Saving train state of step 1000
Browse files- .gitignore +1 -0
- added_tokens.json +1611 -0
- checkpoint-1000-epoch-0/model.safetensors +3 -0
- checkpoint-1000-epoch-0/model_1.safetensors +3 -0
- checkpoint-1000-epoch-0/optimizer.bin +3 -0
- checkpoint-1000-epoch-0/random_states_0.pkl +3 -0
- checkpoint-1000-epoch-0/scheduler.bin +3 -0
- config.json +50 -0
- distil-whisper/events.out.tfevents.1714145337.5b80b70efc4b.1361.0 +3 -0
- distil_whisper.sh +43 -0
- generation_config.json +307 -0
- merges.txt +0 -0
- normalizer.json +1742 -0
- preprocessor_config.json +14 -0
- run_distillation.py +1693 -0
- special_tokens_map.json +139 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
- vocab.json +0 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
wandb
|
added_tokens.json
ADDED
@@ -0,0 +1,1611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|0.00|>": 50365,
|
3 |
+
"<|0.02|>": 50366,
|
4 |
+
"<|0.04|>": 50367,
|
5 |
+
"<|0.06|>": 50368,
|
6 |
+
"<|0.08|>": 50369,
|
7 |
+
"<|0.10|>": 50370,
|
8 |
+
"<|0.12|>": 50371,
|
9 |
+
"<|0.14|>": 50372,
|
10 |
+
"<|0.16|>": 50373,
|
11 |
+
"<|0.18|>": 50374,
|
12 |
+
"<|0.20|>": 50375,
|
13 |
+
"<|0.22|>": 50376,
|
14 |
+
"<|0.24|>": 50377,
|
15 |
+
"<|0.26|>": 50378,
|
16 |
+
"<|0.28|>": 50379,
|
17 |
+
"<|0.30|>": 50380,
|
18 |
+
"<|0.32|>": 50381,
|
19 |
+
"<|0.34|>": 50382,
|
20 |
+
"<|0.36|>": 50383,
|
21 |
+
"<|0.38|>": 50384,
|
22 |
+
"<|0.40|>": 50385,
|
23 |
+
"<|0.42|>": 50386,
|
24 |
+
"<|0.44|>": 50387,
|
25 |
+
"<|0.46|>": 50388,
|
26 |
+
"<|0.48|>": 50389,
|
27 |
+
"<|0.50|>": 50390,
|
28 |
+
"<|0.52|>": 50391,
|
29 |
+
"<|0.54|>": 50392,
|
30 |
+
"<|0.56|>": 50393,
|
31 |
+
"<|0.58|>": 50394,
|
32 |
+
"<|0.60|>": 50395,
|
33 |
+
"<|0.62|>": 50396,
|
34 |
+
"<|0.64|>": 50397,
|
35 |
+
"<|0.66|>": 50398,
|
36 |
+
"<|0.68|>": 50399,
|
37 |
+
"<|0.70|>": 50400,
|
38 |
+
"<|0.72|>": 50401,
|
39 |
+
"<|0.74|>": 50402,
|
40 |
+
"<|0.76|>": 50403,
|
41 |
+
"<|0.78|>": 50404,
|
42 |
+
"<|0.80|>": 50405,
|
43 |
+
"<|0.82|>": 50406,
|
44 |
+
"<|0.84|>": 50407,
|
45 |
+
"<|0.86|>": 50408,
|
46 |
+
"<|0.88|>": 50409,
|
47 |
+
"<|0.90|>": 50410,
|
48 |
+
"<|0.92|>": 50411,
|
49 |
+
"<|0.94|>": 50412,
|
50 |
+
"<|0.96|>": 50413,
|
51 |
+
"<|0.98|>": 50414,
|
52 |
+
"<|1.00|>": 50415,
|
53 |
+
"<|1.02|>": 50416,
|
54 |
+
"<|1.04|>": 50417,
|
55 |
+
"<|1.06|>": 50418,
|
56 |
+
"<|1.08|>": 50419,
|
57 |
+
"<|1.10|>": 50420,
|
58 |
+
"<|1.12|>": 50421,
|
59 |
+
"<|1.14|>": 50422,
|
60 |
+
"<|1.16|>": 50423,
|
61 |
+
"<|1.18|>": 50424,
|
62 |
+
"<|1.20|>": 50425,
|
63 |
+
"<|1.22|>": 50426,
|
64 |
+
"<|1.24|>": 50427,
|
65 |
+
"<|1.26|>": 50428,
|
66 |
+
"<|1.28|>": 50429,
|
67 |
+
"<|1.30|>": 50430,
|
68 |
+
"<|1.32|>": 50431,
|
69 |
+
"<|1.34|>": 50432,
|
70 |
+
"<|1.36|>": 50433,
|
71 |
+
"<|1.38|>": 50434,
|
72 |
+
"<|1.40|>": 50435,
|
73 |
+
"<|1.42|>": 50436,
|
74 |
+
"<|1.44|>": 50437,
|
75 |
+
"<|1.46|>": 50438,
|
76 |
+
"<|1.48|>": 50439,
|
77 |
+
"<|1.50|>": 50440,
|
78 |
+
"<|1.52|>": 50441,
|
79 |
+
"<|1.54|>": 50442,
|
80 |
+
"<|1.56|>": 50443,
|
81 |
+
"<|1.58|>": 50444,
|
82 |
+
"<|1.60|>": 50445,
|
83 |
+
"<|1.62|>": 50446,
|
84 |
+
"<|1.64|>": 50447,
|
85 |
+
"<|1.66|>": 50448,
|
86 |
+
"<|1.68|>": 50449,
|
87 |
+
"<|1.70|>": 50450,
|
88 |
+
"<|1.72|>": 50451,
|
89 |
+
"<|1.74|>": 50452,
|
90 |
+
"<|1.76|>": 50453,
|
91 |
+
"<|1.78|>": 50454,
|
92 |
+
"<|1.80|>": 50455,
|
93 |
+
"<|1.82|>": 50456,
|
94 |
+
"<|1.84|>": 50457,
|
95 |
+
"<|1.86|>": 50458,
|
96 |
+
"<|1.88|>": 50459,
|
97 |
+
"<|1.90|>": 50460,
|
98 |
+
"<|1.92|>": 50461,
|
99 |
+
"<|1.94|>": 50462,
|
100 |
+
"<|1.96|>": 50463,
|
101 |
+
"<|1.98|>": 50464,
|
102 |
+
"<|10.00|>": 50865,
|
103 |
+
"<|10.02|>": 50866,
|
104 |
+
"<|10.04|>": 50867,
|
105 |
+
"<|10.06|>": 50868,
|
106 |
+
"<|10.08|>": 50869,
|
107 |
+
"<|10.10|>": 50870,
|
108 |
+
"<|10.12|>": 50871,
|
109 |
+
"<|10.14|>": 50872,
|
110 |
+
"<|10.16|>": 50873,
|
111 |
+
"<|10.18|>": 50874,
|
112 |
+
"<|10.20|>": 50875,
|
113 |
+
"<|10.22|>": 50876,
|
114 |
+
"<|10.24|>": 50877,
|
115 |
+
"<|10.26|>": 50878,
|
116 |
+
"<|10.28|>": 50879,
|
117 |
+
"<|10.30|>": 50880,
|
118 |
+
"<|10.32|>": 50881,
|
119 |
+
"<|10.34|>": 50882,
|
120 |
+
"<|10.36|>": 50883,
|
121 |
+
"<|10.38|>": 50884,
|
122 |
+
"<|10.40|>": 50885,
|
123 |
+
"<|10.42|>": 50886,
|
124 |
+
"<|10.44|>": 50887,
|
125 |
+
"<|10.46|>": 50888,
|
126 |
+
"<|10.48|>": 50889,
|
127 |
+
"<|10.50|>": 50890,
|
128 |
+
"<|10.52|>": 50891,
|
129 |
+
"<|10.54|>": 50892,
|
130 |
+
"<|10.56|>": 50893,
|
131 |
+
"<|10.58|>": 50894,
|
132 |
+
"<|10.60|>": 50895,
|
133 |
+
"<|10.62|>": 50896,
|
134 |
+
"<|10.64|>": 50897,
|
135 |
+
"<|10.66|>": 50898,
|
136 |
+
"<|10.68|>": 50899,
|
137 |
+
"<|10.70|>": 50900,
|
138 |
+
"<|10.72|>": 50901,
|
139 |
+
"<|10.74|>": 50902,
|
140 |
+
"<|10.76|>": 50903,
|
141 |
+
"<|10.78|>": 50904,
|
142 |
+
"<|10.80|>": 50905,
|
143 |
+
"<|10.82|>": 50906,
|
144 |
+
"<|10.84|>": 50907,
|
145 |
+
"<|10.86|>": 50908,
|
146 |
+
"<|10.88|>": 50909,
|
147 |
+
"<|10.90|>": 50910,
|
148 |
+
"<|10.92|>": 50911,
|
149 |
+
"<|10.94|>": 50912,
|
150 |
+
"<|10.96|>": 50913,
|
151 |
+
"<|10.98|>": 50914,
|
152 |
+
"<|11.00|>": 50915,
|
153 |
+
"<|11.02|>": 50916,
|
154 |
+
"<|11.04|>": 50917,
|
155 |
+
"<|11.06|>": 50918,
|
156 |
+
"<|11.08|>": 50919,
|
157 |
+
"<|11.10|>": 50920,
|
158 |
+
"<|11.12|>": 50921,
|
159 |
+
"<|11.14|>": 50922,
|
160 |
+
"<|11.16|>": 50923,
|
161 |
+
"<|11.18|>": 50924,
|
162 |
+
"<|11.20|>": 50925,
|
163 |
+
"<|11.22|>": 50926,
|
164 |
+
"<|11.24|>": 50927,
|
165 |
+
"<|11.26|>": 50928,
|
166 |
+
"<|11.28|>": 50929,
|
167 |
+
"<|11.30|>": 50930,
|
168 |
+
"<|11.32|>": 50931,
|
169 |
+
"<|11.34|>": 50932,
|
170 |
+
"<|11.36|>": 50933,
|
171 |
+
"<|11.38|>": 50934,
|
172 |
+
"<|11.40|>": 50935,
|
173 |
+
"<|11.42|>": 50936,
|
174 |
+
"<|11.44|>": 50937,
|
175 |
+
"<|11.46|>": 50938,
|
176 |
+
"<|11.48|>": 50939,
|
177 |
+
"<|11.50|>": 50940,
|
178 |
+
"<|11.52|>": 50941,
|
179 |
+
"<|11.54|>": 50942,
|
180 |
+
"<|11.56|>": 50943,
|
181 |
+
"<|11.58|>": 50944,
|
182 |
+
"<|11.60|>": 50945,
|
183 |
+
"<|11.62|>": 50946,
|
184 |
+
"<|11.64|>": 50947,
|
185 |
+
"<|11.66|>": 50948,
|
186 |
+
"<|11.68|>": 50949,
|
187 |
+
"<|11.70|>": 50950,
|
188 |
+
"<|11.72|>": 50951,
|
189 |
+
"<|11.74|>": 50952,
|
190 |
+
"<|11.76|>": 50953,
|
191 |
+
"<|11.78|>": 50954,
|
192 |
+
"<|11.80|>": 50955,
|
193 |
+
"<|11.82|>": 50956,
|
194 |
+
"<|11.84|>": 50957,
|
195 |
+
"<|11.86|>": 50958,
|
196 |
+
"<|11.88|>": 50959,
|
197 |
+
"<|11.90|>": 50960,
|
198 |
+
"<|11.92|>": 50961,
|
199 |
+
"<|11.94|>": 50962,
|
200 |
+
"<|11.96|>": 50963,
|
201 |
+
"<|11.98|>": 50964,
|
202 |
+
"<|12.00|>": 50965,
|
203 |
+
"<|12.02|>": 50966,
|
204 |
+
"<|12.04|>": 50967,
|
205 |
+
"<|12.06|>": 50968,
|
206 |
+
"<|12.08|>": 50969,
|
207 |
+
"<|12.10|>": 50970,
|
208 |
+
"<|12.12|>": 50971,
|
209 |
+
"<|12.14|>": 50972,
|
210 |
+
"<|12.16|>": 50973,
|
211 |
+
"<|12.18|>": 50974,
|
212 |
+
"<|12.20|>": 50975,
|
213 |
+
"<|12.22|>": 50976,
|
214 |
+
"<|12.24|>": 50977,
|
215 |
+
"<|12.26|>": 50978,
|
216 |
+
"<|12.28|>": 50979,
|
217 |
+
"<|12.30|>": 50980,
|
218 |
+
"<|12.32|>": 50981,
|
219 |
+
"<|12.34|>": 50982,
|
220 |
+
"<|12.36|>": 50983,
|
221 |
+
"<|12.38|>": 50984,
|
222 |
+
"<|12.40|>": 50985,
|
223 |
+
"<|12.42|>": 50986,
|
224 |
+
"<|12.44|>": 50987,
|
225 |
+
"<|12.46|>": 50988,
|
226 |
+
"<|12.48|>": 50989,
|
227 |
+
"<|12.50|>": 50990,
|
228 |
+
"<|12.52|>": 50991,
|
229 |
+
"<|12.54|>": 50992,
|
230 |
+
"<|12.56|>": 50993,
|
231 |
+
"<|12.58|>": 50994,
|
232 |
+
"<|12.60|>": 50995,
|
233 |
+
"<|12.62|>": 50996,
|
234 |
+
"<|12.64|>": 50997,
|
235 |
+
"<|12.66|>": 50998,
|
236 |
+
"<|12.68|>": 50999,
|
237 |
+
"<|12.70|>": 51000,
|
238 |
+
"<|12.72|>": 51001,
|
239 |
+
"<|12.74|>": 51002,
|
240 |
+
"<|12.76|>": 51003,
|
241 |
+
"<|12.78|>": 51004,
|
242 |
+
"<|12.80|>": 51005,
|
243 |
+
"<|12.82|>": 51006,
|
244 |
+
"<|12.84|>": 51007,
|
245 |
+
"<|12.86|>": 51008,
|
246 |
+
"<|12.88|>": 51009,
|
247 |
+
"<|12.90|>": 51010,
|
248 |
+
"<|12.92|>": 51011,
|
249 |
+
"<|12.94|>": 51012,
|
250 |
+
"<|12.96|>": 51013,
|
251 |
+
"<|12.98|>": 51014,
|
252 |
+
"<|13.00|>": 51015,
|
253 |
+
"<|13.02|>": 51016,
|
254 |
+
"<|13.04|>": 51017,
|
255 |
+
"<|13.06|>": 51018,
|
256 |
+
"<|13.08|>": 51019,
|
257 |
+
"<|13.10|>": 51020,
|
258 |
+
"<|13.12|>": 51021,
|
259 |
+
"<|13.14|>": 51022,
|
260 |
+
"<|13.16|>": 51023,
|
261 |
+
"<|13.18|>": 51024,
|
262 |
+
"<|13.20|>": 51025,
|
263 |
+
"<|13.22|>": 51026,
|
264 |
+
"<|13.24|>": 51027,
|
265 |
+
"<|13.26|>": 51028,
|
266 |
+
"<|13.28|>": 51029,
|
267 |
+
"<|13.30|>": 51030,
|
268 |
+
"<|13.32|>": 51031,
|
269 |
+
"<|13.34|>": 51032,
|
270 |
+
"<|13.36|>": 51033,
|
271 |
+
"<|13.38|>": 51034,
|
272 |
+
"<|13.40|>": 51035,
|
273 |
+
"<|13.42|>": 51036,
|
274 |
+
"<|13.44|>": 51037,
|
275 |
+
"<|13.46|>": 51038,
|
276 |
+
"<|13.48|>": 51039,
|
277 |
+
"<|13.50|>": 51040,
|
278 |
+
"<|13.52|>": 51041,
|
279 |
+
"<|13.54|>": 51042,
|
280 |
+
"<|13.56|>": 51043,
|
281 |
+
"<|13.58|>": 51044,
|
282 |
+
"<|13.60|>": 51045,
|
283 |
+
"<|13.62|>": 51046,
|
284 |
+
"<|13.64|>": 51047,
|
285 |
+
"<|13.66|>": 51048,
|
286 |
+
"<|13.68|>": 51049,
|
287 |
+
"<|13.70|>": 51050,
|
288 |
+
"<|13.72|>": 51051,
|
289 |
+
"<|13.74|>": 51052,
|
290 |
+
"<|13.76|>": 51053,
|
291 |
+
"<|13.78|>": 51054,
|
292 |
+
"<|13.80|>": 51055,
|
293 |
+
"<|13.82|>": 51056,
|
294 |
+
"<|13.84|>": 51057,
|
295 |
+
"<|13.86|>": 51058,
|
296 |
+
"<|13.88|>": 51059,
|
297 |
+
"<|13.90|>": 51060,
|
298 |
+
"<|13.92|>": 51061,
|
299 |
+
"<|13.94|>": 51062,
|
300 |
+
"<|13.96|>": 51063,
|
301 |
+
"<|13.98|>": 51064,
|
302 |
+
"<|14.00|>": 51065,
|
303 |
+
"<|14.02|>": 51066,
|
304 |
+
"<|14.04|>": 51067,
|
305 |
+
"<|14.06|>": 51068,
|
306 |
+
"<|14.08|>": 51069,
|
307 |
+
"<|14.10|>": 51070,
|
308 |
+
"<|14.12|>": 51071,
|
309 |
+
"<|14.14|>": 51072,
|
310 |
+
"<|14.16|>": 51073,
|
311 |
+
"<|14.18|>": 51074,
|
312 |
+
"<|14.20|>": 51075,
|
313 |
+
"<|14.22|>": 51076,
|
314 |
+
"<|14.24|>": 51077,
|
315 |
+
"<|14.26|>": 51078,
|
316 |
+
"<|14.28|>": 51079,
|
317 |
+
"<|14.30|>": 51080,
|
318 |
+
"<|14.32|>": 51081,
|
319 |
+
"<|14.34|>": 51082,
|
320 |
+
"<|14.36|>": 51083,
|
321 |
+
"<|14.38|>": 51084,
|
322 |
+
"<|14.40|>": 51085,
|
323 |
+
"<|14.42|>": 51086,
|
324 |
+
"<|14.44|>": 51087,
|
325 |
+
"<|14.46|>": 51088,
|
326 |
+
"<|14.48|>": 51089,
|
327 |
+
"<|14.50|>": 51090,
|
328 |
+
"<|14.52|>": 51091,
|
329 |
+
"<|14.54|>": 51092,
|
330 |
+
"<|14.56|>": 51093,
|
331 |
+
"<|14.58|>": 51094,
|
332 |
+
"<|14.60|>": 51095,
|
333 |
+
"<|14.62|>": 51096,
|
334 |
+
"<|14.64|>": 51097,
|
335 |
+
"<|14.66|>": 51098,
|
336 |
+
"<|14.68|>": 51099,
|
337 |
+
"<|14.70|>": 51100,
|
338 |
+
"<|14.72|>": 51101,
|
339 |
+
"<|14.74|>": 51102,
|
340 |
+
"<|14.76|>": 51103,
|
341 |
+
"<|14.78|>": 51104,
|
342 |
+
"<|14.80|>": 51105,
|
343 |
+
"<|14.82|>": 51106,
|
344 |
+
"<|14.84|>": 51107,
|
345 |
+
"<|14.86|>": 51108,
|
346 |
+
"<|14.88|>": 51109,
|
347 |
+
"<|14.90|>": 51110,
|
348 |
+
"<|14.92|>": 51111,
|
349 |
+
"<|14.94|>": 51112,
|
350 |
+
"<|14.96|>": 51113,
|
351 |
+
"<|14.98|>": 51114,
|
352 |
+
"<|15.00|>": 51115,
|
353 |
+
"<|15.02|>": 51116,
|
354 |
+
"<|15.04|>": 51117,
|
355 |
+
"<|15.06|>": 51118,
|
356 |
+
"<|15.08|>": 51119,
|
357 |
+
"<|15.10|>": 51120,
|
358 |
+
"<|15.12|>": 51121,
|
359 |
+
"<|15.14|>": 51122,
|
360 |
+
"<|15.16|>": 51123,
|
361 |
+
"<|15.18|>": 51124,
|
362 |
+
"<|15.20|>": 51125,
|
363 |
+
"<|15.22|>": 51126,
|
364 |
+
"<|15.24|>": 51127,
|
365 |
+
"<|15.26|>": 51128,
|
366 |
+
"<|15.28|>": 51129,
|
367 |
