Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +352 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- dataset_size:n<1K
|
9 |
+
- loss:MultipleNegativesRankingLoss
|
10 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
11 |
+
widget:
|
12 |
+
- source_sentence: What is the benefit of using a box plot?
|
13 |
+
sentences:
|
14 |
+
- Why would you choose a box plot over a bar chart?
|
15 |
+
- Can you explain the difference between line charts and bar charts?
|
16 |
+
- What does color and size represent in Heat Map visualization?
|
17 |
+
- source_sentence: Can you explain how to read a bar chart?
|
18 |
+
sentences:
|
19 |
+
- Can you explain how to read a line chart?
|
20 |
+
- Can you explain the difference between line charts and bar charts?
|
21 |
+
- Why are heatmaps often used for representing correlation matrices?
|
22 |
+
- source_sentence: What is a heatmap and when is it useful?
|
23 |
+
sentences:
|
24 |
+
- What is a heatmap and in what situations is it useful?
|
25 |
+
- Why should one consider using radar charts for data representation?
|
26 |
+
- Bar charts are best suited for representing categorical data or comparing discrete
|
27 |
+
groups. This includes data like different groups' scores, frequency of categories,
|
28 |
+
or changes over a period of time for different categories.
|
29 |
+
- source_sentence: Can you explain how to read a line chart?
|
30 |
+
sentences:
|
31 |
+
- Can you explain how to interpret a line chart?
|
32 |
+
- Can you define data visualization and its importance in businesses?
|
33 |
+
- Why are heatmaps often used for representing correlation matrices?
|
34 |
+
- source_sentence: What make a data visualization effective?
|
35 |
+
sentences:
|
36 |
+
- What are the key principles in creating effective data visualizations?
|
37 |
+
- In what situation would you use a bar chart for data visualization?
|
38 |
+
- A bar chart represents data in rectangular bars with lengths proportional to the
|
39 |
+
values that they represent. It is commonly used to compare individual data points
|
40 |
+
with each other. On the other hand, a line chart uses lines to connect individual
|
41 |
+
data points and shows trends over a period of time.
|
42 |
+
pipeline_tag: sentence-similarity
|
43 |
+
---
|
44 |
+
|
45 |
+
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
46 |
+
|
47 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
48 |
+
|
49 |
+
## Model Details
|
50 |
+
|
51 |
+
### Model Description
|
52 |
+
- **Model Type:** Sentence Transformer
|
53 |
+
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
|
54 |
+
- **Maximum Sequence Length:** 384 tokens
|
55 |
+
- **Output Dimensionality:** 768 tokens
|
56 |
+
- **Similarity Function:** Cosine Similarity
|
57 |
+
<!-- - **Training Dataset:** Unknown -->
|
58 |
+
<!-- - **Language:** Unknown -->
|
59 |
+
<!-- - **License:** Unknown -->
|
60 |
+
|
61 |
+
### Model Sources
|
62 |
+
|
63 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
64 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
65 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
66 |
+
|
67 |
+
### Full Model Architecture
|
68 |
+
|
69 |
+
```
|
70 |
+
SentenceTransformer(
|
71 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
72 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
73 |
+
(2): Normalize()
|
74 |
+
)
|
75 |
+
```
|
76 |
+
|
77 |
+
## Usage
|
78 |
+
|
79 |
+
### Direct Usage (Sentence Transformers)
|
80 |
+
|
81 |
+
First install the Sentence Transformers library:
|
82 |
+
|
83 |
+
```bash
|
84 |
+
pip install -U sentence-transformers
|
85 |
+
```
|
86 |
+
|
87 |
+
Then you can load this model and run inference.
