbGHV9lChoBkdAga3Vo6CDmWgHTegDaAhHQKlKmGEf1Yh1fZQoaAZHQIRUZky1uzhoB03oA2gIR0CpUWVmapgkdX2UKGgGR0CDENy08eS0aAdN6ANoCEdAqVVkjmjj73V9lChoBkdAgmE9TxXnyWgHTegDaAhHQKlW8Nx2jfx1fZQoaAZHQIX/N4zJp35oB03oA2gIR0CpV+C3gDRudX2UKGgGR0CCUMpKjBVNaAdN6ANoCEdAqV7Bh6SkkHV9lChoBkdAhSFB+4LCvWgHTegDaAhHQKlisp5u63B1fZQoaAZHQIR/fJeVs1toB03oA2gIR0CpZDO/cnE3dX2UKGgGR0CCmOmIj4YaaAdN6ANoCEdAqWUp5Z8rqnV9lChoBkdAiL9R3NcGDGgHTegDaAhHQKlr7dUsFt91fZQoaAZHQIT47IikftBoB03oA2gIR0Cpb+YR/ViGdX2UKGgGR0CJyjkNnXd1aAdN6ANoCEdAqXFkv7FbV3V9lChoBkdAiUkj+717IGgHTegDaAhHQKlyUGB4D9x1fZQoaAZHQIZ5fiJfplloB03oA2gIR0CpeQguyu6mdX2UKGgGR0CBzY2hqTKUaAdN6ANoCEdAqXz3rpqynnV9lChoBkdAjl2S+HrQgWgHTegDaAhHQKl+dmVZ9ux1fZQoaAZHQI+RcIgNgBtoB03oA2gIR0Cpf1+0w8GLdX2UKGgGR0CS4Jq2BreqaAdN6ANoCEdAqYYDhLoOhHV9lChoBkdAkgxMjJMg2mgHTegDaAhHQKmJ6HryDqZ1fZQoaAZHQJTi4vFm4AloB03oA2gIR0Cpi2kIPbwjdX2UKGgGR0CFR0HHFPznaAdN6ANoCEdAqYxRBZ6lcnV9lChoBkdAkI+EELYwqWgHTegDaAhHQKmTHQ7cO9Z1fZQoaAZHQJSikaGYa5xoB03oA2gIR0Cplv2XLNfPdX2UKGgGR0CPrdavA44qaAdN6ANoCEdAqZh4QBgeBHV9lChoBkdAj2G64MF2V2gHTegDaAhHQKmZYj9n9Nx1fZQoaAZHQJKWEcdYGMZoB03oA2gIR0Cpn/olt0mudX2UKGgGR0COlQHsTnJUaAdN6ANoCEdAqaPkHjZL7HV9lChoBkdAkKNxaPjn3mgHTegDaAhHQKmlYT6BRQ91fZQoaAZHQI63QXVLBbhoB03oA2gIR0Cppk0Cq6vrdX2UKGgGR0CMG5FrEcbSaAdN6ANoCEdAqaz0RxtHhHVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ac8611e09119a2ac3f97e28ad02eb51781180e8d2ec3bf873e91cf1e47f27e0
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a75726b15500635f8cccf729d8671d92ee1a5604d6c19b5563f218993838d65d
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a00b49d37f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a00b49d3880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a00b49d3910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a00b49d39a0>", "_build": "<function ActorCriticPolicy._build at 0x7a00b49d3a30>", "forward": "<function ActorCriticPolicy.forward at 