+
"<|15.30|>": 51130,
|
368 |
+
"<|15.32|>": 51131,
|
369 |
+
"<|15.34|>": 51132,
|
370 |
+
"<|15.36|>": 51133,
|
371 |
+
"<|15.38|>": 51134,
|
372 |
+
"<|15.40|>": 51135,
|
373 |
+
"<|15.42|>": 51136,
|
374 |
+
"<|15.44|>": 51137,
|
375 |
+
"<|15.46|>": 51138,
|
376 |
+
"<|15.48|>": 51139,
|
377 |
+
"<|15.50|>": 51140,
|
378 |
+
"<|15.52|>": 51141,
|
379 |
+
"<|15.54|>": 51142,
|
380 |
+
"<|15.56|>": 51143,
|
381 |
+
"<|15.58|>": 51144,
|
382 |
+
"<|15.60|>": 51145,
|
383 |
+
"<|15.62|>": 51146,
|
384 |
+
"<|15.64|>": 51147,
|
385 |
+
"<|15.66|>": 51148,
|
386 |
+
"<|15.68|>": 51149,
|
387 |
+
"<|15.70|>": 51150,
|
388 |
+
"<|15.72|>": 51151,
|
389 |
+
"<|15.74|>": 51152,
|
390 |
+
"<|15.76|>": 51153,
|
391 |
+
"<|15.78|>": 51154,
|
392 |
+
"<|15.80|>": 51155,
|
393 |
+
"<|15.82|>": 51156,
|
394 |
+
"<|15.84|>": 51157,
|
395 |
+
"<|15.86|>": 51158,
|
396 |
+
"<|15.88|>": 51159,
|
397 |
+
"<|15.90|>": 51160,
|
398 |
+
"<|15.92|>": 51161,
|
399 |
+
"<|15.94|>": 51162,
|
400 |
+
"<|15.96|>": 51163,
|
401 |
+
"<|15.98|>": 51164,
|
402 |
+
"<|16.00|>": 51165,
|
403 |
+
"<|16.02|>": 51166,
|
404 |
+
"<|16.04|>": 51167,
|
405 |
+
"<|16.06|>": 51168,
|
406 |
+
"<|16.08|>": 51169,
|
407 |
+
"<|16.10|>": 51170,
|
408 |
+
"<|16.12|>": 51171,
|
409 |
+
"<|16.14|>": 51172,
|
410 |
+
"<|16.16|>": 51173,
|
411 |
+
"<|16.18|>": 51174,
|
412 |
+
"<|16.20|>": 51175,
|
413 |
+
"<|16.22|>": 51176,
|
414 |
+
"<|16.24|>": 51177,
|
415 |
+
"<|16.26|>": 51178,
|
416 |
+
"<|16.28|>": 51179,
|
417 |
+
"<|16.30|>": 51180,
|
418 |
+
"<|16.32|>": 51181,
|
419 |
+
"<|16.34|>": 51182,
|
420 |
+
"<|16.36|>": 51183,
|
421 |
+
"<|16.38|>": 51184,
|
422 |
+
"<|16.40|>": 51185,
|
423 |
+
"<|16.42|>": 51186,
|
424 |
+
"<|16.44|>": 51187,
|
425 |
+
"<|16.46|>": 51188,
|
426 |
+
"<|16.48|>": 51189,
|
427 |
+
"<|16.50|>": 51190,
|
428 |
+
"<|16.52|>": 51191,
|
429 |
+
"<|16.54|>": 51192,
|
430 |
+
"<|16.56|>": 51193,
|
431 |
+
"<|16.58|>": 51194,
|
432 |
+
"<|16.60|>": 51195,
|
433 |
+
"<|16.62|>": 51196,
|
434 |
+
"<|16.64|>": 51197,
|
435 |
+
"<|16.66|>": 51198,
|
436 |
+
"<|16.68|>": 51199,
|
437 |
+
"<|16.70|>": 51200,
|
438 |
+
"<|16.72|>": 51201,
|
439 |
+
"<|16.74|>": 51202,
|
440 |
+
"<|16.76|>": 51203,
|
441 |
+
"<|16.78|>": 51204,
|
442 |
+
"<|16.80|>": 51205,
|
443 |
+
"<|16.82|>": 51206,
|
444 |
+
"<|16.84|>": 51207,
|
445 |
+
"<|16.86|>": 51208,
|
446 |
+
"<|16.88|>": 51209,
|
447 |
+
"<|16.90|>": 51210,
|
448 |
+
"<|16.92|>": 51211,
|
449 |
+
"<|16.94|>": 51212,
|
450 |
+
"<|16.96|>": 51213,
|
451 |
+
"<|16.98|>": 51214,
|
452 |
+
"<|17.00|>": 51215,
|
453 |
+
"<|17.02|>": 51216,
|
454 |
+
"<|17.04|>": 51217,
|
455 |
+
"<|17.06|>": 51218,
|
456 |
+
"<|17.08|>": 51219,
|
457 |
+
"<|17.10|>": 51220,
|
458 |
+
"<|17.12|>": 51221,
|
459 |
+
"<|17.14|>": 51222,
|
460 |
+
"<|17.16|>": 51223,
|
461 |
+
"<|17.18|>": 51224,
|
462 |
+
"<|17.20|>": 51225,
|
463 |
+
"<|17.22|>": 51226,
|
464 |
+
"<|17.24|>": 51227,
|
465 |
+
"<|17.26|>": 51228,
|
466 |
+
"<|17.28|>": 51229,
|
467 |
+
"<|17.30|>": 51230,
|
468 |
+
"<|17.32|>": 51231,
|
469 |
+
"<|17.34|>": 51232,
|
470 |
+
"<|17.36|>": 51233,
|
471 |
+
"<|17.38|>": 51234,
|
472 |
+
"<|17.40|>": 51235,
|
473 |
+
"<|17.42|>": 51236,
|
474 |
+
"<|17.44|>": 51237,
|
475 |
+
"<|17.46|>": 51238,
|
476 |
+
"<|17.48|>": 51239,
|
477 |
+
"<|17.50|>": 51240,
|
478 |
+
"<|17.52|>": 51241,
|
479 |
+
"<|17.54|>": 51242,
|
480 |
+
"<|17.56|>": 51243,
|
481 |
+
"<|17.58|>": 51244,
|
482 |
+
"<|17.60|>": 51245,
|
483 |
+
"<|17.62|>": 51246,
|
484 |
+
"<|17.64|>": 51247,
|
485 |
+
"<|17.66|>": 51248,
|
486 |
+
"<|17.68|>": 51249,
|
487 |
+
"<|17.70|>": 51250,
|
488 |
+
"<|17.72|>": 51251,
|
489 |
+
"<|17.74|>": 51252,
|
490 |
+
"<|17.76|>": 51253,
|
491 |
+
"<|17.78|>": 51254,
|
492 |
+
"<|17.80|>": 51255,
|
493 |
+
"<|17.82|>": 51256,
|
494 |
+
"<|17.84|>": 51257,
|
495 |
+
"<|17.86|>": 51258,
|
496 |
+
"<|17.88|>": 51259,
|
497 |
+
"<|17.90|>": 51260,
|
498 |
+
"<|17.92|>": 51261,
|
499 |
+
"<|17.94|>": 51262,
|
500 |
+
"<|17.96|>": 51263,
|
501 |
+
"<|17.98|>": 51264,
|
502 |
+
"<|18.00|>": 51265,
|
503 |
+
"<|18.02|>": 51266,
|
504 |
+
"<|18.04|>": 51267,
|
505 |
+
"<|18.06|>": 51268,
|
506 |
+
"<|18.08|>": 51269,
|
507 |
+
"<|18.10|>": 51270,
|
508 |
+
"<|18.12|>": 51271,
|
509 |
+
"<|18.14|>": 51272,
|
510 |
+
"<|18.16|>": 51273,
|
511 |
+
"<|18.18|>": 51274,
|
512 |
+
"<|18.20|>": 51275,
|
513 |
+
"<|18.22|>": 51276,
|
514 |
+
"<|18.24|>": 51277,
|
515 |
+
"<|18.26|>": 51278,
|
516 |
+
"<|18.28|>": 51279,
|
517 |
+
"<|18.30|>": 51280,
|
518 |
+
"<|18.32|>": 51281,
|
519 |
+
"<|18.34|>": 51282,
|
520 |
+
"<|18.36|>": 51283,
|
521 |
+
"<|18.38|>": 51284,
|
522 |
+
"<|18.40|>": 51285,
|
523 |
+
"<|18.42|>": 51286,
|
524 |
+
"<|18.44|>": 51287,
|
525 |
+
"<|18.46|>": 51288,
|
526 |
+
"<|18.48|>": 51289,
|
527 |
+
"<|18.50|>": 51290,
|
528 |
+
"<|18.52|>": 51291,
|
529 |
+
"<|18.54|>": 51292,
|
530 |
+
"<|18.56|>": 51293,
|
531 |
+
"<|18.58|>": 51294,
|
532 |
+
"<|18.60|>": 51295,
|
533 |
+
"<|18.62|>": 51296,
|
534 |
+
"<|18.64|>": 51297,
|
535 |
+
"<|18.66|>": 51298,
|
536 |
+
"<|18.68|>": 51299,
|
537 |
+
"<|18.70|>": 51300,
|
538 |
+
"<|18.72|>": 51301,
|
539 |
+
"<|18.74|>": 51302,
|
540 |
+
"<|18.76|>": 51303,
|
541 |
+
"<|18.78|>": 51304,
|
542 |
+
"<|18.80|>": 51305,
|
543 |
+
"<|18.82|>": 51306,
|
544 |
+
"<|18.84|>": 51307,
|
545 |
+
"<|18.86|>": 51308,
|
546 |
+
"<|18.88|>": 51309,
|
547 |
+
"<|18.90|>": 51310,
|
548 |
+
"<|18.92|>": 51311,
|
549 |
+
"<|18.94|>": 51312,
|
550 |
+
"<|18.96|>": 51313,
|
551 |
+
"<|18.98|>": 51314,
|
552 |
+
"<|19.00|>": 51315,
|
553 |
+
"<|19.02|>": 51316,
|
554 |
+
"<|19.04|>": 51317,
|
555 |
+
"<|19.06|>": 51318,
|
556 |
+
"<|19.08|>": 51319,
|
557 |
+
"<|19.10|>": 51320,
|
558 |
+
"<|19.12|>": 51321,
|
559 |
+
"<|19.14|>": 51322,
|
560 |
+
"<|19.16|>": 51323,
|
561 |
+
"<|19.18|>": 51324,
|
562 |
+
"<|19.20|>": 51325,
|
563 |
+
"<|19.22|>": 51326,
|
564 |
+
"<|19.24|>": 51327,
|
565 |
+
"<|19.26|>": 51328,
|
566 |
+
"<|19.28|>": 51329,
|
567 |
+
"<|19.30|>": 51330,
|
568 |
+
"<|19.32|>": 51331,
|
569 |
+
"<|19.34|>": 51332,
|
570 |
+
"<|19.36|>": 51333,
|
571 |
+
"<|19.38|>": 51334,
|
572 |
+
"<|19.40|>": 51335,
|
573 |
+
"<|19.42|>": 51336,
|
574 |
+
"<|19.44|>": 51337,
|
575 |
+
"<|19.46|>": 51338,
|
576 |
+
"<|19.48|>": 51339,
|
577 |
+
"<|19.50|>": 51340,
|
578 |
+
"<|19.52|>": 51341,
|
579 |
+
"<|19.54|>": 51342,
|
580 |
+
"<|19.56|>": 51343,
|
581 |
+
"<|19.58|>": 51344,
|
582 |
+
"<|19.60|>": 51345,
|
583 |
+
"<|19.62|>": 51346,
|
584 |
+
"<|19.64|>": 51347,
|
585 |
+
"<|19.66|>": 51348,
|
586 |
+
"<|19.68|>": 51349,
|
587 |
+
"<|19.70|>": 51350,
|
588 |
+
"<|19.72|>": 51351,
|
589 |
+
"<|19.74|>": 51352,
|
590 |
+
"<|19.76|>": 51353,
|
591 |
+
"<|19.78|>": 51354,
|
592 |
+
"<|19.80|>": 51355,
|
593 |
+
"<|19.82|>": 51356,
|
594 |
+
"<|19.84|>": 51357,
|
595 |
+
"<|19.86|>": 51358,
|
596 |
+
"<|19.88|>": 51359,
|
597 |
+
"<|19.90|>": 51360,
|
598 |
+
"<|19.92|>": 51361,
|
599 |
+
"<|19.94|>": 51362,
|
600 |
+
"<|19.96|>": 51363,
|
601 |
+
"<|19.98|>": 51364,
|
602 |
+
"<|2.00|>": 50465,
|
603 |
+
"<|2.02|>": 50466,
|
604 |
+
"<|2.04|>": 50467,
|
605 |
+
"<|2.06|>": 50468,
|
606 |
+
"<|2.08|>": 50469,
|
607 |
+
"<|2.10|>": 50470,
|
608 |
+
"<|2.12|>": 50471,
|
609 |
+
"<|2.14|>": 50472,
|
610 |
+
"<|2.16|>": 50473,
|
611 |
+
"<|2.18|>": 50474,
|
612 |
+
"<|2.20|>": 50475,
|
613 |
+
"<|2.22|>": 50476,
|
614 |
+
"<|2.24|>": 50477,
|
615 |
+
"<|2.26|>": 50478,
|
616 |
+
"<|2.28|>": 50479,
|
617 |
+
"<|2.30|>": 50480,
|
618 |
+
"<|2.32|>": 50481,
|
619 |
+
"<|2.34|>": 50482,
|
620 |
+
"<|2.36|>": 50483,
|
621 |
+
"<|2.38|>": 50484,
|
622 |
+
"<|2.40|>": 50485,
|
623 |
+
"<|2.42|>": 50486,
|
624 |
+
"<|2.44|>": 50487,
|
625 |
+
"<|2.46|>": 50488,
|
626 |
+
"<|2.48|>": 50489,
|
627 |
+
"<|2.50|>": 50490,
|
628 |
+
"<|2.52|>": 50491,
|
629 |
+
"<|2.54|>": 50492,
|
630 |
+
"<|2.56|>": 50493,
|
631 |
+
"<|2.58|>": 50494,
|
632 |
+
"<|2.60|>": 50495,
|
633 |
+
"<|2.62|>": 50496,
|
634 |
+
"<|2.64|>": 50497,
|
635 |
+
"<|2.66|>": 50498,
|
636 |
+
"<|2.68|>": 50499,
|
637 |
+
"<|2.70|>": 50500,
|
638 |
+
"<|2.72|>": 50501,
|
639 |
+
"<|2.74|>": 50502,
|
640 |
+
"<|2.76|>": 50503,
|
641 |
+
"<|2.78|>": 50504,
|
642 |
+
"<|2.80|>": 50505,
|
643 |
+
"<|2.82|>": 50506,
|
644 |
+
"<|2.84|>": 50507,
|
645 |
+
"<|2.86|>": 50508,
|
646 |
+
"<|2.88|>": 50509,
|
647 |
+
"<|2.90|>": 50510,
|
648 |
+
"<|2.92|>": 50511,
|
649 |
+
"<|2.94|>": 50512,
|
650 |
+
"<|2.96|>": 50513,
|
651 |
+
"<|2.98|>": 50514,
|
652 |
+
"<|20.00|>": 51365,
|
653 |
+
"<|20.02|>": 51366,
|
654 |
+
"<|20.04|>": 51367,
|
655 |
+
"<|20.06|>": 51368,
|
656 |
+
"<|20.08|>": 51369,
|
657 |
+
"<|20.10|>": 51370,
|
658 |
+
"<|20.12|>": 51371,
|
659 |
+
"<|20.14|>": 51372,
|
660 |
+
"<|20.16|>": 51373,
|
661 |
+
"<|20.18|>": 51374,
|
662 |
+
"<|20.20|>": 51375,
|
663 |
+
"<|20.22|>": 51376,
|
664 |
+
"<|20.24|>": 51377,
|
665 |
+
"<|20.26|>": 51378,
|
666 |
+
"<|20.28|>": 51379,
|
667 |
+
"<|20.30|>": 51380,
|
668 |
+
"<|20.32|>": 51381,
|
669 |
+
"<|20.34|>": 51382,
|
670 |
+
"<|20.36|>": 51383,
|
671 |
+
"<|20.38|>": 51384,
|
672 |
+
"<|20.40|>": 51385,
|
673 |
+
"<|20.42|>": 51386,
|
674 |
+
"<|20.44|>": 51387,
|
675 |
+
"<|20.46|>": 51388,
|
676 |
+
"<|20.48|>": 51389,
|
677 |
+
"<|20.50|>": 51390,
|
678 |
+
"<|20.52|>": 51391,
|
679 |
+
"<|20.54|>": 51392,
|
680 |
+
"<|20.56|>": 51393,
|
681 |
+
"<|20.58|>": 51394,
|
682 |
+
"<|20.60|>": 51395,
|
683 |
+
"<|20.62|>": 51396,
|
684 |
+
"<|20.64|>": 51397,
|
685 |
+
"<|20.66|>": 51398,
|
686 |
+
"<|20.68|>": 51399,
|
687 |
+
"<|20.70|>": 51400,
|
688 |
+
"<|20.72|>": 51401,
|
689 |
+
"<|20.74|>": 51402,
|
690 |
+
"<|20.76|>": 51403,
|
691 |
+
"<|20.78|>": 51404,
|
692 |
+
"<|20.80|>": 51405,
|
693 |
+
"<|20.82|>": 51406,
|
694 |
+
"<|20.84|>": 51407,
|
695 |
+
"<|20.86|>": 51408,
|
696 |
+
"<|20.88|>": 51409,
|
697 |
+
"<|20.90|>": 51410,
|
698 |
+
"<|20.92|>": 51411,
|
699 |
+
"<|20.94|>": 51412,
|
700 |
+
"<|20.96|>": 51413,
|
701 |
+
"<|20.98|>": 51414,
|
702 |
+
"<|21.00|>": 51415,
|
703 |
+
"<|21.02|>": 51416,
|
704 |
+
"<|21.04|>": 51417,
|
705 |
+
"<|21.06|>": 51418,
|
706 |
+
"<|21.08|>": 51419,
|
707 |
+
"<|21.10|>": 51420,
|
708 |
+
"<|21.12|>": 51421,
|
709 |
+
"<|21.14|>": 51422,
|
710 |
+
"<|21.16|>": 51423,
|
711 |
+
"<|21.18|>": 51424,
|
712 |
+
"<|21.20|>": 51425,
|
713 |
+
"<|21.22|>": 51426,
|
714 |
+
"<|21.24|>": 51427,
|
715 |
+
"<|21.26|>": 51428,
|
716 |
+
"<|21.28|>": 51429,
|
717 |
+
"<|21.30|>": 51430,
|
718 |
+
"<|21.32|>": 51431,
|
719 |
+
"<|21.34|>": 51432,
|
720 |
+
"<|21.36|>": 51433,
|
721 |
+
"<|21.38|>": 51434,
|
722 |
+
"<|21.40|>": 51435,
|
723 |
+
"<|21.42|>": 51436,
|
724 |
+
"<|21.44|>": 51437,
|
725 |
+
"<|21.46|>": 51438,
|
726 |
+
"<|21.48|>": 51439,
|
727 |
+
"<|21.50|>": 51440,
|
728 |
+
"<|21.52|>": 51441,
|
729 |
+
"<|21.54|>": 51442,
|
730 |
+
"<|21.56|>": 51443,
|
731 |
+
"<|21.58|>": 51444,
|
732 |
+
"<|21.60|>": 51445,
|
733 |
+
"<|21.62|>": 51446,
|
734 |
+
"<|21.64|>": 51447,
|
735 |
+
"<|21.66|>": 51448,
|
736 |
+
"<|21.68|>": 51449,
|
737 |
+
"<|21.70|>": 51450,
|
738 |
+
"<|21.72|>": 51451,
|
739 |
+
"<|21.74|>": 51452,
|
740 |
+
"<|21.76|>": 51453,
|
741 |
+
"<|21.78|>": 51454,
|
742 |
+
"<|21.80|>": 51455,
|
743 |
+
"<|21.82|>": 51456,
|
744 |
+
"<|21.84|>": 51457,
|
745 |
+
"<|21.86|>": 51458,
|
746 |
+
"<|21.88|>": 51459,
|
747 |
+
"<|21.90|>": 51460,
|
748 |
+
"<|21.92|>": 51461,
|
749 |
+
"<|21.94|>": 51462,
|
750 |
+
"<|21.96|>": 51463,
|
751 |
+
"<|21.98|>": 51464,
|
752 |
+
"<|22.00|>": 51465,
|
753 |
+
"<|22.02|>": 51466,
|
754 |
+
"<|22.04|>": 51467,
|
755 |
+