|
88 |
+
```python
|
89 |
+
from sentence_transformers import SentenceTransformer
|
90 |
+
|
91 |
+
# Download from the 🤗 Hub
|
92 |
+
model = SentenceTransformer("edubm/vis-sim-a2a-mpnet")
|
93 |
+
# Run inference
|
94 |
+
sentences = [
|
95 |
+
'What make a data visualization effective?',
|
96 |
+
'What are the key principles in creating effective data visualizations?',
|
97 |
+
'In what situation would you use a bar chart for data visualization?',
|
98 |
+
]
|
99 |
+
embeddings = model.encode(sentences)
|
100 |
+
print(embeddings.shape)
|
101 |
+
# [3, 768]
|
102 |
+
|
103 |
+
# Get the similarity scores for the embeddings
|
104 |
+
similarities = model.similarity(embeddings, embeddings)
|
105 |
+
print(similarities.shape)
|
106 |
+
# [3, 3]
|
107 |
+
```
|
108 |
+
|
109 |
+
<!--
|
110 |
+
### Direct Usage (Transformers)
|
111 |
+
|
112 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
113 |
+
|
114 |
+
</details>
|
115 |
+
-->
|
116 |
+
|
117 |
+
<!--
|
118 |
+
### Downstream Usage (Sentence Transformers)
|
119 |
+
|
120 |
+
You can finetune this model on your own dataset.
|
121 |
+
|
122 |
+
<details><summary>Click to expand</summary>
|
123 |
+
|
124 |
+
</details>
|
125 |
+
-->
|
126 |
+
|
127 |
+
<!--
|
128 |
+
### Out-of-Scope Use
|
129 |
+
|
130 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
131 |
+
-->
|
132 |
+
|
133 |
+
<!--
|
134 |
+
## Bias, Risks and Limitations
|
135 |
+
|
136 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
137 |
+
-->
|
138 |
+
|
139 |
+
<!--
|
140 |
+
### Recommendations
|
141 |
+
|
142 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
143 |
+
-->
|
144 |
+
|
145 |
+
## Training Details
|
146 |
+
|
147 |
+
### Training Dataset
|
148 |
+
|
149 |
+
#### Unnamed Dataset
|
150 |
+
|
151 |
+
|
152 |
+
* Size: 380 training samples
|
153 |
+
* Columns: <code>Question</code> and <code>Answer</code>
|
154 |
+
* Approximate statistics based on the first 1000 samples:
|
155 |
+
| | Question | Answer |
|
156 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
157 |
+
| type | string | string |
|
158 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 14.96 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 95.53 tokens</li><li>max: 118 tokens</li></ul> |
|
159 |
+
* Samples:
|
160 |
+
| Question | Answer |
|
161 |
+
|:------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
162 |
+
| <code>How do you interpret a line chart?</code> | <code>A line chart is interpreted by observing the plotted data points that are connected by a line, representing series of data over a certain period. The x-axis typically denotes time or categories, while the y-axis represents the quantity of what is being measured. An upward trend of the line indicates an increase and a downward trend indicates a decrease in the data's value. The steeper the line, the more rapid the increase or decrease. Multiple lines on the same graph can indicate comparisons between different datasets. Further,</code> |
|
163 |
+
| <code>Can you define a heatmap in data visualization?</code> | <code>A heatmap in data visualization is a graphical representation of data where individual values contained in a matrix or data table are represented as colors. It provides an overview of the data and makes complex data sets understandable and visually appealing. Heatmaps are often used to visualize correlation matrices, geographical data, or the behavior of website visitors, among other aspects.</code> |
|
164 |
+