0x7a00b49d3ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a00b49d3b50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a00b49d3be0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a00b49d3c70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a00b49d3d00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a00b49d3d90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a00b49d3e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a00c1df3640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690766911401575124, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAF3RtD549JE91/kDP9NPzr4RGC8+JtjKPinOkL71Jh7AUFrpvpmTJkBBAqk/9SIlQMVCq7/hSmK7Aw/VPoDsDD5EjwA/oKtQvHgdLD9FsSq/mXMLv1ryBTxNqSK/0BjTv/sHlL9el9E+e3YVP68tj7/yyUo/XYwnv4PctD5hJIw+nuJ0vav+MECADIQ/aHFowJ/+xb91SIdAzzYQQBnK2j8zk5e+SU85P09JYT85goU9rdmgP8OeUry7Lzg/r0MsPbmEkr6I9+0//7MoQAaoUb/7B5S/XpfRPnt2FT+vLY+/wNQ7vvbxPz7qogE/otHzvp4Ibb/Cpl7AHzznPpDVr75XZf+/T8mTP0XObj/fnjc/Q6GrvzpMuDzq4Es/t67XPzV+Ar+XrSU+1nAwP8td8j5CNxNAGGYCQCJ1UL/JrAs/2VtdP6VXHMANPdu/ry2PvyGDjj7IpY4+Cyj8PlvPdL512lo/ktW0P+SNR75T3FHASKswvxYkUsBnDC1A4AbHP6z7ir88eHk+JHFgP4/x6rwLu0s/Ux2yPCX0OD8rk4C86QUcQHIxcb8SXHK9MrH/P/sHlL9el9E+e3YVP68tj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADrGpE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmN59vAAAAAAYG9q/AAAAAEsMwj0AAAAAT33dPwAAAAC7GVW8AAAAAOeZ3z8AAAAAJx2yvQAAAAApQOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApsCJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNfq4rsAAAAA1QrevwAAAADRV0W9AAAAAMSZ9D8AAAAAmNnvPQAAAAAG5+w/AAAAAB8G3L0AAAAA8gnrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvT+bQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDDIZq8AAAAAISN7b8AAAAA4I6+vQAAAACh7uY/AAAAAHpATD0AAAAAxMPhPwAAAADpfEq7AAAAADjy+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8EKO1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADdS+PAAAAAAwsfG/AAAAAGOqjz0AAAAAzST8PwAAAABPTQu9AAAAABae2z8AAAAABIGAPQAAAAD01Ni/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQeWfthNM6MAWyUTegDjAF0lEdAqGZ1AmiQDHV9lChoBkdAmIInLJSzgWgHTegDaAhHQKhn/xPO6d11fZQoaAZHQIRiEcXFcY9oB03oA2gIR0Cob8OGj9GadX2UKGgGR0CTcfi/fwZwaAdN6ANoCEdAqHHTTUiIL3V9lChoBkdAlaWV58jRlmgHTegDaAhHQKhzv4Ju2ql1fZQoaAZHQIIxDCWNWENoB03oA2gIR0CodUGBOHnEdX2UKGgGR0CK/9B2wFC+aAdN6ANoCEdAqHz0riEQG3V9lChoBkdAh3JeCbtqpWgHTegDaAhHQKh/DbRnezl1