"<|22.06|>": 51468,
|
756 |
+
"<|22.08|>": 51469,
|
757 |
+
"<|22.10|>": 51470,
|
758 |
+
"<|22.12|>": 51471,
|
759 |
+
"<|22.14|>": 51472,
|
760 |
+
"<|22.16|>": 51473,
|
761 |
+
"<|22.18|>": 51474,
|
762 |
+
"<|22.20|>": 51475,
|
763 |
+
"<|22.22|>": 51476,
|
764 |
+
"<|22.24|>": 51477,
|
765 |
+
"<|22.26|>": 51478,
|
766 |
+
"<|22.28|>": 51479,
|
767 |
+
"<|22.30|>": 51480,
|
768 |
+
"<|22.32|>": 51481,
|
769 |
+
"<|22.34|>": 51482,
|
770 |
+
"<|22.36|>": 51483,
|
771 |
+
"<|22.38|>": 51484,
|
772 |
+
"<|22.40|>": 51485,
|
773 |
+
"<|22.42|>": 51486,
|
774 |
+
"<|22.44|>": 51487,
|
775 |
+
"<|22.46|>": 51488,
|
776 |
+
"<|22.48|>": 51489,
|
777 |
+
"<|22.50|>": 51490,
|
778 |
+
"<|22.52|>": 51491,
|
779 |
+
"<|22.54|>": 51492,
|
780 |
+
"<|22.56|>": 51493,
|
781 |
+
"<|22.58|>": 51494,
|
782 |
+
"<|22.60|>": 51495,
|
783 |
+
"<|22.62|>": 51496,
|
784 |
+
"<|22.64|>": 51497,
|
785 |
+
"<|22.66|>": 51498,
|
786 |
+
"<|22.68|>": 51499,
|
787 |
+
"<|22.70|>": 51500,
|
788 |
+
"<|22.72|>": 51501,
|
789 |
+
"<|22.74|>": 51502,
|
790 |
+
"<|22.76|>": 51503,
|
791 |
+
"<|22.78|>": 51504,
|
792 |
+
"<|22.80|>": 51505,
|
793 |
+
"<|22.82|>": 51506,
|
794 |
+
"<|22.84|>": 51507,
|
795 |
+
"<|22.86|>": 51508,
|
796 |
+
"<|22.88|>": 51509,
|
797 |
+
"<|22.90|>": 51510,
|
798 |
+
"<|22.92|>": 51511,
|
799 |
+
"<|22.94|>": 51512,
|
800 |
+
"<|22.96|>": 51513,
|
801 |
+
"<|22.98|>": 51514,
|
802 |
+
"<|23.00|>": 51515,
|
803 |
+
"<|23.02|>": 51516,
|
804 |
+
"<|23.04|>": 51517,
|
805 |
+
"<|23.06|>": 51518,
|
806 |
+
"<|23.08|>": 51519,
|
807 |
+
"<|23.10|>": 51520,
|
808 |
+
"<|23.12|>": 51521,
|
809 |
+
"<|23.14|>": 51522,
|
810 |
+
"<|23.16|>": 51523,
|
811 |
+
"<|23.18|>": 51524,
|
812 |
+
"<|23.20|>": 51525,
|
813 |
+
"<|23.22|>": 51526,
|
814 |
+
"<|23.24|>": 51527,
|
815 |
+
"<|23.26|>": 51528,
|
816 |
+
"<|23.28|>": 51529,
|
817 |
+
"<|23.30|>": 51530,
|
818 |
+
"<|23.32|>": 51531,
|
819 |
+
"<|23.34|>": 51532,
|
820 |
+
"<|23.36|>": 51533,
|
821 |
+
"<|23.38|>": 51534,
|
822 |
+
"<|23.40|>": 51535,
|
823 |
+
"<|23.42|>": 51536,
|
824 |
+
"<|23.44|>": 51537,
|
825 |
+
"<|23.46|>": 51538,
|
826 |
+
"<|23.48|>": 51539,
|
827 |
+
"<|23.50|>": 51540,
|
828 |
+
"<|23.52|>": 51541,
|
829 |
+
"<|23.54|>": 51542,
|
830 |
+
"<|23.56|>": 51543,
|
831 |
+
"<|23.58|>": 51544,
|
832 |
+
"<|23.60|>": 51545,
|
833 |
+
"<|23.62|>": 51546,
|
834 |
+
"<|23.64|>": 51547,
|
835 |
+
"<|23.66|>": 51548,
|
836 |
+
"<|23.68|>": 51549,
|
837 |
+
"<|23.70|>": 51550,
|
838 |
+
"<|23.72|>": 51551,
|
839 |
+
"<|23.74|>": 51552,
|
840 |
+
"<|23.76|>": 51553,
|
841 |
+
"<|23.78|>": 51554,
|
842 |
+
"<|23.80|>": 51555,
|
843 |
+
"<|23.82|>": 51556,
|
844 |
+
"<|23.84|>": 51557,
|
845 |
+
"<|23.86|>": 51558,
|
846 |
+
"<|23.88|>": 51559,
|
847 |
+
"<|23.90|>": 51560,
|
848 |
+
"<|23.92|>": 51561,
|
849 |
+
"<|23.94|>": 51562,
|
850 |
+
"<|23.96|>": 51563,
|
851 |
+
"<|23.98|>": 51564,
|
852 |
+
"<|24.00|>": 51565,
|
853 |
+
"<|24.02|>": 51566,
|
854 |
+
"<|24.04|>": 51567,
|
855 |
+
"<|24.06|>": 51568,
|
856 |
+
"<|24.08|>": 51569,
|
857 |
+
"<|24.10|>": 51570,
|
858 |
+
"<|24.12|>": 51571,
|
859 |
+
"<|24.14|>": 51572,
|
860 |
+
"<|24.16|>": 51573,
|
861 |
+
"<|24.18|>": 51574,
|
862 |
+
"<|24.20|>": 51575,
|
863 |
+
"<|24.22|>": 51576,
|
864 |
+
"<|24.24|>": 51577,
|
865 |
+
"<|24.26|>": 51578,
|
866 |
+
"<|24.28|>": 51579,
|
867 |
+
"<|24.30|>": 51580,
|
868 |
+
"<|24.32|>": 51581,
|
869 |
+
"<|24.34|>": 51582,
|
870 |
+
"<|24.36|>": 51583,
|
871 |
+
"<|24.38|>": 51584,
|
872 |
+
"<|24.40|>": 51585,
|
873 |
+
"<|24.42|>": 51586,
|
874 |
+
"<|24.44|>": 51587,
|
875 |
+
"<|24.46|>": 51588,
|
876 |
+
"<|24.48|>": 51589,
|
877 |
+
"<|24.50|>": 51590,
|
878 |
+
"<|24.52|>": 51591,
|
879 |
+
"<|24.54|>": 51592,
|
880 |
+
"<|24.56|>": 51593,
|
881 |
+
"<|24.58|>": 51594,
|
882 |
+
"<|24.60|>": 51595,
|
883 |
+
"<|24.62|>": 51596,
|
884 |
+
"<|24.64|>": 51597,
|
885 |
+
"<|24.66|>": 51598,
|
886 |
+
"<|24.68|>": 51599,
|
887 |
+
"<|24.70|>": 51600,
|
888 |
+
"<|24.72|>": 51601,
|
889 |
+
"<|24.74|>": 51602,
|
890 |
+
"<|24.76|>": 51603,
|
891 |
+
"<|24.78|>": 51604,
|
892 |
+
"<|24.80|>": 51605,
|
893 |
+
"<|24.82|>": 51606,
|
894 |
+
"<|24.84|>": 51607,
|
895 |
+
"<|24.86|>": 51608,
|
896 |
+
"<|24.88|>": 51609,
|
897 |
+
"<|24.90|>": 51610,
|
898 |
+
"<|24.92|>": 51611,
|
899 |
+
"<|24.94|>": 51612,
|
900 |
+
"<|24.96|>": 51613,
|
901 |
+
"<|24.98|>": 51614,
|
902 |
+
"<|25.00|>": 51615,
|
903 |
+
"<|25.02|>": 51616,
|
904 |
+
"<|25.04|>": 51617,
|
905 |
+
"<|25.06|>": 51618,
|
906 |
+
"<|25.08|>": 51619,
|
907 |
+
"<|25.10|>": 51620,
|
908 |
+
"<|25.12|>": 51621,
|
909 |
+
"<|25.14|>": 51622,
|
910 |
+
"<|25.16|>": 51623,
|
911 |
+
"<|25.18|>": 51624,
|
912 |
+
"<|25.20|>": 51625,
|
913 |
+
"<|25.22|>": 51626,
|
914 |
+
"<|25.24|>": 51627,
|
915 |
+
"<|25.26|>": 51628,
|
916 |
+
"<|25.28|>": 51629,
|
917 |
+
"<|25.30|>": 51630,
|
918 |
+
"<|25.32|>": 51631,
|
919 |
+
"<|25.34|>": 51632,
|
920 |
+
"<|25.36|>": 51633,
|
921 |
+
"<|25.38|>": 51634,
|
922 |
+
"<|25.40|>": 51635,
|
923 |
+
"<|25.42|>": 51636,
|
924 |
+
"<|25.44|>": 51637,
|
925 |
+
"<|25.46|>": 51638,
|
926 |
+
"<|25.48|>": 51639,
|
927 |
+
"<|25.50|>": 51640,
|
928 |
+
"<|25.52|>": 51641,
|
929 |
+
"<|25.54|>": 51642,
|
930 |
+
"<|25.56|>": 51643,
|
931 |
+
"<|25.58|>": 51644,
|
932 |
+
"<|25.60|>": 51645,
|
933 |
+
"<|25.62|>": 51646,
|
934 |
+
"<|25.64|>": 51647,
|
935 |
+
"<|25.66|>": 51648,
|
936 |
+
"<|25.68|>": 51649,
|
937 |
+
"<|25.70|>": 51650,
|
938 |
+
"<|25.72|>": 51651,
|
939 |
+
"<|25.74|>": 51652,
|
940 |
+
"<|25.76|>": 51653,
|
941 |
+
"<|25.78|>": 51654,
|
942 |
+
"<|25.80|>": 51655,
|
943 |
+
"<|25.82|>": 51656,
|
944 |
+
"<|25.84|>": 51657,
|
945 |
+
"<|25.86|>": 51658,
|
946 |
+
"<|25.88|>": 51659,
|
947 |
+
"<|25.90|>": 51660,
|
948 |
+
"<|25.92|>": 51661,
|
949 |
+
"<|25.94|>": 51662,
|
950 |
+
"<|25.96|>": 51663,
|
951 |
+
"<|25.98|>": 51664,
|
952 |
+
"<|26.00|>": 51665,
|
953 |
+
"<|26.02|>": 51666,
|
954 |
+
"<|26.04|>": 51667,
|
955 |
+
"<|26.06|>": 51668,
|
956 |
+
"<|26.08|>": 51669,
|
957 |
+
"<|26.10|>": 51670,
|
958 |
+
"<|26.12|>": 51671,
|
959 |
+
"<|26.14|>": 51672,
|
960 |
+
"<|26.16|>": 51673,
|
961 |
+
"<|26.18|>": 51674,
|
962 |
+
"<|26.20|>": 51675,
|
963 |
+
"<|26.22|>": 51676,
|
964 |
+
"<|26.24|>": 51677,
|
965 |
+
"<|26.26|>": 51678,
|
966 |
+
"<|26.28|>": 51679,
|
967 |
+
"<|26.30|>": 51680,
|
968 |
+
"<|26.32|>": 51681,
|
969 |
+
"<|26.34|>": 51682,
|
970 |
+
"<|26.36|>": 51683,
|
971 |
+
"<|26.38|>": 51684,
|
972 |
+
"<|26.40|>": 51685,
|
973 |
+
"<|26.42|>": 51686,
|
974 |
+
"<|26.44|>": 51687,
|
975 |
+
"<|26.46|>": 51688,
|
976 |
+
"<|26.48|>": 51689,
|
977 |
+
"<|26.50|>": 51690,
|
978 |
+
"<|26.52|>": 51691,
|
979 |
+
"<|26.54|>": 51692,
|
980 |
+
"<|26.56|>": 51693,
|
981 |
+
"<|26.58|>": 51694,
|
982 |
+
"<|26.60|>": 51695,
|
983 |
+
"<|26.62|>": 51696,
|
984 |
+
"<|26.64|>": 51697,
|
985 |
+
"<|26.66|>": 51698,
|
986 |
+
"<|26.68|>": 51699,
|
987 |
+
"<|26.70|>": 51700,
|
988 |
+
"<|26.72|>": 51701,
|
989 |
+
"<|26.74|>": 51702,
|
990 |
+
"<|26.76|>": 51703,
|
991 |
+
"<|26.78|>": 51704,
|
992 |
+
"<|26.80|>": 51705,
|
993 |
+
"<|26.82|>": 51706,
|
994 |
+
"<|26.84|>": 51707,
|
995 |
+
"<|26.86|>": 51708,
|
996 |
+
"<|26.88|>": 51709,
|
997 |
+
"<|26.90|>": 51710,
|
998 |
+
"<|26.92|>": 51711,
|
999 |
+
"<|26.94|>": 51712,
|
1000 |
+
"<|26.96|>": 51713,
|
1001 |
+
"<|26.98|>": 51714,
|
1002 |
+
"<|27.00|>": 51715,
|
1003 |
+
"<|27.02|>": 51716,
|
1004 |
+
"<|27.04|>": 51717,
|
1005 |
+
"<|27.06|>": 51718,
|
1006 |
+
"<|27.08|>": 51719,
|
1007 |
+
"<|27.10|>": 51720,
|
1008 |
+
"<|27.12|>": 51721,
|
1009 |
+
"<|27.14|>": 51722,
|
1010 |
+
"<|27.16|>": 51723,
|
1011 |
+
"<|27.18|>": 51724,
|
1012 |
+
"<|27.20|>": 51725,
|
1013 |
+
"<|27.22|>": 51726,
|
1014 |
+
"<|27.24|>": 51727,
|
1015 |
+
"<|27.26|>": 51728,
|
1016 |
+
"<|27.28|>": 51729,
|
1017 |
+
"<|27.30|>": 51730,
|
1018 |
+
"<|27.32|>": 51731,
|
1019 |
+
"<|27.34|>": 51732,
|
1020 |
+
"<|27.36|>": 51733,
|
1021 |
+
"<|27.38|>": 51734,
|
1022 |
+
"<|27.40|>": 51735,
|
1023 |
+
"<|27.42|>": 51736,
|
1024 |
+
"<|27.44|>": 51737,
|
1025 |
+
"<|27.46|>": 51738,
|
1026 |
+
"<|27.48|>": 51739,
|
1027 |
+
"<|27.50|>": 51740,
|
1028 |
+
"<|27.52|>": 51741,
|
1029 |
+
"<|27.54|>": 51742,
|
1030 |
+
"<|27.56|>": 51743,
|
1031 |
+
"<|27.58|>": 51744,
|
1032 |
+
"<|27.60|>": 51745,
|
1033 |
+
"<|27.62|>": 51746,
|
1034 |
+
"<|27.64|>": 51747,
|
1035 |
+
"<|27.66|>": 51748,
|
1036 |
+
"<|27.68|>": 51749,
|
1037 |
+
"<|27.70|>": 51750,
|
1038 |
+
"<|27.72|>": 51751,
|
1039 |
+
"<|27.74|>": 51752,
|
1040 |
+
"<|27.76|>": 51753,
|
1041 |
+
"<|27.78|>": 51754,
|
1042 |
+
"<|27.80|>": 51755,
|
1043 |
+
"<|27.82|>": 51756,
|
1044 |
+
"<|27.84|>": 51757,
|
1045 |
+
"<|27.86|>": 51758,
|
1046 |
+
"<|27.88|>": 51759,
|
1047 |
+
"<|27.90|>": 51760,
|
1048 |
+
"<|27.92|>": 51761,
|
1049 |
+
"<|27.94|>": 51762,
|
1050 |
+
"<|27.96|>": 51763,
|
1051 |
+
"<|27.98|>": 51764,
|
1052 |
+
"<|28.00|>": 51765,
|
1053 |
+
"<|28.02|>": 51766,
|
1054 |
+
"<|28.04|>": 51767,
|
1055 |
+
"<|28.06|>": 51768,
|
1056 |
+
"<|28.08|>": 51769,
|
1057 |
+
"<|28.10|>": 51770,
|
1058 |
+
"<|28.12|>": 51771,
|
1059 |
+
"<|28.14|>": 51772,
|
1060 |
+
"<|28.16|>": 51773,
|
1061 |
+
"<|28.18|>": 51774,
|
1062 |
+
"<|28.20|>": 51775,
|
1063 |
+
"<|28.22|>": 51776,
|
1064 |
+
"<|28.24|>": 51777,
|
1065 |
+
"<|28.26|>": 51778,
|
1066 |
+
"<|28.28|>": 51779,
|
1067 |
+
"<|28.30|>": 51780,
|
1068 |
+
"<|28.32|>": 51781,
|
1069 |
+
"<|28.34|>": 51782,
|
1070 |
+
"<|28.36|>": 51783,
|
1071 |
+
"<|28.38|>": 51784,
|
1072 |
+
"<|28.40|>": 51785,
|
1073 |
+
"<|28.42|>": 51786,
|
1074 |
+
"<|28.44|>": 51787,
|
1075 |
+
"<|28.46|>": 51788,
|
1076 |
+
"<|28.48|>": 51789,
|
1077 |
+
"<|28.50|>": 51790,
|
1078 |
+
"<|28.52|>": 51791,
|
1079 |
+
"<|28.54|>": 51792,
|
1080 |
+
"<|28.56|>": 51793,
|
1081 |
+
"<|28.58|>": 51794,
|
1082 |
+
"<|28.60|>": 51795,
|
1083 |
+
"<|28.62|>": 51796,
|
1084 |
+
"<|28.64|>": 51797,
|
1085 |
+
"<|28.66|>": 51798,
|
1086 |
+
"<|28.68|>": 51799,
|
1087 |
+
"<|28.70|>": 51800,
|
1088 |
+
"<|28.72|>": 51801,
|
1089 |
+
"<|28.74|>": 51802,
|
1090 |
+
"<|28.76|>": 51803,
|
1091 |
+
"<|28.78|>": 51804,
|
1092 |
+
"<|28.80|>": 51805,
|
1093 |
+
"<|28.82|>": 51806,
|
1094 |
+
"<|28.84|>": 51807,
|
1095 |
+
"<|28.86|>": 51808,
|
1096 |
+
"<|28.88|>": 51809,
|
1097 |
+
"<|28.90|>": 51810,
|
1098 |
+
"<|28.92|>": 51811,
|
1099 |
+
"<|28.94|>": 51812,
|
1100 |
+
"<|28.96|>": 51813,
|
1101 |
+
"<|28.98|>": 51814,
|
1102 |
+
"<|29.00|>": 51815,
|
1103 |
+
"<|29.02|>": 51816,
|
1104 |
+
"<|29.04|>": 51817,
|
1105 |
+
"<|29.06|>": 51818,
|
1106 |
+
"<|29.08|>": 51819,
|
1107 |
+
"<|29.10|>": 51820,
|
1108 |
+
"<|29.12|>": 51821,
|
1109 |
+
"<|29.14|>": 51822,
|
1110 |
+
"<|29.16|>": 51823,
|
1111 |
+
"<|29.18|>": 51824,
|
1112 |
+
"<|29.20|>": 51825,
|
1113 |
+
"<|29.22|>": 51826,
|
1114 |
+
"<|29.24|>": 51827,
|
1115 |
+
"<|29.26|>": 51828,
|
1116 |
+
"<|29.28|>": 51829,
|
1117 |
+
"<|29.30|>": 51830,
|
1118 |
+
"<|29.32|>": 51831,
|
1119 |
+
"<|29.34|>": 51832,
|
1120 |
+
"<|29.36|>": 51833,
|
1121 |
+
"<|29.38|>": 51834,
|
1122 |
+
"<|29.40|>": 51835,
|
1123 |
+
"<|29.42|>": 51836,
|
1124 |
+
"<|29.44|>": 51837,
|
1125 |
+
"<|29.46|>": 51838,
|
1126 |
+
"<|29.48|>": 51839,
|
1127 |
+
"<|29.50|>": 51840,
|
1128 |
+
"<|29.52|>": 51841,
|
1129 |
+
"<|29.54|>": 51842,
|
1130 |
+
"<|29.56|>": 51843,
|
1131 |
+
"<|29.58|>": 51844,
|
1132 |
+
"<|29.60|>": 51845,
|
1133 |
+
"<|29.62|>": 51846,
|
1134 |
+
"<|29.64|>": 51847,
|
1135 |
+
"<|29.66|>": 51848,
|
1136 |
+
"<|29.68|>": 51849,
|
1137 |
+
"<|29.70|>": 51850,