| <code>What are radar charts, and what kind of data are they useful for displaying?</code> | <code>Radar charts, also known as spider or web charts, are graphical representations used in data analysis for displaying multivariate data in the form of two-dimensional charts. These charts are effectively used to visualize the performance or rating data, especially for comparing multiple entities based on different parameters. They can also highlight the contrast between targeted and achieved performance.<br><br>The values each variable takes are plotted on its individual axes that start from the center of the chart. All these axes are arranged radially, which gives the chart a</code> |
|
165 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
166 |
+
```json
|
167 |
+
{
|
168 |
+
"scale": 20.0,
|
169 |
+
"similarity_fct": "cos_sim"
|
170 |
+
}
|
171 |
+
```
|
172 |
+
|
173 |
+
### Training Hyperparameters
|
174 |
+
#### Non-Default Hyperparameters
|
175 |
+
|
176 |
+
- `eval_strategy`: steps
|
177 |
+
- `per_device_train_batch_size`: 16
|
178 |
+
- `per_device_eval_batch_size`: 16
|
179 |
+
- `num_train_epochs`: 1
|
180 |
+
- `warmup_ratio`: 0.1
|
181 |
+
- `fp16`: True
|
182 |
+
- `batch_sampler`: no_duplicates
|
183 |
+
|
184 |
+
#### All Hyperparameters
|
185 |
+
<details><summary>Click to expand</summary>
|
186 |
+
|
187 |
+
- `overwrite_output_dir`: False
|
188 |
+
- `do_predict`: False
|
189 |
+
- `eval_strategy`: steps
|
190 |
+
- `prediction_loss_only`: True
|
191 |
+
- `per_device_train_batch_size`: 16
|
192 |
+
- `per_device_eval_batch_size`: 16
|
193 |
+
- `per_gpu_train_batch_size`: None
|
194 |
+
- `per_gpu_eval_batch_size`: None
|
195 |
+
- `gradient_accumulation_steps`: 1
|
196 |
+
- `eval_accumulation_steps`: None
|
197 |
+
- `learning_rate`: 5e-05
|
198 |
+
- `weight_decay`: 0.0
|
199 |
+
- `adam_beta1`: 0.9
|
200 |
+
- `adam_beta2`: 0.999
|
201 |
+
- `adam_epsilon`: 1e-08
|
202 |
+
- `max_grad_norm`: 1.0
|
203 |
+
- `num_train_epochs`: 1
|
204 |
+
- `max_steps`: -1
|
205 |
+
- `lr_scheduler_type`: linear
|
206 |
+
- `lr_scheduler_kwargs`: {}
|
207 |
+
- `warmup_ratio`: 0.1
|
208 |
+
- `warmup_steps`: 0
|
209 |
+
- `log_level`: passive
|
210 |
+
- `log_level_replica`: warning
|
211 |
+
- `log_on_each_node`: True
|
212 |
+
- `logging_nan_inf_filter`: True
|
213 |
+
- `save_safetensors`: True
|
214 |
+
- `save_on_each_node`: False
|
215 |
+
- `save_only_model`: False
|
216 |
+
- `restore_callback_states_from_checkpoint`: False
|
217 |
+
- `no_cuda`: False
|
218 |
+
- `use_cpu`: False
|
219 |
+
- `use_mps_device`: False
|
220 |
+
- `seed`: 42
|
221 |
+
- `data_seed`: None
|
222 |
+
- `jit_mode_eval`: False
|
223 |
+
- `use_ipex`: False
|
224 |
+
- `bf16`: False
|
225 |
+
- `fp16`: True
|
226 |
+
- `fp16_opt_level`: O1
|
227 |
+
- `half_precision_backend`: auto
|
228 |
+
- `bf16_full_eval`: False
|
229 |
+
- `fp16_full_eval`: False
|
230 |
+
- `tf32`: None
|
231 |
+
- `local_rank`: 0
|
232 |
+
- `ddp_backend`: None
|
233 |
+
- `tpu_num_cores`: None
|
234 |
+
- `tpu_metrics_debug`: False
|
235 |
+
- `debug`: []
|
236 |
+
- `dataloader_drop_last`: False
|
237 |
+
- `dataloader_num_workers`: 0
|
238 |
+
- `dataloader_prefetch_factor`: None
|
239 |
+
- `past_index`: -1
|
240 |
+
- `disable_tqdm`: False
|
241 |
+
- `remove_unused_columns`: True
|
242 |
+
- `label_names`: None
|
243 |
+
- `load_best_model_at_end`: False
|
244 |
+
- `ignore_data_skip`: False
|
245 |
+
- `fsdp`: []
|
246 |
+
- `fsdp_min_num_params`: 0
|
247 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
248 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
249 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
250 |
+
- `deepspeed`: None
|
251 |
+
- `label_smoothing_factor`: 0.0
|
252 |