fZQoaAZHQIO6AY51eSloB03oA2gIR0CogQl2V3UydX2UKGgGR0CR3yBFNL13aAdN6ANoCEdAqIKSxu89OnV9lChoBkdAhu94eLehwmgHTegDaAhHQKiKY7hegL91fZQoaAZHQIMamr4nF5xoB03oA2gIR0CojHTTfBN3dX2UKGgGR0CFwww2VE/jaAdN6ANoCEdAqI5e/vfCRHV9lChoBkdAipXjxkNF0GgHTegDaAhHQKiP3z2exwB1fZQoaAZHQIam7XL/0d1oB03oA2gIR0Col6YKx9ofdX2UKGgGR0CIvyvllsguaAdN6ANoCEdAqJm2JemelXV9lChoBkdAgwz+9SMtLGgHTegDaAhHQKibovxH5Jt1fZQoaAZHQIO4WkzoEB9oB03oA2gIR0ConSfrSmZWdX2UKGgGR0CHDd4D9wWFaAdN6ANoCEdAqKTiIHkcTHV9lChoBkdAhqjzA31jAmgHTegDaAhHQKim75P/JeV1fZQoaAZHQIVkEJx//edoB03oA2gIR0CoqN+gDifhdX2UKGgGR0CKINSCOFQEaAdN6ANoCEdAqKpf/tICl3V9lChoBkdAhxUPBrN4aGgHTegDaAhHQKiyMFJxvNx1fZQoaAZHQIdswmZ3LV5oB03oA2gIR0CotEDGLk0adX2UKGgGR0CEZxbzK9wnaAdN6ANoCEdAqLYt/tpmE3V9lChoBkdAg9/FYU34sWgHTegDaAhHQKi3td/J/5N1fZQoaAZHQIqypHww0wdoB03oA2gIR0Cov4Wl/H5rdX2UKGgGR0CD0Jq/ub7TaAdN6ANoCEdAqMGQpF1B+nV9lChoBkdAho6kqDsdDWgHTegDaAhHQKjDfFhoduJ1fZQoaAZHQIa7s2pAD7toB03oA2gIR0CoxQOnl4kedX2UKGgGR0CGOAS7GvOhaAdN6ANoCEdAqMzivRqoInV9lChoBkdAho4BOpKjBWgHTegDaAhHQKjO8kleF+N1fZQoaAZHQIekqXKKYRdoB03oA2gIR0Co0ONuUD+zdX2UKGgGR0CHrFWZJCjUaAdN6ANoCEdAqNJmgxrSE3V9lChoBkdAhCXyw4bS7WgHTegDaAhHQKjaIcYIjW11fZQoaAZHQIAH0o0ALiNoB03oA2gIR0Co3DHl4keIdX2UKGgGR0COs+8AaNuMaAdN6ANoCEdAqN4aRSxZ+3V9lChoBkdAhHg8CHRCyGgHTegDaAhHQKjfnxEv0yx1fZQoaAZHQIK674i5d4VoB03oA2gIR0Co53dC/oJRdX2UKGgGR0CDVeRcNYr8aAdN6ANoCEdAqOmOlMyrP3V9lChoBkdAjNO6GYa5w2gHTegDaAhHQKjrd73wkPd1fZQoaAZHQIeRFNrTH81oB03oA2gIR0Co7PoJZ4fPdX2UKGgGR0CIMdWdVea8aAdN6ANoCEdAqPSr8tPHk3V9lChoBkdAiBtd9Dx9X2gHTegDaAhHQKj2tMr3Cbd1fZQoaAZHQJTzSnLq2SdoB03oA2gIR0Co+J+j2zv7dX2UKGgGR0CGWmYixFAnaAdN6ANoCEdAqPoyE6DGtXV9lChoBkdAg1wniWE9MmgHTegDaAhHQKkCBP2PDHh1fZQoaAZHQIbBPaFmFrVoB03oA2gIR0CpBBc4o7V8dX2UKGgGR0CMy6ois4kvaAdN6ANoCEdAqQYKcwxnF3V9lChoBkdAicM7MPjGUGgHTegDaAhHQKkHkI7eVLV1fZQoaAZHQIZVMiD/VAloB03oA2gIR0CpD2JUHY6GdX2UKGgGR0CJMGPaL4vfaAdN6ANoCEdAqRF9+XqqwXV9lChoBkdAiy6fcWTHKmgHTegDaAhHQKkTcuWa+ex1fZQoaAZHQI/TzXQMQVdoB03oA2gIR0CpFP9BSk0rdX2UKGgGR0CIMe6PsAvMaAdN6ANoCEdAqRykaMrEtXV9lChoBkdAfzy/zJ6ppGgHTegDaAhHQKkerDUmUnp1fZQoaAZHQIv2Mm2LHdZoB03oA2gIR0CpIJTtLL6ldX2UKGgGR0CFsf9oexOdaAdN6ANoCEdAqSIWQ+2VmnV9lChoBkdAi3JActGutGgHTegDaAhHQKkpvp7CzkZ1fZQoaAZHQIgCcLQXyiFoB03oA2gIR0CpK8ceS0SidX2UKGgGR0CIsflar3j/aAdN6ANoCEdAqS208JUo8nV9lChoBkdAhWRDJMg2ZWgHTegDaAhHQKkvOO4oZyd1fZQoaAZHQIjud78ejmFoB03oA2gIR0CpNvIFvAGjdX2UKGgGR0CEeX3aBZp0aAdN6ANoCEdAqTj+KuSwGHV9lChoBkdAgzsaW5YozGgHTegDaAhHQKk67NwiqyZ1fZQoaAZHQIfUcKLKmsNoB03oA2gIR0CpPGtbC79RdX2UKGgGR0BYxIIv8IiUaAdNSwFoCEdAqT1YGjbi63V9lChoBkdAhaM1GLDQ7mgHTegDaAhHQKlEHQa72+R1fZQoaAZHQIS/cEV32VVoB03oA2gIR0CpSCaCL/CJdX2UKGgGR0B3gU70WdmQaAdN6ANoCEdAqUmocghbGHV9lChoBkdAga3Vo6CDmWgHTegDaAhHQKlKmGEf1Yh1fZQoaAZHQIRUZky1uzhoB03oA2gIR0CpUWVmapgkdX2UKGgGR0CDENy08eS0aAdN6ANoCEdAqVVkjmjj73V9lChoBkdAgmE9TxXnyWgHTegDaAhHQKlW8Nx2jfx1fZQoaAZHQIX/N4zJp35oB03oA2gIR0CpV+C3gDRudX2UKGgGR0CCUMpKjBVNaAdN6ANoCEdAqV7Bh6SkkHV9lChoBkdAhSFB+4LCvWgHTegDaAhHQKlisp5u63B1fZQoaAZHQIR/fJeVs1toB03oA2gIR0CpZDO/cnE3dX2UKGgGR0CCmOmIj4YaaAdN6ANoCEdAqWUp5Z8rqnV9lChoBkdAiL9R3NcGDGgHTegDaAhHQKlr7dUsFt91fZQoaAZHQIT47IikftBoB03oA2gIR0Cpb+YR/ViGdX2UKGgGR0CJyjkNnXd1aAdN6ANoCEdAqXFkv7FbV3V9lChoBkdAiUkj+717IGgHTegDaAhHQKlyUGB4D9x1fZQoaAZHQIZ5fiJfplloB03oA2gIR0CpeQguyu6mdX2UKGgGR0CBzY2hqTKUaAdN6ANoCEdAqXz3rpqynnV9lChoBkdAjl2S+HrQgWgHTegDaAhHQKl+dmVZ9ux1fZQoaAZHQI+RcIgNgBtoB03oA2gIR0Cpf1+0w8GLdX2UKGgGR0CS4Jq2BreqaAdN6ANoCEdAqYYDhLoOhHV9lChoBkdAkgxMjJMg2mgHTegDaAhHQKmJ6HryDqZ1fZQoaAZHQJTi4vFm4AloB03oA2gIR0Cpi2kIPbwjdX2UKGgGR0CFR0HHFPznaAdN6ANoCEdAqYxRBZ6lcnV9lChoBkdAkI+EELYwqWgHTegDaAhHQKmTHQ7cO9Z1fZQoaAZHQJSikaGYa5xoB03oA2gIR0Cplv2XLNfPdX2UKGgGR0CPrdavA44qaAdN6ANoCEdAqZh4QBgeBHV9lChoBkdAj2G64MF2V2gHTegDaAhHQKmZYj9n9Nx1fZQoaAZHQJKWEcdYGMZoB03oA2gIR0Cpn/olt0mudX2UKGgGR0COlQHsTnJUaAdN6ANoCEdAqaPkHjZL7HV9lChoBkdAkKNxaPjn3mgHTegDaAhHQKmlYT6BRQ91fZQoaAZHQI63QXVLBbhoB03oA2gIR0Cppk0Cq6vrdX2UKGgGR0CMG5FrEcbSaAdN6ANoCEdAqaz0RxtHhHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (947 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 966.175038747018, "std_reward": 100.32884847754633, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-31T02:24:35.396781"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:753df5f5477e8368a1d990fdb0ca0295e1836a1a163b6ab89afe3c951df30626
|
3 |
+
size 2176
|