|
1138 |
+
"<|29.72|>": 51851,
|
1139 |
+
"<|29.74|>": 51852,
|
1140 |
+
"<|29.76|>": 51853,
|
1141 |
+
"<|29.78|>": 51854,
|
1142 |
+
"<|29.80|>": 51855,
|
1143 |
+
"<|29.82|>": 51856,
|
1144 |
+
"<|29.84|>": 51857,
|
1145 |
+
"<|29.86|>": 51858,
|
1146 |
+
"<|29.88|>": 51859,
|
1147 |
+
"<|29.90|>": 51860,
|
1148 |
+
"<|29.92|>": 51861,
|
1149 |
+
"<|29.94|>": 51862,
|
1150 |
+
"<|29.96|>": 51863,
|
1151 |
+
"<|29.98|>": 51864,
|
1152 |
+
"<|3.00|>": 50515,
|
1153 |
+
"<|3.02|>": 50516,
|
1154 |
+
"<|3.04|>": 50517,
|
1155 |
+
"<|3.06|>": 50518,
|
1156 |
+
"<|3.08|>": 50519,
|
1157 |
+
"<|3.10|>": 50520,
|
1158 |
+
"<|3.12|>": 50521,
|
1159 |
+
"<|3.14|>": 50522,
|
1160 |
+
"<|3.16|>": 50523,
|
1161 |
+
"<|3.18|>": 50524,
|
1162 |
+
"<|3.20|>": 50525,
|
1163 |
+
"<|3.22|>": 50526,
|
1164 |
+
"<|3.24|>": 50527,
|
1165 |
+
"<|3.26|>": 50528,
|
1166 |
+
"<|3.28|>": 50529,
|
1167 |
+
"<|3.30|>": 50530,
|
1168 |
+
"<|3.32|>": 50531,
|
1169 |
+
"<|3.34|>": 50532,
|
1170 |
+
"<|3.36|>": 50533,
|
1171 |
+
"<|3.38|>": 50534,
|
1172 |
+
"<|3.40|>": 50535,
|
1173 |
+
"<|3.42|>": 50536,
|
1174 |
+
"<|3.44|>": 50537,
|
1175 |
+
"<|3.46|>": 50538,
|
1176 |
+
"<|3.48|>": 50539,
|
1177 |
+
"<|3.50|>": 50540,
|
1178 |
+
"<|3.52|>": 50541,
|
1179 |
+
"<|3.54|>": 50542,
|
1180 |
+
"<|3.56|>": 50543,
|
1181 |
+
"<|3.58|>": 50544,
|
1182 |
+
"<|3.60|>": 50545,
|
1183 |
+
"<|3.62|>": 50546,
|
1184 |
+
"<|3.64|>": 50547,
|
1185 |
+
"<|3.66|>": 50548,
|
1186 |
+
"<|3.68|>": 50549,
|
1187 |
+
"<|3.70|>": 50550,
|
1188 |
+
"<|3.72|>": 50551,
|
1189 |
+
"<|3.74|>": 50552,
|
1190 |
+
"<|3.76|>": 50553,
|
1191 |
+
"<|3.78|>": 50554,
|
1192 |
+
"<|3.80|>": 50555,
|
1193 |
+
"<|3.82|>": 50556,
|
1194 |
+
"<|3.84|>": 50557,
|
1195 |
+
"<|3.86|>": 50558,
|
1196 |
+
"<|3.88|>": 50559,
|
1197 |
+
"<|3.90|>": 50560,
|
1198 |
+
"<|3.92|>": 50561,
|
1199 |
+
"<|3.94|>": 50562,
|
1200 |
+
"<|3.96|>": 50563,
|
1201 |
+
"<|3.98|>": 50564,
|
1202 |
+
"<|30.00|>": 51865,
|
1203 |
+
"<|4.00|>": 50565,
|
1204 |
+
"<|4.02|>": 50566,
|
1205 |
+
"<|4.04|>": 50567,
|
1206 |
+
"<|4.06|>": 50568,
|
1207 |
+
"<|4.08|>": 50569,
|
1208 |
+
"<|4.10|>": 50570,
|
1209 |
+
"<|4.12|>": 50571,
|
1210 |
+
"<|4.14|>": 50572,
|
1211 |
+
"<|4.16|>": 50573,
|
1212 |
+
"<|4.18|>": 50574,
|
1213 |
+
"<|4.20|>": 50575,
|
1214 |
+
"<|4.22|>": 50576,
|
1215 |
+
"<|4.24|>": 50577,
|
1216 |
+
"<|4.26|>": 50578,
|
1217 |
+
"<|4.28|>": 50579,
|
1218 |
+
"<|4.30|>": 50580,
|
1219 |
+
"<|4.32|>": 50581,
|
1220 |
+
"<|4.34|>": 50582,
|
1221 |
+
"<|4.36|>": 50583,
|
1222 |
+
"<|4.38|>": 50584,
|
1223 |
+
"<|4.40|>": 50585,
|
1224 |
+
"<|4.42|>": 50586,
|
1225 |
+
"<|4.44|>": 50587,
|
1226 |
+
"<|4.46|>": 50588,
|
1227 |
+
"<|4.48|>": 50589,
|
1228 |
+
"<|4.50|>": 50590,
|
1229 |
+
"<|4.52|>": 50591,
|
1230 |
+
"<|4.54|>": 50592,
|
1231 |
+
"<|4.56|>": 50593,
|
1232 |
+
"<|4.58|>": 50594,
|
1233 |
+
"<|4.60|>": 50595,
|
1234 |
+
"<|4.62|>": 50596,
|
1235 |
+
"<|4.64|>": 50597,
|
1236 |
+
"<|4.66|>": 50598,
|
1237 |
+
"<|4.68|>": 50599,
|
1238 |
+
"<|4.70|>": 50600,
|
1239 |
+
"<|4.72|>": 50601,
|
1240 |
+
"<|4.74|>": 50602,
|
1241 |
+
"<|4.76|>": 50603,
|
1242 |
+
"<|4.78|>": 50604,
|
1243 |
+
"<|4.80|>": 50605,
|
1244 |
+
"<|4.82|>": 50606,
|
1245 |
+
"<|4.84|>": 50607,
|
1246 |
+
"<|4.86|>": 50608,
|
1247 |
+
"<|4.88|>": 50609,
|
1248 |
+
"<|4.90|>": 50610,
|
1249 |
+
"<|4.92|>": 50611,
|
1250 |
+
"<|4.94|>": 50612,
|
1251 |
+
"<|4.96|>": 50613,
|
1252 |
+
"<|4.98|>": 50614,
|
1253 |
+
"<|5.00|>": 50615,
|
1254 |
+
"<|5.02|>": 50616,
|
1255 |
+
"<|5.04|>": 50617,
|
1256 |
+
"<|5.06|>": 50618,
|
1257 |
+
"<|5.08|>": 50619,
|
1258 |
+
"<|5.10|>": 50620,
|
1259 |
+
"<|5.12|>": 50621,
|
1260 |
+
"<|5.14|>": 50622,
|
1261 |
+
"<|5.16|>": 50623,
|
1262 |
+
"<|5.18|>": 50624,
|
1263 |
+
"<|5.20|>": 50625,
|
1264 |
+
"<|5.22|>": 50626,
|
1265 |
+
"<|5.24|>": 50627,
|
1266 |
+
"<|5.26|>": 50628,
|
1267 |
+
"<|5.28|>": 50629,
|
1268 |
+
"<|5.30|>": 50630,
|
1269 |
+
"<|5.32|>": 50631,
|
1270 |
+
"<|5.34|>": 50632,
|
1271 |
+
"<|5.36|>": 50633,
|
1272 |
+
"<|5.38|>": 50634,
|
1273 |
+
"<|5.40|>": 50635,
|
1274 |
+
"<|5.42|>": 50636,
|
1275 |
+
"<|5.44|>": 50637,
|
1276 |
+
"<|5.46|>": 50638,
|
1277 |
+
"<|5.48|>": 50639,
|
1278 |
+
"<|5.50|>": 50640,
|
1279 |
+
"<|5.52|>": 50641,
|
1280 |
+
"<|5.54|>": 50642,
|
1281 |
+
"<|5.56|>": 50643,
|
1282 |
+
"<|5.58|>": 50644,
|
1283 |
+
"<|5.60|>": 50645,
|
1284 |
+
"<|5.62|>": 50646,
|
1285 |
+
"<|5.64|>": 50647,
|
1286 |
+
"<|5.66|>": 50648,
|
1287 |
+
"<|5.68|>": 50649,
|
1288 |
+
"<|5.70|>": 50650,
|
1289 |
+
"<|5.72|>": 50651,
|
1290 |
+
"<|5.74|>": 50652,
|
1291 |
+
"<|5.76|>": 50653,
|
1292 |
+
"<|5.78|>": 50654,
|
1293 |
+
"<|5.80|>": 50655,
|
1294 |
+
"<|5.82|>": 50656,
|
1295 |
+
"<|5.84|>": 50657,
|
1296 |
+
"<|5.86|>": 50658,
|
1297 |
+
"<|5.88|>": 50659,
|
1298 |
+
"<|5.90|>": 50660,
|
1299 |
+
"<|5.92|>": 50661,
|
1300 |
+
"<|5.94|>": 50662,
|
1301 |
+
"<|5.96|>": 50663,
|
1302 |
+
"<|5.98|>": 50664,
|
1303 |
+
"<|6.00|>": 50665,
|
1304 |
+
"<|6.02|>": 50666,
|
1305 |
+
"<|6.04|>": 50667,
|
1306 |
+
"<|6.06|>": 50668,
|
1307 |
+
"<|6.08|>": 50669,
|
1308 |
+
"<|6.10|>": 50670,
|
1309 |
+
"<|6.12|>": 50671,
|
1310 |
+
"<|6.14|>": 50672,
|
1311 |
+
"<|6.16|>": 50673,
|
1312 |
+
"<|6.18|>": 50674,
|
1313 |
+
"<|6.20|>": 50675,
|
1314 |
+
"<|6.22|>": 50676,
|
1315 |
+
"<|6.24|>": 50677,
|
1316 |
+
"<|6.26|>": 50678,
|
1317 |
+
"<|6.28|>": 50679,
|
1318 |
+
"<|6.30|>": 50680,
|
1319 |
+
"<|6.32|>": 50681,
|
1320 |
+
"<|6.34|>": 50682,
|
1321 |
+
"<|6.36|>": 50683,
|
1322 |
+
"<|6.38|>": 50684,
|
1323 |
+
"<|6.40|>": 50685,
|
1324 |
+
"<|6.42|>": 50686,
|
1325 |
+
"<|6.44|>": 50687,
|
1326 |
+
"<|6.46|>": 50688,
|
1327 |
+
"<|6.48|>": 50689,
|
1328 |
+
"<|6.50|>": 50690,
|
1329 |
+
"<|6.52|>": 50691,
|
1330 |
+
"<|6.54|>": 50692,
|
1331 |
+
"<|6.56|>": 50693,
|
1332 |
+
"<|6.58|>": 50694,
|
1333 |
+
"<|6.60|>": 50695,
|
1334 |
+
"<|6.62|>": 50696,
|
1335 |
+
"<|6.64|>": 50697,
|
1336 |
+
"<|6.66|>": 50698,
|
1337 |
+
"<|6.68|>": 50699,
|
1338 |
+
"<|6.70|>": 50700,
|
1339 |
+
"<|6.72|>": 50701,
|
1340 |
+
"<|6.74|>": 50702,
|
1341 |
+
"<|6.76|>": 50703,
|
1342 |
+
"<|6.78|>": 50704,
|
1343 |
+
"<|6.80|>": 50705,
|
1344 |
+
"<|6.82|>": 50706,
|
1345 |
+
"<|6.84|>": 50707,
|
1346 |
+
"<|6.86|>": 50708,
|
1347 |
+
"<|6.88|>": 50709,
|
1348 |
+
"<|6.90|>": 50710,
|
1349 |
+
"<|6.92|>": 50711,
|
1350 |
+
"<|6.94|>": 50712,
|
1351 |
+
"<|6.96|>": 50713,
|
1352 |
+
"<|6.98|>": 50714,
|
1353 |
+
"<|7.00|>": 50715,
|
1354 |
+
"<|7.02|>": 50716,
|
1355 |
+
"<|7.04|>": 50717,
|
1356 |
+
"<|7.06|>": 50718,
|
1357 |
+
"<|7.08|>": 50719,
|
1358 |
+
"<|7.10|>": 50720,
|
1359 |
+
"<|7.12|>": 50721,
|
1360 |
+
"<|7.14|>": 50722,
|
1361 |
+
"<|7.16|>": 50723,
|
1362 |
+
"<|7.18|>": 50724,
|
1363 |
+
"<|7.20|>": 50725,
|
1364 |
+
"<|7.22|>": 50726,
|
1365 |
+
"<|7.24|>": 50727,
|
1366 |
+
"<|7.26|>": 50728,
|
1367 |
+
"<|7.28|>": 50729,
|
1368 |
+
"<|7.30|>": 50730,
|
1369 |
+
"<|7.32|>": 50731,
|
1370 |
+
"<|7.34|>": 50732,
|
1371 |
+
"<|7.36|>": 50733,
|
1372 |
+
"<|7.38|>": 50734,
|
1373 |
+
"<|7.40|>": 50735,
|
1374 |
+
"<|7.42|>": 50736,
|
1375 |
+
"<|7.44|>": 50737,
|
1376 |
+
"<|7.46|>": 50738,
|
1377 |
+
"<|7.48|>": 50739,
|
1378 |
+
"<|7.50|>": 50740,
|
1379 |
+
"<|7.52|>": 50741,
|
1380 |
+
"<|7.54|>": 50742,
|
1381 |
+
"<|7.56|>": 50743,
|
1382 |
+
"<|7.58|>": 50744,
|
1383 |
+
"<|7.60|>": 50745,
|
1384 |
+
"<|7.62|>": 50746,
|
1385 |
+
"<|7.64|>": 50747,
|
1386 |
+
"<|7.66|>": 50748,
|
1387 |
+
"<|7.68|>": 50749,
|
1388 |
+
"<|7.70|>": 50750,
|
1389 |
+
"<|7.72|>": 50751,
|
1390 |
+
"<|7.74|>": 50752,
|
1391 |
+
"<|7.76|>": 50753,
|
1392 |
+
"<|7.78|>": 50754,
|
1393 |
+
"<|7.80|>": 50755,
|
1394 |
+
"<|7.82|>": 50756,
|
1395 |
+
"<|7.84|>": 50757,
|
1396 |
+
"<|7.86|>": 50758,
|
1397 |
+
"<|7.88|>": 50759,
|
1398 |
+
"<|7.90|>": 50760,
|
1399 |
+
"<|7.92|>": 50761,
|
1400 |
+
"<|7.94|>": 50762,
|
1401 |
+
"<|7.96|>": 50763,
|
1402 |
+
"<|7.98|>": 50764,
|
1403 |
+
"<|8.00|>": 50765,
|
1404 |
+
"<|8.02|>": 50766,
|
1405 |
+
"<|8.04|>": 50767,
|
1406 |
+
"<|8.06|>": 50768,
|
1407 |
+
"<|8.08|>": 50769,
|
1408 |
+
"<|8.10|>": 50770,
|
1409 |
+
"<|8.12|>": 50771,
|
1410 |
+
"<|8.14|>": 50772,
|
1411 |
+
"<|8.16|>": 50773,
|
1412 |
+
"<|8.18|>": 50774,
|
1413 |
+
"<|8.20|>": 50775,
|
1414 |
+
"<|8.22|>": 50776,
|
1415 |
+
"<|8.24|>": 50777,
|
1416 |
+
"<|8.26|>": 50778,
|
1417 |
+
"<|8.28|>": 50779,
|
1418 |
+
"<|8.30|>": 50780,
|
1419 |
+
"<|8.32|>": 50781,
|
1420 |
+
"<|8.34|>": 50782,
|
1421 |
+
"<|8.36|>": 50783,
|
1422 |
+
"<|8.38|>": 50784,
|
1423 |
+
"<|8.40|>": 50785,
|
1424 |
+
"<|8.42|>": 50786,
|
1425 |
+
"<|8.44|>": 50787,
|
1426 |
+
"<|8.46|>": 50788,
|
1427 |
+
"<|8.48|>": 50789,
|
1428 |
+
"<|8.50|>": 50790,
|
1429 |
+
"<|8.52|>": 50791,
|
1430 |
+
"<|8.54|>": 50792,
|
1431 |
+
"<|8.56|>": 50793,
|
1432 |
+
"<|8.58|>": 50794,
|
1433 |
+
"<|8.60|>": 50795,
|
1434 |
+
"<|8.62|>": 50796,
|
1435 |
+
"<|8.64|>": 50797,
|
1436 |
+
"<|8.66|>": 50798,
|
1437 |
+
"<|8.68|>": 50799,
|
1438 |
+
"<|8.70|>": 50800,
|
1439 |
+
"<|8.72|>": 50801,
|
1440 |
+
"<|8.74|>": 50802,
|
1441 |
+
"<|8.76|>": 50803,
|
1442 |
+
"<|8.78|>": 50804,
|
1443 |
+
"<|8.80|>": 50805,
|
1444 |
+
"<|8.82|>": 50806,
|
1445 |
+
"<|8.84|>": 50807,
|
1446 |
+
"<|8.86|>": 50808,
|
1447 |
+
"<|8.88|>": 50809,
|
1448 |
+
"<|8.90|>": 50810,
|
1449 |
+
"<|8.92|>": 50811,
|
1450 |
+
"<|8.94|>": 50812,
|
1451 |
+
"<|8.96|>": 50813,
|
1452 |
+
"<|8.98|>": 50814,
|
1453 |
+
"<|9.00|>": 50815,
|
1454 |
+
"<|9.02|>": 50816,
|
1455 |
+
"<|9.04|>": 50817,
|
1456 |
+
"<|9.06|>": 50818,
|
1457 |
+
"<|9.08|>": 50819,
|
1458 |
+
"<|9.10|>": 50820,
|
1459 |
+
"<|9.12|>": 50821,
|
1460 |
+
"<|9.14|>": 50822,
|
1461 |
+
"<|9.16|>": 50823,
|
1462 |
+
"<|9.18|>": 50824,
|
1463 |
+
"<|9.20|>": 50825,
|
1464 |
+
"<|9.22|>": 50826,
|
1465 |
+
"<|9.24|>": 50827,
|
1466 |
+
"<|9.26|>": 50828,
|
1467 |
+
"<|9.28|>": 50829,
|
1468 |
+
"<|9.30|>": 50830,
|
1469 |
+
"<|9.32|>": 50831,
|
1470 |
+
"<|9.34|>": 50832,
|
1471 |
+
"<|9.36|>": 50833,
|
1472 |
+
"<|9.38|>": 50834,
|
1473 |
+
"<|9.40|>": 50835,
|
1474 |
+
"<|9.42|>": 50836,
|
1475 |
+
"<|9.44|>": 50837,
|
1476 |
+
"<|9.46|>": 50838,
|
1477 |
+
"<|9.48|>": 50839,
|
1478 |
+
"<|9.50|>": 50840,
|
1479 |
+
"<|9.52|>": 50841,
|
1480 |
+
"<|9.54|>": 50842,
|
1481 |
+
"<|9.56|>": 50843,
|
1482 |
+
"<|9.58|>": 50844,
|
1483 |
+
"<|9.60|>": 50845,
|
1484 |
+
"<|9.62|>": 50846,
|
1485 |
+
"<|9.64|>": 50847,
|
1486 |
+
"<|9.66|>": 50848,
|
1487 |
+
"<|9.68|>": 50849,
|
1488 |
+
"<|9.70|>": 50850,
|
1489 |
+
"<|9.72|>": 50851,
|
1490 |
+
"<|9.74|>": 50852,
|
1491 |
+
"<|9.76|>": 50853,
|
1492 |
+
"<|9.78|>": 50854,
|
1493 |
+
"<|9.80|>": 50855,
|
1494 |
+
"<|9.82|>": 50856,
|
1495 |
+
"<|9.84|>": 50857,
|
1496 |
+
"<|9.86|>": 50858,
|
1497 |
+
"<|9.88|>": 50859,
|
1498 |
+
"<|9.90|>": 50860,
|
1499 |
+
"<|9.92|>": 50861,
|
1500 |
+
"<|9.94|>": 50862,
|
1501 |
+
"<|9.96|>": 50863,
|
1502 |
+
"<|9.98|>": 50864,
|
1503 |
+
"<|af|>": 50327,
|
1504 |
+
"<|am|>": 50334,
|
1505 |
+
"<|ar|>": 50272,
|
1506 |
+
"<|as|>": 50350,
|
1507 |
+
"<|az|>": 50304,
|
1508 |
+
"<|ba|>": 50355,
|
1509 |
+
"<|be|>": 50330,
|
1510 |
+
"<|bg|>": 50292,
|
1511 |
+
"<|bn|>": 50302,
|
1512 |
+
"<|bo|>": 50347,
|
1513 |
+
"<|br|>": 50309,
|
1514 |
+
"<|bs|>": 50315,
|
1515 |
+
"<|ca|>": 50270,
|
1516 |
+
"<|cs|>": 50283,
|
1517 |
+
"<|cy|>": 50297,
|
1518 |
+
"<|da|>": 50285,
|
1519 |
+
"<|de|>": 50261,
|
1520 |
+
"<|el|>": 50281,
|
1521 |
+
"<|endoftext|>": 50257,
|
1522 |
+
"<|en|>": 50259,
|
1523 |
+
"<|es|>": 50262,
|
1524 |
+
"<|et|>": 50307,
|
1525 |