+
- `optim`: adamw_torch
|
253 |
+
- `optim_args`: None
|
254 |
+
- `adafactor`: False
|
255 |
+
- `group_by_length`: False
|
256 |
+
- `length_column_name`: length
|
257 |
+
- `ddp_find_unused_parameters`: None
|
258 |
+
- `ddp_bucket_cap_mb`: None
|
259 |
+
- `ddp_broadcast_buffers`: False
|
260 |
+
- `dataloader_pin_memory`: True
|
261 |
+
- `dataloader_persistent_workers`: False
|
262 |
+
- `skip_memory_metrics`: True
|
263 |
+
- `use_legacy_prediction_loop`: False
|
264 |
+
- `push_to_hub`: False
|
265 |
+
- `resume_from_checkpoint`: None
|
266 |
+
- `hub_model_id`: None
|
267 |
+
- `hub_strategy`: every_save
|
268 |
+
- `hub_private_repo`: False
|
269 |
+
- `hub_always_push`: False
|
270 |
+
- `gradient_checkpointing`: False
|
271 |
+
- `gradient_checkpointing_kwargs`: None
|
272 |
+
- `include_inputs_for_metrics`: False
|
273 |
+
- `eval_do_concat_batches`: True
|
274 |
+
- `fp16_backend`: auto
|
275 |
+
- `push_to_hub_model_id`: None
|
276 |
+
- `push_to_hub_organization`: None
|
277 |
+
- `mp_parameters`:
|
278 |
+
- `auto_find_batch_size`: False
|
279 |
+
- `full_determinism`: False
|
280 |
+
- `torchdynamo`: None
|
281 |
+
- `ray_scope`: last
|
282 |
+
- `ddp_timeout`: 1800
|
283 |
+
- `torch_compile`: False
|
284 |
+
- `torch_compile_backend`: None
|
285 |
+
- `torch_compile_mode`: None
|
286 |
+
- `dispatch_batches`: None
|
287 |
+
- `split_batches`: None
|
288 |
+
- `include_tokens_per_second`: False
|
289 |
+
- `include_num_input_tokens_seen`: False
|
290 |
+
- `neftune_noise_alpha`: None
|
291 |
+
- `optim_target_modules`: None
|
292 |
+
- `batch_eval_metrics`: False
|
293 |
+
- `batch_sampler`: no_duplicates
|
294 |
+
- `multi_dataset_batch_sampler`: proportional
|
295 |
+
|
296 |
+
</details>
|
297 |
+
|
298 |
+
### Framework Versions
|
299 |
+
- Python: 3.10.12
|
300 |
+
- Sentence Transformers: 3.0.0
|
301 |
+
- Transformers: 4.41.2
|
302 |
+
- PyTorch: 2.3.0+cu121
|
303 |
+
- Accelerate: 0.30.1
|
304 |
+
- Datasets: 2.19.2
|
305 |
+
- Tokenizers: 0.19.1
|
306 |
+
|
307 |
+
## Citation
|
308 |
+
|
309 |
+
### BibTeX
|
310 |
+
|
311 |
+
#### Sentence Transformers
|
312 |
+
```bibtex
|
313 |
+
@inproceedings{reimers-2019-sentence-bert,
|
314 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
315 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
316 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
317 |
+
month = "11",
|
318 |
+
year = "2019",
|
319 |
+
publisher = "Association for Computational Linguistics",
|
320 |
+
url = "https://arxiv.org/abs/1908.10084",
|
321 |
+
}
|
322 |
+
```
|
323 |
+
|
324 |
+
#### MultipleNegativesRankingLoss
|
325 |
+
```bibtex
|
326 |
+
@misc{henderson2017efficient,
|
327 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
328 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
329 |
+
year={2017},
|
330 |
+
eprint={1705.00652},
|
331 |
+
archivePrefix={arXiv},
|
332 |
+
primaryClass={cs.CL}
|
333 |
+
}
|
334 |
+
```
|
335 |
+
|
336 |
+
<!--
|
337 |
+
## Glossary
|
338 |
+
|
339 |
+
*Clearly define terms in order to be accessible across audiences.*
|
340 |
+
-->
|
341 |
+
|
342 |
+
<!--
|
343 |
+
## Model Card Authors
|
344 |
+
|
345 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
346 |
+
-->
|
347 |
+
|
348 |
+
<!--
|
349 |
+
## Model Card Contact
|
350 |
+
|
351 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
352 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dfa270882103c1641b2e6379a07c68d9fe81434a52164096066f877baffff08
|
3 |
+
size 437967672
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 384,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|