+
"<|eu|>": 50310,
|
1526 |
+
"<|fa|>": 50300,
|
1527 |
+
"<|fi|>": 50277,
|
1528 |
+
"<|fo|>": 50338,
|
1529 |
+
"<|fr|>": 50265,
|
1530 |
+
"<|gl|>": 50319,
|
1531 |
+
"<|gu|>": 50333,
|
1532 |
+
"<|haw|>": 50352,
|
1533 |
+
"<|ha|>": 50354,
|
1534 |
+
"<|he|>": 50279,
|
1535 |
+
"<|hi|>": 50276,
|
1536 |
+
"<|hr|>": 50291,
|
1537 |
+
"<|ht|>": 50339,
|
1538 |
+
"<|hu|>": 50286,
|
1539 |
+
"<|hy|>": 50312,
|
1540 |
+
"<|id|>": 50275,
|
1541 |
+
"<|is|>": 50311,
|
1542 |
+
"<|it|>": 50274,
|
1543 |
+
"<|ja|>": 50266,
|
1544 |
+
"<|jw|>": 50356,
|
1545 |
+
"<|ka|>": 50329,
|
1546 |
+
"<|kk|>": 50316,
|
1547 |
+
"<|km|>": 50323,
|
1548 |
+
"<|kn|>": 50306,
|
1549 |
+
"<|ko|>": 50264,
|
1550 |
+
"<|la|>": 50294,
|
1551 |
+
"<|lb|>": 50345,
|
1552 |
+
"<|ln|>": 50353,
|
1553 |
+
"<|lo|>": 50336,
|
1554 |
+
"<|lt|>": 50293,
|
1555 |
+
"<|lv|>": 50301,
|
1556 |
+
"<|mg|>": 50349,
|
1557 |
+
"<|mi|>": 50295,
|
1558 |
+
"<|mk|>": 50308,
|
1559 |
+
"<|ml|>": 50296,
|
1560 |
+
"<|mn|>": 50314,
|
1561 |
+
"<|mr|>": 50320,
|
1562 |
+
"<|ms|>": 50282,
|
1563 |
+
"<|mt|>": 50343,
|
1564 |
+
"<|my|>": 50346,
|
1565 |
+
"<|ne|>": 50313,
|
1566 |
+
"<|nl|>": 50271,
|
1567 |
+
"<|nn|>": 50342,
|
1568 |
+
"<|nospeech|>": 50363,
|
1569 |
+
"<|notimestamps|>": 50364,
|
1570 |
+
"<|no|>": 50288,
|
1571 |
+
"<|oc|>": 50328,
|
1572 |
+
"<|pa|>": 50321,
|
1573 |
+
"<|pl|>": 50269,
|
1574 |
+
"<|ps|>": 50340,
|
1575 |
+
"<|pt|>": 50267,
|
1576 |
+
"<|ro|>": 50284,
|
1577 |
+
"<|ru|>": 50263,
|
1578 |
+
"<|sa|>": 50344,
|
1579 |
+
"<|sd|>": 50332,
|
1580 |
+
"<|si|>": 50322,
|
1581 |
+
"<|sk|>": 50298,
|
1582 |
+
"<|sl|>": 50305,
|
1583 |
+
"<|sn|>": 50324,
|
1584 |
+
"<|so|>": 50326,
|
1585 |
+
"<|sq|>": 50317,
|
1586 |
+
"<|sr|>": 50303,
|
1587 |
+
"<|startoflm|>": 50361,
|
1588 |
+
"<|startofprev|>": 50362,
|
1589 |
+
"<|startoftranscript|>": 50258,
|
1590 |
+
"<|su|>": 50357,
|
1591 |
+
"<|sv|>": 50273,
|
1592 |
+
"<|sw|>": 50318,
|
1593 |
+
"<|ta|>": 50287,
|
1594 |
+
"<|te|>": 50299,
|
1595 |
+
"<|tg|>": 50331,
|
1596 |
+
"<|th|>": 50289,
|
1597 |
+
"<|tk|>": 50341,
|
1598 |
+
"<|tl|>": 50348,
|
1599 |
+
"<|transcribe|>": 50360,
|
1600 |
+
"<|translate|>": 50359,
|
1601 |
+
"<|tr|>": 50268,
|
1602 |
+
"<|tt|>": 50351,
|
1603 |
+
"<|uk|>": 50280,
|
1604 |
+
"<|ur|>": 50290,
|
1605 |
+
"<|uz|>": 50337,
|
1606 |
+
"<|vi|>": 50278,
|
1607 |
+
"<|yi|>": 50335,
|
1608 |
+
"<|yo|>": 50325,
|
1609 |
+
"<|yue|>": 50358,
|
1610 |
+
"<|zh|>": 50260
|
1611 |
+
}
|
checkpoint-1000-epoch-0/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e155e3844f9bd017f0d0e4a31b53c1603f74c14a902da493277aba76b5c1c38c
|
3 |
+
size 3025686376
|
checkpoint-1000-epoch-0/model_1.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b395c8a7e2bda655c415580106288d0387c227efd641bf4e11c1cd735fdb37a
|
3 |
+
size 4361070048
|
checkpoint-1000-epoch-0/optimizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6fa1aca9e8ec9c79d1c39769e5a38e28a28e2f50c64962de0284df8f5ab51e4
|
3 |
+
size 950951226
|
checkpoint-1000-epoch-0/random_states_0.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f734c66b259a7c8b32e34c34231ea0c2b60c7109e0d67cd936b8667e76af41e
|
3 |
+
size 14344
|
checkpoint-1000-epoch-0/scheduler.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8089e940f36553a3c1c923efdeec31d242baa919d942c67c2c633343ea9b7c8
|
3 |
+
size 1064
|
config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./distil-large-v3",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"apply_spec_augment": false,
|
6 |
+
"architectures": [
|
7 |
+
"WhisperForConditionalGeneration"
|
8 |
+
],
|
9 |
+
"attention_dropout": 0.0,
|
10 |
+
"begin_suppress_tokens": [
|
11 |
+
220,
|
12 |
+
50257
|
13 |
+
],
|
14 |
+
"bos_token_id": 50257,
|
15 |
+
"classifier_proj_size": 256,
|
16 |
+
"d_model": 1280,
|
17 |
+
"decoder_attention_heads": 20,
|
18 |
+
"decoder_ffn_dim": 5120,
|
19 |
+
"decoder_layerdrop": 0.0,
|
20 |
+
"decoder_layers": 2,
|
21 |
+
"decoder_start_token_id": 50258,
|
22 |
+
"dropout": 0.0,
|
23 |
+
"encoder_attention_heads": 20,
|
24 |
+
"encoder_ffn_dim": 5120,
|
25 |
+
"encoder_layerdrop": 0.0,
|
26 |
+
"encoder_layers": 32,
|
27 |
+
"eos_token_id": 50257,
|
28 |
+
"init_std": 0.02,
|
29 |
+
"is_encoder_decoder": true,
|
30 |
+
"mask_feature_length": 10,
|
31 |
+
"mask_feature_min_masks": 0,
|
32 |
+
"mask_feature_prob": 0.0,
|
33 |
+
"mask_time_length": 10,
|
34 |
+
"mask_time_min_masks": 2,
|
35 |
+
"mask_time_prob": 0.05,
|
36 |
+
"max_length": 448,
|
37 |
+
"max_source_positions": 1500,
|
38 |
+
"max_target_positions": 448,
|
39 |
+
"median_filter_width": 7,
|
40 |
+
"model_type": "whisper",
|
41 |
+
"num_hidden_layers": 32,
|
42 |
+
"num_mel_bins": 128,
|
43 |
+
"pad_token_id": 50256,
|
44 |
+
"scale_embedding": false,
|
45 |
+
"torch_dtype": "float16",
|
46 |
+
"transformers_version": "4.40.1",
|
47 |
+
"use_cache": true,
|
48 |
+
"use_weighted_layer_sum": false,
|
49 |
+
"vocab_size": 51866
|
50 |
+
}
|
distil-whisper/events.out.tfevents.1714145337.5b80b70efc4b.1361.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ebd6793dc1ba85b2f069bd17de1942280f4b9541a5c2024f8a36f7d9d75bc80
|
3 |
+
size 12458
|
distil_whisper.sh
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
accelerate launch run_distillation.py \
|
4 |
+
--model_name_or_path "distil-whisper/distil-large-v3" \
|
5 |
+
--teacher_model_name_or_path "openai/whisper-large-v3" \
|
6 |
+
--train_dataset_name "litus-ai/common_voice_16_1_it_pseudo_labelled_whisper_large_v3+litus-ai/google_fleurs_it_pseudo_labelled_whisper_large_v3" \
|
7 |
+
--train_split_name "train+train" \
|
8 |
+
--train_dataset_config_name "it+it_it" \
|
9 |
+
--text_column_name "sentence+transcription" \
|
10 |
+
--eval_dataset_name "litus-ai/google_fleurs_it_pseudo_labelled_whisper_large_v3" \
|
11 |
+
--eval_split_name "test" \
|
12 |
+
--eval_dataset_config_name "it_it" \
|
13 |
+
--eval_text_column_name "transcription" \
|
14 |
+
--eval_steps 1000 \
|
15 |
+
--save_steps 1000 \
|
16 |
+
--warmup_steps 500 \
|
17 |
+
--learning_rate 0.0001 \
|
18 |
+
--lr_scheduler_type "constant_with_warmup" \
|
19 |
+
--timestamp_probability 0.2 \
|
20 |
+
--condition_on_prev_probability 0.2 \
|
21 |
+
--language "it" \
|
22 |
+
--task "transcribe" \
|
23 |
+
--logging_steps 25 \
|
24 |
+
--save_total_limit 1 \
|
25 |
+
--max_steps 25000 \
|
26 |
+
--wer_threshold 20 \
|
27 |
+
--per_device_train_batch_size 16 \
|
28 |
+
--per_device_eval_batch_size 16 \
|
29 |
+
--dataloader_num_workers 8 \
|
30 |
+
--preprocessing_num_workers 8 \
|
31 |
+
--ddp_timeout 7200 \
|
32 |
+
--dtype "bfloat16" \
|
33 |
+
--attn_implementation "sdpa" \
|
34 |
+
--output_dir "./" \
|
35 |
+
--do_train \
|
36 |
+
--do_eval \
|
37 |
+
--gradient_checkpointing \
|
38 |
+
--overwrite_output_dir \
|
39 |
+
--predict_with_generate \
|
40 |
+
--freeze_encoder \
|
41 |
+
--freeze_embed_positions \
|
42 |
+
--streaming False \
|
43 |
+
--push_to_hub
|
generation_config.json
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alignment_heads": [
|
3 |
+
[
|
4 |
+
1,
|
5 |
+
0
|
6 |
+
],
|
7 |
+
[
|
8 |
+
1,
|
9 |
+
1
|
10 |
+
],
|
11 |
+
[
|
12 |
+
1,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
[
|
16 |
+
1,
|
17 |
+
3
|
18 |
+
],
|
19 |
+
[
|
20 |
+
1,
|
21 |
+
4
|
22 |
+
],
|
23 |
+
[
|
24 |
+
1,
|
25 |
+
5
|
26 |
+
],
|
27 |
+
[
|
28 |
+
1,
|
29 |
+
6
|
30 |
+
],
|
31 |
+
[
|
32 |
+
1,
|
33 |
+
7
|
34 |
+
],
|
35 |
+
[
|
36 |
+
1,
|
37 |
+
8
|
38 |
+
],
|
39 |
+
[
|
40 |
+
1,
|
41 |
+
9
|
42 |
+
],
|
43 |
+
[
|
44 |
+
1,
|
45 |
+
10
|
46 |
+
],
|
47 |
+
[
|
48 |
+
1,
|
49 |
+
11
|
50 |
+
],
|
51 |
+
[
|
52 |
+
1,
|
53 |
+
12
|
54 |
+
],
|
55 |
+
[
|
56 |
+
1,
|
57 |
+
13
|
58 |
+
],
|
59 |
+
[
|
60 |
+
1,
|
61 |
+
14
|
62 |
+
],
|
63 |
+
[
|
64 |
+
1,
|
65 |
+
15
|
66 |
+
],
|
67 |
+
[
|
68 |
+
1,
|
69 |
+
16
|
70 |
+
],
|
71 |
+
[
|
72 |
+
1,
|
73 |
+
17
|
74 |
+
],
|
75 |
+
[
|
76 |
+
1,
|
77 |
+
18
|
78 |
+
],
|
79 |
+
[
|
80 |
+
1,
|
81 |
+
19
|
82 |
+
]
|
83 |
+
],
|
84 |
+
"begin_suppress_tokens": [
|
85 |
+
220,
|
86 |
+
50257
|
87 |
+
],
|
88 |
+
"bos_token_id": 50257,
|
89 |
+
"decoder_start_token_id": 50258,
|
90 |
+
"eos_token_id": 50257,
|
91 |
+
"forced_decoder_ids": [
|
92 |
+
[
|
93 |
+
1,
|
94 |
+
null
|
95 |
+
],
|
96 |
+
[
|
97 |
+
2,
|
98 |
+
50360
|
99 |
+
]
|
100 |
+
],
|
101 |
+
"is_multilingual": true,
|
102 |
+
"lang_to_id": {
|
103 |
+
"<|af|>": 50327,
|
104 |
+
"<|am|>": 50334,
|
105 |
+
"<|ar|>": 50272,
|
106 |
+
"<|as|>": 50350,
|
107 |
+
"<|az|>": 50304,
|
108 |
+
"<|ba|>": 50355,
|
109 |
+
"<|be|>": 50330,
|
110 |
+
"<|bg|>": 50292,
|
111 |
+
"<|bn|>": 50302,
|
112 |
+
"<|bo|>": 50347,
|
113 |
+
"<|br|>": 50309,
|
114 |
+
"<|bs|>": 50315,
|
115 |
+
"<|ca|>": 50270,
|
116 |
+
"<|cs|>": 50283,
|
117 |
+
"<|cy|>": 50297,
|
118 |
+
"<|da|>": 50285,
|
119 |
+
"<|de|>": 50261,
|
120 |
+
"<|el|>": 50281,
|
121 |
+
"<|en|>": 50259,
|
122 |
+
"<|es|>": 50262,
|
123 |
+
"<|et|>": 50307,
|
124 |
+
"<|eu|>": 50310,
|
125 |
+
"<|fa|>": 50300,
|
126 |
+
"<|fi|>": 50277,
|
127 |
+
"<|fo|>": 50338,
|
128 |
+
"<|fr|>": 50265,
|
129 |
+
"<|gl|>": 50319,
|
130 |
+
"<|gu|>": 50333,
|
131 |
+
"<|haw|>": 50352,
|
132 |
+
"<|ha|>": 50354,
|
133 |
+
"<|he|>": 50279,
|
134 |
+
"<|hi|>": 50276,
|
135 |
+
"<|hr|>": 50291,
|
136 |
+
"<|ht|>": 50339,
|
137 |
+
"<|hu|>": 50286,
|
138 |
+
"<|hy|>": 50312,
|
139 |
+
"<|id|>": 50275,
|
140 |
+
"<|is|>": 50311,
|
141 |
+
"<|it|>": 50274,
|
142 |
+
"<|ja|>": 50266,
|
143 |
+
"<|jw|>": 50356,
|
144 |
+
"<|ka|>": 50329,
|
145 |
+
"<|kk|>": 50316,
|
146 |
+
"<|km|>": 50323,
|
147 |
+
"<|kn|>": 50306,
|
148 |
+
"<|ko|>": 50264,
|
149 |
+
"<|la|>": 50294,
|
150 |
+
"<|lb|>": 50345,
|
151 |
+
"<|ln|>": 50353,
|
152 |
+
"<|lo|>": 50336,
|
153 |
+
"<|lt|>": 50293,
|
154 |
+
"<|lv|>": 50301,
|
155 |
+
"<|mg|>": 50349,
|
156 |
+
"<|mi|>": 50295,
|
157 |
+
"<|mk|>": 50308,
|
158 |
+
"<|ml|>": 50296,
|
159 |
+
"<|mn|>": 50314,
|
160 |
+
"<|mr|>": 50320,
|
161 |
+
"<|ms|>": 50282,
|
162 |
+
"<|mt|>": 50343,
|
163 |
+
"<|my|>": 50346,
|
164 |
+
"<|ne|>": 50313,
|
165 |
+
"<|nl|>": 50271,
|
166 |
+
"<|nn|>": 50342,
|
167 |
+
"<|no|>": 50288,
|
168 |
+
"<|oc|>": 50328,
|
169 |
+
"<|pa|>": 50321,
|
170 |
+
"<|pl|>": 50269,
|
171 |
+
"<|ps|>": 50340,
|
172 |
+
"<|pt|>": 50267,
|
173 |
+
"<|ro|>": 50284,
|
174 |
+
"<|ru|>": 50263,
|
175 |
+
"<|sa|>": 50344,
|
176 |
+
"<|sd|>": 50332,
|
177 |
+
"<|si|>": 50322,
|
178 |
+
"<|sk|>": 50298,
|
179 |
+
"<|sl|>": 50305,
|
180 |
+
"<|sn|>": 50324,
|
181 |
+
"<|so|>": 50326,
|
182 |
+
"<|sq|>": 50317,
|
183 |
+
"<|sr|>": 50303,
|
184 |
+
"<|su|>": 50357,
|
185 |
+
"<|sv|>": 50273,
|
186 |
+
"<|sw|>": 50318,
|
187 |
+
"<|ta|>": 50287,
|
188 |
+
"<|te|>": 50299,
|
189 |
+
"<|tg|>": 50331,
|
190 |
+
"<|th|>": 50289,
|
191 |
+
"<|tk|>": 50341,
|
192 |
+
"<|tl|>": 50348,
|
193 |
+
"<|tr|>": 50268,
|
194 |
+
"<|tt|>": 50351,
|
195 |
+
"<|uk|>": 50280,
|
196 |
+
"<|ur|>": 50290,
|
197 |
+
"<|uz|>": 50337,
|
198 |
+
"<|vi|>": 50278,
|
199 |
+
"<|yi|>": 50335,
|
200 |
+
"<|yo|>": 50325,
|
201 |
+
"<|yue|>": 50358,
|
202 |
+
"<|zh|>": 50260
|
203 |
+
},
|
204 |
+
"language": "it",
|
205 |
+
"max_initial_timestamp_index": 50,
|
206 |
+
"max_length": 448,
|
207 |
+
"no_timestamps_token_id": 50364,
|
208 |
+
"pad_token_id": 50257,
|
209 |
+
"prev_sot_token_id": 50362,
|
210 |
+
"return_timestamps": false,
|
211 |
+
"suppress_tokens": [
|
212 |
+
1,
|
213 |
+
2,
|
214 |
+
7,
|
215 |
+
8,
|
216 |
+
9,
|
217 |
+
10,
|
218 |
+
14,
|
219 |
+
25,
|
220 |
+
26,
|
221 |
+
27,
|
222 |
+
28,
|
223 |
+
29,
|
224 |
+
31,
|
225 |
+
58,
|
226 |
+
59,
|
227 |
+
60,
|
228 |
+
61,
|
229 |
+
62,
|
230 |
+
63,
|
231 |
+
90,
|
232 |
+
91,
|
233 |
+
92,
|
234 |
+
93,
|
235 |
+
359,
|
236 |
+
503,
|
237 |
+
522,
|
238 |
+
542,
|
239 |
+
873,
|
240 |
+
893,
|
241 |
+
902,
|
242 |
+
918,
|
243 |
+
922,
|
244 |
+
931,
|
245 |
+
1350,
|
246 |
+
1853,
|
247 |
+
1982,
|
248 |
+
2460,
|
249 |
+
2627,
|
250 |
+
3246,
|
251 |
+
3253,
|
252 |
+
3268,
|
253 |
+
3536,
|
254 |
+
3846,
|
255 |
+
3961,
|
256 |
+
4183,
|
257 |
+
4667,
|
258 |
+
6585,
|
259 |
+
6647,
|
260 |
+
7273,
|
261 |
+
9061,
|
262 |
+
9383,
|
263 |
+
10428,
|
264 |
+
10929,
|
265 |
+
11938,
|
266 |
+
12033,
|
267 |
+
12331,
|
268 |
+
12562,
|
269 |
+
13793,
|
270 |
+
14157,
|
271 |
+
14635,
|
272 |
+
15265,
|
273 |
+
15618,
|
274 |
+
16553,
|
275 |
+
16604,
|
276 |
+
18362,
|
277 |
+
18956,
|
278 |
+
20075,
|
279 |
+
21675,
|
280 |
+
22520,
|
281 |
+
26130,
|
282 |
+
26161,
|
283 |
+
26435,
|
284 |
+
28279,
|
285 |
+
29464,
|
286 |
+
31650,
|
287 |
+
32302,
|
288 |
+
32470,
|
289 |
+
36865,
|
290 |
+
42863,
|
291 |
+
47425,
|
292 |
+
49870,
|
293 |
+
50254,
|
294 |
+
50258,
|
295 |
+
50359,
|
296 |
+
50360,
|
297 |
+
50361,
|
298 |
+
50362,
|
299 |
+
50363
|
300 |
+
],
|
301 |
+
"task": "transcribe",
|
302 |
+
"task_to_id": {
|
303 |
+
"transcribe": 50360,
|
304 |
+
"translate": 50359
|
305 |
+
},
|
306 |
+
"transformers_version": "4.40.1"
|
307 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
normalizer.json
ADDED
@@ -0,0 +1,1742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"accessorise": "accessorize",
|
3 |
+
"accessorised": "accessorized",
|
4 |
+
"accessorises": "accessorizes",
|
5 |
+
"accessorising": "accessorizing",
|
6 |
+
"acclimatisation": "acclimatization",
|
7 |
+
"acclimatise": "acclimatize",
|
8 |
+
"acclimatised": "acclimatized",
|
9 |
+
"acclimatises": "acclimatizes",
|
10 |
+
"acclimatising": "acclimatizing",
|
11 |
+
"accoutrements": "accouterments",
|
12 |
+
"aeon": "eon",
|
13 |
+
"aeons": "eons",
|
14 |
+
"aerogramme": "aerogram",
|
15 |
+
"aerogrammes": "aerograms",
|
16 |
+
"aeroplane": "airplane",
|
17 |
+
"aeroplanes": "airplanes",
|
18 |
+
"aesthete": "esthete",
|
19 |
+
"aesthetes": "esthetes",
|
20 |
+
"aesthetic": "esthetic",
|
21 |
+
"aesthetically": "esthetically",
|
22 |
+
"aesthetics": "esthetics",
|
23 |
+
"aetiology": "etiology",
|
24 |
+
"ageing": "aging",
|
25 |
+
"aggrandisement": "aggrandizement",
|
26 |
+
"agonise": "agonize",
|
27 |
+
"agonised": "agonized",
|
28 |
+
"agonises": "agonizes",
|
29 |
+
"agonising": "agonizing",
|
30 |
+
"agonisingly": "agonizingly",
|
31 |
+
"almanack": "almanac",
|
32 |
+
"almanacks": "almanacs",
|
33 |
+
"aluminium": "aluminum",
|
34 |
+
"amortisable": "amortizable",
|
35 |
+
"amortisation": "amortization",
|
36 |
+
"amortisations": "amortizations",
|
37 |
+
"amortise": "amortize",
|
38 |
+
"amortised": "amortized",
|
39 |
+
"amortises": "amortizes",
|
40 |
+
"amortising": "amortizing",
|
41 |
+
"amphitheatre": "amphitheater",
|
42 |
+
"amphitheatres": "amphitheaters",
|
43 |
+
"anaemia": "anemia",
|
44 |
+
"anaemic": "anemic",
|
45 |
+
"anaesthesia": "anesthesia",
|
46 |
+
"anaesthetic": "anesthetic",
|
47 |
+
"anaesthetics": "anesthetics",
|
48 |
+
"anaesthetise": "anesthetize",
|
49 |
+
"anaesthetised": "anesthetized",
|
50 |
+
"anaesthetises": "anesthetizes",
|
51 |
+
"anaesthetising": "anesthetizing",
|
52 |
+
"anaesthetist": "anesthetist",
|
53 |
+
"anaesthetists": "anesthetists",
|
54 |
+
"anaesthetize": "anesthetize",
|
55 |
+
"anaesthetized": "anesthetized",
|
56 |
+
"anaesthetizes": "anesthetizes",
|
57 |
+
"anaesthetizing": "anesthetizing",
|
58 |
+
"analogue": "analog",
|
59 |
+
"analogues": "analogs",
|
60 |
+
"analyse": "analyze",
|
61 |
+
"analysed": "analyzed",
|
62 |
+
"analyses": "analyzes",
|
63 |
+
"analysing": "analyzing",
|
64 |
+
"anglicise": "anglicize",
|
65 |
+
"anglicised": "anglicized",
|
66 |
+
"anglicises": "anglicizes",
|
67 |
+
"anglicising": "anglicizing",
|
68 |
+
"annualised": "annualized",
|
69 |
+
"antagonise": "antagonize",
|
70 |
+
"antagonised": "antagonized",
|
71 |
+
"antagonises": "antagonizes",
|
72 |
+
"antagonising": "antagonizing",
|
73 |
+
"apologise": "apologize",
|
74 |
+
"apologised": "apologized",
|
75 |
+
"apologises": "apologizes",
|
76 |
+
"apologising": "apologizing",
|
77 |
+
"appal": "appall",
|
78 |
+
"appals": "appalls",
|
79 |
+
"appetiser": "appetizer",
|
80 |
+
"appetisers": "appetizers",
|
81 |
+
"appetising": "appetizing",
|
82 |
+
"appetisingly": "appetizingly",
|
83 |
+
"arbour": "arbor",
|
84 |
+
"arbours": "arbors",
|
85 |
+
"archaeologically": "archeologically",
|
86 |
+
"archaeologist": "archeologist",
|
87 |
+
"archaeologists": "archeologists",
|
88 |
+
"archaeology": "archeology</span>",
|
89 |
+
"archeological": "archaeological",
|
90 |
+
"ardour": "ardor",
|
91 |
+
"armour": "armor",
|
92 |
+
"armoured": "armored",
|
93 |
+
"armourer": "armorer",
|
94 |
+
"armourers": "armorers",
|
95 |
+
"armouries": "armories",
|
96 |
+
"armoury": "armory",
|
97 |
+
"artefact": "artifact",
|
98 |
+
"artefacts": "artifacts",
|
99 |
+
"authorise": "authorize",
|
100 |
+
"authorised": "authorized",
|
101 |
+
"authorises": "authorizes",
|
102 |
+
"authorising": "authorizing",
|
103 |
+
"axe": "ax",
|
104 |
+
"backpedalled": "backpedaled",
|
105 |
+
"backpedalling": "backpedaling",
|
106 |
+
"bannister": "banister",
|
107 |
+
"bannisters": "banisters",
|
108 |
+
"baptise": "baptize",
|
109 |
+
"baptised": "baptized",
|
110 |
+
"baptises": "baptizes",
|
111 |
+
"baptising": "baptizing",
|
112 |
+
"bastardise": "bastardize",
|
113 |
+
"bastardised": "bastardized",
|
114 |
+
"bastardises": "bastardizes",
|
115 |
+
"bastardising": "bastardizing",
|
116 |
+
"battleax": "battleaxe",
|
117 |
+
"baulk": "balk",
|
118 |
+
"baulked": "balked",
|
119 |
+
"baulking": "balking",
|
120 |
+
"baulks": "balks",
|
121 |
+
"bedevilled": "bedeviled",
|
122 |
+
"bedevilling": "bedeviling",
|
123 |
+
"behaviour": "behavior",
|
124 |
+
"behavioural": "behavioral",
|
125 |
+
"behaviourism": "behaviorism",
|
126 |
+
"behaviourist": "behaviorist",
|
127 |
+
"behaviourists": "behaviorists",
|
128 |
+
"behaviours": "behaviors",
|
129 |
+
"behove": "behoove",
|
130 |
+
"behoved": "behooved",
|
131 |
+
"behoves": "behooves",
|
132 |
+
"bejewelled": "bejeweled",
|
133 |
+
"belabour": "belabor",
|
134 |
+
"belaboured": "belabored",
|
135 |
+
"belabouring": "belaboring",
|
136 |
+
"belabours": "belabors",
|
137 |
+
"bevelled": "beveled",
|
138 |
+
"bevvies": "bevies",
|
139 |
+
"bevvy": "bevy",
|
140 |
+
"biassed": "biased",
|
141 |
+
"biassing": "biasing",
|
142 |
+
"bingeing": "binging",
|
143 |
+
"bougainvillaea": "bougainvillea",
|
144 |
+
"bougainvillaeas": "bougainvilleas",
|
145 |
+
"bowdlerise": "bowdlerize",
|
146 |
+
"bowdlerised": "bowdlerized",
|
147 |
+
"bowdlerises": "bowdlerizes",
|
148 |
+
"bowdlerising": "bowdlerizing",
|
149 |
+
"breathalyse": "breathalyze",
|
150 |
+
"breathalysed": "breathalyzed",
|
151 |
+
"breathalyser": "breathalyzer",
|
152 |
+
"breathalysers": "breathalyzers",
|
153 |
+
"breathalyses": "breathalyzes",
|
154 |
+
"breathalysing": "breathalyzing",
|
155 |
+
"brutalise": "brutalize",
|
156 |
+
"brutalised": "brutalized",
|
157 |
+
"brutalises": "brutalizes",
|
158 |
+
"brutalising": "brutalizing",
|
159 |
+
"busses": "buses",
|
160 |
+
"bussing": "busing",
|
161 |
+
"caesarean": "cesarean",
|
162 |
+
"caesareans": "cesareans",
|
163 |
+
"calibre": "caliber",
|
164 |
+
"calibres": "calibers",
|
165 |
+
"calliper": "caliper",
|
166 |
+
"callipers": "calipers",
|
167 |
+
"callisthenics": "calisthenics",
|
168 |
+
"canalise": "canalize",
|
169 |
+
"canalised": "canalized",
|
170 |
+
"canalises": "canalizes",
|
171 |
+
"canalising": "canalizing",
|
172 |
+
"cancelation": "cancellation",
|
173 |
+
"cancelations": "cancellations",
|
174 |
+
"cancelled": "canceled",
|
175 |
+
"cancelling": "canceling",
|
176 |
+
"candour": "candor",
|
177 |
+
"cannibalise": "cannibalize",
|
178 |
+
"cannibalised": "cannibalized",
|
179 |
+
"cannibalises": "cannibalizes",
|
180 |
+
"cannibalising": "cannibalizing",
|
181 |
+
"canonise": "canonize",
|
182 |
+
"canonised": "canonized",
|
183 |
+
"canonises": "canonizes",
|
184 |
+
"canonising": "canonizing",
|
185 |
+
"capitalise": "capitalize",
|
186 |
+
"capitalised": "capitalized",
|
187 |
+
"capitalises": "capitalizes",
|
188 |
+
"capitalising": "capitalizing",
|
189 |
+
"caramelise": "caramelize",
|
190 |
+
"caramelised": "caramelized",
|
191 |
+
"caramelises": "caramelizes",
|
192 |
+
"caramelising": "caramelizing",
|
193 |
+
"carbonise": "carbonize",
|
194 |
+
"carbonised": "carbonized",
|
195 |
+
"carbonises": "carbonizes",
|
196 |
+
"carbonising": "carbonizing",
|
197 |
+
"carolled": "caroled",
|
198 |
+
"carolling": "caroling",
|
199 |
+
"catalogue": "catalog",
|
200 |
+
"catalogued": "cataloged",
|
201 |
+
"catalogues": "catalogs",
|
202 |
+
"cataloguing": "cataloging",
|
203 |
+
"catalyse": "catalyze",
|
204 |
+
"catalysed": "catalyzed",
|
205 |
+
"catalyses": "catalyzes",
|
206 |
+
"catalysing": "catalyzing",
|
207 |
+
"categorise": "categorize",
|
208 |
+
"categorised": "categorized",
|
209 |
+
"categorises": "categorizes",
|
210 |
+
"categorising": "categorizing",
|
211 |
+
"cauterise": "cauterize",
|
212 |
+
"cauterised": "cauterized",
|
213 |
+
"cauterises": "cauterizes",
|
214 |
+
"cauterising": "cauterizing",
|
215 |
+
"cavilled": "caviled",
|
216 |
+
"cavilling": "caviling",
|
217 |
+
"centigramme": "centigram",
|
218 |
+
"centigrammes": "centigrams",
|
219 |
+
"centilitre": "centiliter",
|
220 |
+
"centilitres": "centiliters",
|
221 |
+
"centimetre": "centimeter",
|
222 |
+
"centimetres": "centimeters",
|
223 |
+
"centralise": "centralize",
|
224 |
+
"centralised": "centralized",
|
225 |
+
"centralises": "centralizes",
|
226 |
+
"centralising": "centralizing",
|
227 |
+
"centre": "center",
|
228 |
+
"centred": "centered",
|
229 |
+
"centrefold": "centerfold",
|
230 |
+
"centrefolds": "centerfolds",
|
231 |
+
"centrepiece": "centerpiece",
|
232 |
+
"centrepieces": "centerpieces",
|
233 |
+
"centres": "centers",
|
234 |
+
"channelled": "channeled",
|
235 |
+
"channelling": "channeling",
|
236 |
+
"characterise": "characterize",
|
237 |
+
"characterised": "characterized",
|
238 |
+
"characterises": "characterizes",
|
239 |
+
"characterising": "characterizing",
|
240 |
+
"cheque": "check",
|
241 |
+
"chequebook": "checkbook",
|
242 |
+
"chequebooks": "checkbooks",
|
243 |
+
"chequered": "checkered",
|
244 |
+
"cheques": "checks",
|
245 |
+
"chilli": "chili",
|
246 |
+
"chimaera": "chimera",
|
247 |
+
"chimaeras": "chimeras",
|
248 |
+
"chiselled": "chiseled",
|
249 |
+
"chiselling": "chiseling",
|
250 |
+
"circularise": "circularize",
|
251 |
+
"circularised": "circularized",
|
252 |
+
"circularises": "circularizes",
|
253 |
+
"circularising": "circularizing",
|
254 |
+
"civilise": "civilize",
|
255 |
+
"civilised": "civilized",
|
256 |
+
"civilises": "civilizes",
|
257 |
+
"civilising": "civilizing",
|
258 |
+
"clamour": "clamor",
|
259 |
+
"clamoured": "clamored",
|
260 |
+
"clamouring": "clamoring",
|
261 |
+
"clamours": "clamors",
|
262 |
+
"clangour": "clangor",
|
263 |
+
"clarinettist": "clarinetist",
|
264 |
+
"clarinettists": "clarinetists",
|
265 |
+
"collectivise": "collectivize",
|
266 |
+
"collectivised": "collectivized",
|
267 |
+
"collectivises": "collectivizes",
|
268 |
+
"collectivising": "collectivizing",
|
269 |
+
"colonisation": "colonization",
|
270 |
+
"colonise": "colonize",
|
271 |
+
"colonised": "colonized",
|
272 |
+
"coloniser": "colonizer",
|
273 |
+
"colonisers": "colonizers",
|
274 |
+
"colonises": "colonizes",
|
275 |
+
"colonising": "colonizing",
|
276 |
+
"colour": "color",
|
277 |
+
"colourant": "colorant",
|
278 |
+
"colourants": "colorants",
|
279 |
+
"coloured": "colored",
|
280 |
+
"coloureds": "coloreds",
|
281 |
+
"colourful": "colorful",
|
282 |
+
"colourfully": "colorfully",
|
283 |
+
"colouring": "coloring",
|
284 |
+
"colourize": "colorize",
|
285 |
+
"colourized": "colorized",
|
286 |
+
"colourizes": "colorizes",
|
287 |
+
"colourizing": "colorizing",
|
288 |
+
"colourless": "colorless",
|
289 |
+
"colours": "colors",
|
290 |
+
"commercialise": "commercialize",
|
291 |
+
"commercialised": "commercialized",
|
292 |
+
"commercialises": "commercializes",
|
293 |
+
"commercialising": "commercializing",
|
294 |
+
"compartmentalise": "compartmentalize",
|
295 |
+
"compartmentalised": "compartmentalized",
|
296 |
+
"compartmentalises": "compartmentalizes",
|
297 |
+
"compartmentalising": "compartmentalizing",
|
298 |
+
"computerise": "computerize",
|
299 |
+
"computerised": "computerized",
|
300 |
+
"computerises": "computerizes",
|
301 |
+
"computerising": "computerizing",
|
302 |
+
"conceptualise": "conceptualize",
|
303 |
+
"conceptualised": "conceptualized",
|
304 |
+
"conceptualises": "conceptualizes",
|
305 |
+
"conceptualising": "conceptualizing",
|
306 |
+
"connexion": "connection",
|
307 |
+
"connexions": "connections",
|
308 |
+
"contextualise": "contextualize",
|
309 |
+
"contextualised": "contextualized",
|
310 |
+
"contextualises": "contextualizes",
|
311 |
+
"contextualising": "contextualizing",
|
312 |
+
"cosier": "cozier",
|
313 |
+
"cosies": "cozies",
|
314 |
+
"cosiest": "coziest",
|
315 |
+
"cosily": "cozily",
|
316 |
+
"cosiness": "coziness",
|
317 |
+
"cosy": "cozy",
|
318 |
+
"councillor": "councilor",
|
319 |
+
"councillors": "councilors",
|
320 |
+
"counselled": "counseled",
|
321 |
+
"counselling": "counseling",
|
322 |
+
"counsellor": "counselor",
|
323 |
+
"counsellors": "counselors",
|
324 |
+
"crenelated": "crenellated",
|
325 |
+
"criminalise": "criminalize",
|
326 |
+
"criminalised": "criminalized",
|
327 |
+
"criminalises": "criminalizes",
|
328 |
+
"criminalising": "criminalizing",
|
329 |
+
"criticise": "criticize",
|
330 |
+
"criticised": "criticized",
|
331 |
+
"criticises": "criticizes",
|
332 |
+
"criticising": "criticizing",
|
333 |
+
"crueller": "crueler",
|
334 |
+
"cruellest": "cruelest",
|
335 |
+
"crystallisation": "crystallization",
|
336 |
+
"crystallise": "crystallize",
|
337 |
+
"crystallised": "crystallized",
|
338 |
+
"crystallises": "crystallizes",
|
339 |
+
"crystallising": "crystallizing",
|
340 |
+
"cudgelled": "cudgeled",
|
341 |
+
"cudgelling": "cudgeling",
|
342 |
+
"customise": "customize",
|
343 |
+
"customised": "customized",
|
344 |
+
"customises": "customizes",
|
345 |
+
"customising": "customizing",
|
346 |
+
"cypher": "cipher",
|
347 |
+
"cyphers": "ciphers",
|
348 |
+
"decentralisation": "decentralization",
|
349 |
+
"decentralise": "decentralize",
|
350 |
+
"decentralised": "decentralized",
|
351 |
+
"decentralises": "decentralizes",
|
352 |
+
"decentralising": "decentralizing",
|
353 |
+
"decriminalisation": "decriminalization",
|
354 |
+
"decriminalise": "decriminalize",
|
355 |
+
"decriminalised": "decriminalized",
|
356 |
+
"decriminalises": "decriminalizes",
|
357 |
+
"decriminalising": "decriminalizing",
|
358 |
+
"defence": "defense",
|
359 |
+
"defenceless": "defenseless",
|
360 |
+
"defences": "defenses",
|
361 |
+
"dehumanisation": "dehumanization",
|
362 |
+
"dehumanise": "dehumanize",
|
363 |
+
"dehumanised": "dehumanized",
|
364 |
+
"dehumanises": "dehumanizes",
|
365 |
+
"dehumanising": "dehumanizing",
|
366 |
+
"demeanour": "demeanor",
|
367 |
+
"demilitarisation": "demilitarization",
|
368 |
+
"demilitarise": "demilitarize",
|
369 |
+
"demilitarised": "demilitarized",
|
370 |
+
"demilitarises": "demilitarizes",
|
371 |
+
"demilitarising": "demilitarizing",
|
372 |
+
"demobilisation": "demobilization",
|
373 |
+
"demobilise": "demobilize",
|
374 |
+
"demobilised": "demobilized",
|
375 |
+
"demobilises": "demobilizes",
|
376 |
+
"demobilising": "demobilizing",
|
377 |
+
"democratisation": "democratization",
|
378 |
+
"democratise": "democratize",
|
379 |
+
"democratised": "democratized",
|
380 |
+
"democratises": "democratizes",
|
381 |
+
"democratising": "democratizing",
|
382 |
+
"demonise": "demonize",
|
383 |
+
"demonised": "demonized",
|
384 |
+
"demonises": "demonizes",
|
385 |
+
"demonising": "demonizing",
|
386 |
+
"demoralisation": "demoralization",
|
387 |
+
"demoralise": "demoralize",
|
388 |
+
"demoralised": "demoralized",
|
389 |
+
"demoralises": "demoralizes",
|
390 |
+
"demoralising": "demoralizing",
|
391 |
+
"denationalisation": "denationalization",
|
392 |
+
"denationalise": "denationalize",
|
393 |
+
"denationalised": "denationalized",
|
394 |
+
"denationalises": "denationalizes",
|
395 |
+
"denationalising": "denationalizing",
|
396 |
+
"deodorise": "deodorize",
|
397 |
+
"deodorised": "deodorized",
|
398 |
+
"deodorises": "deodorizes",
|
399 |
+
"deodorising": "deodorizing",
|
400 |
+
"depersonalise": "depersonalize",
|
401 |
+
"depersonalised": "depersonalized",
|
402 |
+
"depersonalises": "depersonalizes",
|
403 |
+
"depersonalising": "depersonalizing",
|
404 |
+
"deputise": "deputize",
|
405 |
+
"deputised": "deputized",
|
406 |
+
"deputises": "deputizes",
|
407 |
+
"deputising": "deputizing",
|
408 |
+
"desensitisation": "desensitization",
|
409 |
+
"desensitise": "desensitize",
|
410 |
+
"desensitised": "desensitized",
|
411 |
+
"desensitises": "desensitizes",
|
412 |
+
"desensitising": "desensitizing",
|
413 |
+
"destabilisation": "destabilization",
|
414 |
+
"destabilise": "destabilize",
|
415 |
+
"destabilised": "destabilized",
|
416 |
+
"destabilises": "destabilizes",
|
417 |
+
"destabilising": "destabilizing",
|
418 |
+
"dialled": "dialed",
|
419 |
+
"dialling": "dialing",
|
420 |
+
"dialogue": "dialog",
|
421 |
+
"dialogues": "dialogs",
|
422 |
+
"diarrhoea": "diarrhea",
|
423 |
+
"digitise": "digitize",
|
424 |
+
"digitised": "digitized",
|
425 |
+
"digitises": "digitizes",
|
426 |
+
"digitising": "digitizing",
|
427 |
+
"disc": "disk",
|
428 |
+
"discolour": "discolor",
|
429 |
+
"discoloured": "discolored",
|
430 |
+
"discolouring": "discoloring",
|
431 |
+
"discolours": "discolors",
|
432 |
+
"discs": "disks",
|
433 |
+
"disembowelled": "disemboweled",
|
434 |
+
"disembowelling": "disemboweling",
|
435 |
+
"disfavour": "disfavor",
|
436 |
+
"dishevelled": "disheveled",
|
437 |
+
"dishonour": "dishonor",
|
438 |
+
"dishonourable": "dishonorable",
|
439 |
+
"dishonourably": "dishonorably",
|
440 |
+
"dishonoured": "dishonored",
|
441 |
+
"dishonouring": "dishonoring",
|
442 |
+
"dishonours": "dishonors",
|
443 |
+
"disorganisation": "disorganization",
|
444 |
+
"disorganised": "disorganized",
|
445 |
+
"distil": "distill",
|
446 |
+
"distils": "distills",
|
447 |
+
"dramatisation": "dramatization",
|
448 |
+
"dramatisations": "dramatizations",
|
449 |
+
"dramatise": "dramatize",
|
450 |
+
"dramatised": "dramatized",
|
451 |
+
"dramatises": "dramatizes",
|
452 |
+
"dramatising": "dramatizing",
|
453 |
+
"draught": "draft",
|
454 |
+
"draughtboard": "draftboard",
|
455 |
+
"draughtboards": "draftboards",
|
456 |
+
"draughtier": "draftier",
|
457 |
+
"draughtiest": "draftiest",
|
458 |
+
"draughts": "drafts",
|
459 |
+
"draughtsman": "draftsman",
|
460 |
+
"draughtsmanship": "draftsmanship",
|
461 |
+
"draughtsmen": "draftsmen",
|
462 |
+
"draughtswoman": "draftswoman",
|
463 |
+
"draughtswomen": "draftswomen",
|
464 |
+
"draughty": "drafty",
|
465 |
+
"drivelled": "driveled",
|
466 |
+
"drivelling": "driveling",
|
467 |
+
"duelled": "dueled",
|
468 |
+
"duelling": "dueling",
|
469 |
+
"economise": "economize",
|
470 |
+
"economised": "economized",
|
471 |
+
"economises": "economizes",
|
472 |
+
"economising": "economizing",
|
473 |
+
"editorialise": "editorialize",
|
474 |
+
"editorialised": "editorialized",
|
475 |
+
"editorialises": "editorializes",
|
476 |
+
"editorialising": "editorializing",
|
477 |
+
"edoema": "edema",
|
478 |
+
"empathise": "empathize",
|
479 |
+
"empathised": "empathized",
|
480 |
+
"empathises": "empathizes",
|
481 |
+
"empathising": "empathizing",
|
482 |
+
"emphasise": "emphasize",
|
483 |
+
"emphasised": "emphasized",
|
484 |
+
"emphasises": "emphasizes",
|
485 |
+
"emphasising": "emphasizing",
|
486 |
+
"enamelled": "enameled",
|
487 |
+
"enamelling": "enameling",
|
488 |
+
"enamoured": "enamored",
|
489 |
+
"encyclopaedia": "encyclopedia",
|
490 |
+
"encyclopaedias": "encyclopedias",
|
491 |
+
"encyclopaedic": "encyclopedic",
|
492 |
+
"endeavour": "endeavor",
|
493 |
+
"endeavoured": "endeavored",
|
494 |
+
"endeavouring": "endeavoring",
|
495 |
+
"endeavours": "endeavors",
|
496 |
+
"energise": "energize",
|
497 |
+
"energised": "energized",
|
498 |
+
"energises": "energizes",
|
499 |
+
"energising": "energizing",
|
500 |
+
"enrol": "enroll",
|
501 |
+
"enrols": "enrolls",
|
502 |
+
"enthral": "enthrall",
|
503 |
+
"enthrals": "enthralls",
|
504 |
+
"epaulette": "epaulet",
|
505 |
+
"epaulettes": "epaulets",
|
506 |
+
"epicentre": "epicenter",
|
507 |
+
"epicentres": "epicenters",
|
508 |
+
"epilogue": "epilog",
|
509 |
+
"epilogues": "epilogs",
|
510 |
+
"epitomise": "epitomize",
|
511 |
+
"epitomised": "epitomized",
|
512 |
+
"epitomises": "epitomizes",
|
513 |
+
"epitomising": "epitomizing",
|
514 |
+
"equalisation": "equalization",
|
515 |
+
"equalise": "equalize",
|
516 |
+
"equalised": "equalized",
|
517 |
+
"equaliser": "equalizer",
|
518 |
+
"equalisers": "equalizers",
|
519 |
+
"equalises": "equalizes",
|
520 |
+
"equalising": "equalizing",
|
521 |
+
"eulogise": "eulogize",
|
522 |
+
"eulogised": "eulogized",
|
523 |
+
"eulogises": "eulogizes",
|
524 |
+
"eulogising": "eulogizing",
|
525 |
+
"evangelise": "evangelize",
|
526 |
+
"evangelised": "evangelized",
|
527 |
+
"evangelises": "evangelizes",
|
528 |
+
"evangelising": "evangelizing",
|
529 |
+
"exorcise": "exorcize",
|
530 |
+
"exorcised": "exorcized",
|
531 |
+
"exorcises": "exorcizes",
|
532 |
+
"exorcising": "exorcizing",
|
533 |
+
"extemporisation": "extemporization",
|
534 |
+
"extemporise": "extemporize",
|
535 |
+
"extemporised": "extemporized",
|
536 |
+
"extemporises": "extemporizes",
|
537 |
+
"extemporising": "extemporizing",
|
538 |
+
"externalisation": "externalization",
|
539 |
+
"externalisations": "externalizations",
|
540 |
+
"externalise": "externalize",
|
541 |
+
"externalised": "externalized",
|
542 |
+
"externalises": "externalizes",
|
543 |
+
"externalising": "externalizing",
|
544 |
+
"factorise": "factorize",
|
545 |
+
"factorised": "factorized",
|
546 |
+
"factorises": "factorizes",
|
547 |
+
"factorising": "factorizing",
|
548 |
+
"faecal": "fecal",
|
549 |
+
"faeces": "feces",
|
550 |
+
"familiarisation": "familiarization",
|
551 |
+
"familiarise": "familiarize",
|
552 |
+
"familiarised": "familiarized",
|
553 |
+
"familiarises": "familiarizes",
|
554 |
+
"familiarising": "familiarizing",
|
555 |
+
"fantasise": "fantasize",
|
556 |
+
"fantasised": "fantasized",
|
557 |
+
"fantasises": "fantasizes",
|
558 |
+
"fantasising": "fantasizing",
|
559 |
+
"favour": "favor",
|
560 |
+
"favourable": "favorable",
|
561 |
+
"favourably": "favorably",
|
562 |
+
"favoured": "favored",
|
563 |
+
"favouring": "favoring",
|
564 |
+
"favourite": "favorite",
|
565 |
+
"favourites": "favorites",
|
566 |
+
"favouritism": "favoritism",
|
567 |
+
"favours": "favors",
|
568 |
+
"feminise": "feminize",
|
569 |
+
"feminised": "feminized",
|
570 |
+
"feminises": "feminizes",
|
571 |
+
"feminising": "feminizing",
|
572 |
+
"fertilisation": "fertilization",
|
573 |
+
"fertilise": "fertilize",
|
574 |
+
"fertilised": "fertilized",
|
575 |
+
"fertiliser": "fertilizer",
|
576 |
+
"fertilisers": "fertilizers",
|
577 |
+
"fertilises": "fertilizes",
|
578 |
+
"fertilising": "fertilizing",
|
579 |
+
"fervour": "fervor",
|
580 |
+
"fibre": "fiber",
|
581 |
+
"fibreglass": "fiberglass",
|
582 |
+
"fibres": "fibers",
|
583 |
+
"fictionalisation": "fictionalization",
|
584 |
+
"fictionalisations": "fictionalizations",
|
585 |
+
"fictionalise": "fictionalize",
|
586 |
+
"fictionalised": "fictionalized",
|
587 |
+
"fictionalises": "fictionalizes",
|
588 |
+
"fictionalising": "fictionalizing",
|
589 |
+
"fillet": "filet",
|
590 |
+
"filleted": "fileted",
|
591 |
+
"filleting": "fileting",
|
592 |
+
"fillets": "filets",
|
593 |
+
"finalisation": "finalization",
|
594 |
+
"finalise": "finalize",
|
595 |
+
"finalised": "finalized",
|
596 |
+
"finalises": "finalizes",
|
597 |
+
"finalising": "finalizing",
|
598 |
+
"flautist": "flutist",
|
599 |
+
"flautists": "flutists",
|
600 |
+
"flavour": "flavor",
|
601 |
+
"flavoured": "flavored",
|
602 |
+
"flavouring": "flavoring",
|
603 |
+
"flavourings": "flavorings",
|
604 |
+
"flavourless": "flavorless",
|
605 |
+
"flavours": "flavors",
|
606 |
+
"flavoursome": "flavorsome",
|
607 |
+
"flyer / flier": "flier / flyer",
|
608 |
+
"foetal": "fetal",
|
609 |
+
"foetid": "fetid",
|
610 |
+
"foetus": "fetus",
|
611 |
+
"foetuses": "fetuses",
|
612 |
+
"formalisation": "formalization",
|
613 |
+
"formalise": "formalize",
|
614 |
+
"formalised": "formalized",
|
615 |
+
"formalises": "formalizes",
|
616 |
+
"formalising": "formalizing",
|
617 |
+
"fossilisation": "fossilization",
|
618 |
+
"fossilise": "fossilize",
|
619 |
+
"fossilised": "fossilized",
|
620 |
+
"fossilises": "fossilizes",
|
621 |
+
"fossilising": "fossilizing",
|
622 |
+
"fraternisation": "fraternization",
|
623 |
+
"fraternise": "fraternize",
|
624 |
+
"fraternised": "fraternized",
|
625 |
+
"fraternises": "fraternizes",
|
626 |
+
"fraternising": "fraternizing",
|
627 |
+
"fulfil": "fulfill",
|
628 |
+
"fulfilment": "fulfillment",
|
629 |
+
"fulfils": "fulfills",
|
630 |
+
"funnelled": "funneled",
|
631 |
+
"funnelling": "funneling",
|
632 |
+
"gage": "gauge",
|
633 |
+
"gaged": "gauged",
|
634 |
+
"gages": "gauges",
|
635 |
+
"gaging": "gauging",
|
636 |
+
"galvanise": "galvanize",
|
637 |
+
"galvanised": "galvanized",
|
638 |
+
"galvanises": "galvanizes",
|
639 |
+
"galvanising": "galvanizing",
|
640 |
+
"gambolled": "gamboled",
|
641 |
+
"gambolling": "gamboling",
|
642 |
+
"gaol": "jail",
|
643 |
+
"gaolbird": "jailbird",
|
644 |
+
"gaolbirds": "jailbirds",
|
645 |
+
"gaolbreak": "jailbreak",
|
646 |
+
"gaolbreaks": "jailbreaks",
|
647 |
+
"gaoled": "jailed",
|
648 |
+
"gaoler": "jailer",
|
649 |
+
"gaolers": "jailers",
|
650 |
+
"gaoling": "jailing",
|
651 |
+
"gaols": "jails",
|
652 |
+
"gasses": "gases",
|
653 |
+
"generalisation": "generalization",
|
654 |
+
"generalisations": "generalizations",
|
655 |
+
"generalise": "generalize",
|
656 |
+
"generalised": "generalized",
|
657 |
+
"generalises": "generalizes",
|
658 |
+
"generalising": "generalizing",
|
659 |
+
"ghettoise": "ghettoize",
|
660 |
+
"ghettoised": "ghettoized",
|
661 |
+
"ghettoises": "ghettoizes",
|
662 |
+
"ghettoising": "ghettoizing",
|
663 |
+
"gipsies": "gypsies",
|
664 |
+
"glamor": "glamour",
|
665 |
+
"glamorise": "glamorize",
|
666 |
+
"glamorised": "glamorized",
|
667 |
+
"glamorises": "glamorizes",
|
668 |
+
"glamorising": "glamorizing",
|
669 |
+
"globalisation": "globalization",
|
670 |
+
"globalise": "globalize",
|
671 |
+
"globalised": "globalized",
|
672 |
+
"globalises": "globalizes",
|
673 |
+
"globalising": "globalizing",
|
674 |
+
"glueing": "gluing",
|
675 |
+
"goitre": "goiter",
|
676 |
+
"goitres": "goiters",
|
677 |
+
"gonorrhoea": "gonorrhea",
|
678 |
+
"gramme": "gram",
|
679 |
+
"grammes": "grams",
|
680 |
+
"gravelled": "graveled",
|
681 |
+
"grey": "gray",
|
682 |
+
"greyed": "grayed",
|
683 |
+
"greying": "graying",
|
684 |
+
"greyish": "grayish",
|
685 |
+
"greyness": "grayness",
|
686 |
+
"greys": "grays",
|
687 |
+
"grovelled": "groveled",
|
688 |
+
"grovelling": "groveling",
|
689 |
+
"groyne": "groin",
|
690 |
+
"groynes": "groins",
|
691 |
+
"gruelling": "grueling",
|
692 |
+
"gruellingly": "gruelingly",
|
693 |
+
"gryphon": "griffin",
|
694 |
+
"gryphons": "griffins",
|
695 |
+
"gynaecological": "gynecological",
|
696 |
+
"gynaecologist": "gynecologist",
|
697 |
+
"gynaecologists": "gynecologists",
|
698 |
+
"gynaecology": "gynecology",
|
699 |
+
"haematological": "hematological",
|
700 |
+
"haematologist": "hematologist",
|
701 |
+
"haematologists": "hematologists",
|
702 |
+
"haematology": "hematology",
|
703 |
+
"haemoglobin": "hemoglobin",
|
704 |
+
"haemophilia": "hemophilia",
|
705 |
+
"haemophiliac": "hemophiliac",
|
706 |
+
"haemophiliacs": "hemophiliacs",
|
707 |
+
"haemorrhage": "hemorrhage",
|
708 |
+
"haemorrhaged": "hemorrhaged",
|
709 |
+
"haemorrhages": "hemorrhages",
|
710 |
+
"haemorrhaging": "hemorrhaging",
|
711 |
+
"haemorrhoids": "hemorrhoids",
|
712 |
+
"harbour": "harbor",
|
713 |
+
"harboured": "harbored",
|
714 |
+
"harbouring": "harboring",
|
715 |
+
"harbours": "harbors",
|
716 |
+
"harmonisation": "harmonization",
|
717 |
+
"harmonise": "harmonize",
|
718 |
+
"harmonised": "harmonized",
|
719 |
+
"harmonises": "harmonizes",
|
720 |
+
"harmonising": "harmonizing",
|
721 |
+
"homoeopath": "homeopath",
|
722 |
+
"homoeopathic": "homeopathic",
|
723 |
+
"homoeopaths": "homeopaths",
|
724 |
+
"homoeopathy": "homeopathy",
|
725 |
+
"homogenise": "homogenize",
|
726 |
+
"homogenised": "homogenized",
|
727 |
+
"homogenises": "homogenizes",
|
728 |
+
"homogenising": "homogenizing",
|
729 |
+
"honour": "honor",
|
730 |
+
"honourable": "honorable",
|
731 |
+
"honourably": "honorably",
|
732 |
+
"honoured": "honored",
|
733 |
+
"honouring": "honoring",
|
734 |
+
"honours": "honors",
|
735 |
+
"hospitalisation": "hospitalization",
|
736 |
+
"hospitalise": "hospitalize",
|
737 |
+
"hospitalised": "hospitalized",
|
738 |
+
"hospitalises": "hospitalizes",
|
739 |
+
"hospitalising": "hospitalizing",
|
740 |
+
"humanise": "humanize",
|
741 |
+
"humanised": "humanized",
|
742 |
+
"humanises": "humanizes",
|
743 |
+
"humanising": "humanizing",
|
744 |
+
"humour": "humor",
|
745 |
+
"humoured": "humored",
|
746 |
+
"humouring": "humoring",
|
747 |
+
"humourless": "humorless",
|
748 |
+
"humours": "humors",
|
749 |
+
"hybridise": "hybridize",
|
750 |
+
"hybridised": "hybridized",
|
751 |
+
"hybridises": "hybridizes",
|
752 |
+
"hybridising": "hybridizing",
|
753 |
+
"hypnotise": "hypnotize",
|
754 |
+
"hypnotised": "hypnotized",
|
755 |
+
"hypnotises": "hypnotizes",
|
756 |
+
"hypnotising": "hypnotizing",
|
757 |
+
"hypothesise": "hypothesize",
|
758 |
+
"hypothesised": "hypothesized",
|
759 |
+
"hypothesises": "hypothesizes",
|
760 |
+
"hypothesising": "hypothesizing",
|
761 |
+
"idealisation": "idealization",
|
762 |
+
"idealise": "idealize",
|
763 |
+
"idealised": "idealized",
|
764 |
+
"idealises": "idealizes",
|
765 |
+
"idealising": "idealizing",
|
766 |
+
"idolise": "idolize",
|
767 |
+
"idolised": "idolized",
|
768 |
+
"idolises": "idolizes",
|
769 |
+
"idolising": "idolizing",
|
770 |
+
"immobilisation": "immobilization",
|
771 |
+
"immobilise": "immobilize",
|
772 |
+
"immobilised": "immobilized",
|
773 |
+
"immobiliser": "immobilizer",
|
774 |
+
"immobilisers": "immobilizers",
|
775 |
+
"immobilises": "immobilizes",
|
776 |
+
"immobilising": "immobilizing",
|
777 |
+
"immortalise": "immortalize",
|
778 |
+
"immortalised": "immortalized",
|
779 |
+
"immortalises": "immortalizes",
|
780 |
+
"immortalising": "immortalizing",
|
781 |
+
"immunisation": "immunization",
|
782 |
+
"immunise": "immunize",
|
783 |
+
"immunised": "immunized",
|
784 |
+
"immunises": "immunizes",
|
785 |
+
"immunising": "immunizing",
|
786 |
+
"impanelled": "impaneled",
|
787 |
+
"impanelling": "impaneling",
|
788 |
+
"imperilled": "imperiled",
|
789 |
+
"imperilling": "imperiling",
|
790 |
+
"individualise": "individualize",
|
791 |
+
"individualised": "individualized",
|
792 |
+
"individualises": "individualizes",
|
793 |
+
"individualising": "individualizing",
|
794 |
+
"industrialise": "industrialize",
|
795 |
+
"industrialised": "industrialized",
|
796 |
+
"industrialises": "industrializes",
|
797 |
+
"industrialising": "industrializing",
|
798 |
+
"inflexion": "inflection",
|
799 |
+
"inflexions": "inflections",
|
800 |
+
"initialise": "initialize",
|
801 |
+
"initialised": "initialized",
|
802 |
+
"initialises": "initializes",
|
803 |
+
"initialising": "initializing",
|
804 |
+
"initialled": "initialed",
|
805 |
+
"initialling": "initialing",
|
806 |
+
"instal": "install",
|
807 |
+
"instalment": "installment",
|
808 |
+
"instalments": "installments",
|
809 |
+
"instals": "installs",
|
810 |
+
"instil": "instill",
|
811 |
+
"instils": "instills",
|
812 |
+
"institutionalisation": "institutionalization",
|
813 |
+
"institutionalise": "institutionalize",
|
814 |
+
"institutionalised": "institutionalized",
|
815 |
+
"institutionalises": "institutionalizes",
|
816 |
+
"institutionalising": "institutionalizing",
|
817 |
+
"intellectualise": "intellectualize",
|
818 |
+
"intellectualised": "intellectualized",
|
819 |
+
"intellectualises": "intellectualizes",
|
820 |
+
"intellectualising": "intellectualizing",
|
821 |
+
"internalisation": "internalization",
|
822 |
+
"internalise": "internalize",
|
823 |
+
"internalised": "internalized",
|
824 |
+
"internalises": "internalizes",
|
825 |
+
"internalising": "internalizing",
|
826 |
+
"internationalisation": "internationalization",
|
827 |
+
"internationalise": "internationalize",
|
828 |
+
"internationalised": "internationalized",
|
829 |
+
"internationalises": "internationalizes",
|
830 |
+
"internationalising": "internationalizing",
|
831 |
+
"ionisation": "ionization",
|
832 |
+
"ionise": "ionize",
|
833 |
+
"ionised": "ionized",
|
834 |
+
"ioniser": "ionizer",
|
835 |
+
"ionisers": "ionizers",
|
836 |
+
"ionises": "ionizes",
|
837 |
+
"ionising": "ionizing",
|
838 |
+
"italicise": "italicize",
|
839 |
+
"italicised": "italicized",
|
840 |
+
"italicises": "italicizes",
|
841 |
+
"italicising": "italicizing",
|
842 |
+
"itemise": "itemize",
|
843 |
+
"itemised": "itemized",
|
844 |
+
"itemises": "itemizes",
|
845 |
+
"itemising": "itemizing",
|
846 |
+
"jeopardise": "jeopardize",
|
847 |
+
"jeopardised": "jeopardized",
|
848 |
+
"jeopardises": "jeopardizes",
|
849 |
+
"jeopardising": "jeopardizing",
|
850 |
+
"jewelled": "jeweled",
|
851 |
+
"jeweller": "jeweler",
|
852 |
+
"jewellers": "jewelers",
|
853 |
+
"jewellery": "jewelry",
|
854 |
+
"judgement": "judgment",
|
855 |
+
"kilogramme": "kilogram",
|
856 |
+
"kilogrammes": "kilograms",
|
857 |
+
"kilometre": "kilometer",
|
858 |
+
"kilometres": "kilometers",
|
859 |
+
"labelled": "labeled",
|
860 |
+
"labelling": "labeling",
|
861 |
+
"labour": "labor",
|
862 |
+
"laboured": "labored",
|
863 |
+
"labourer": "laborer",
|
864 |
+
"labourers": "laborers",
|
865 |
+
"labouring": "laboring",
|
866 |
+
"labours": "labors",
|
867 |
+
"lacklustre": "lackluster",
|
868 |
+
"legalisation": "legalization",
|
869 |
+
"legalise": "legalize",
|
870 |
+
"legalised": "legalized",
|
871 |
+
"legalises": "legalizes",
|
872 |
+
"legalising": "legalizing",
|
873 |
+
"legitimise": "legitimize",
|
874 |
+
"legitimised": "legitimized",
|
875 |
+
"legitimises": "legitimizes",
|
876 |
+
"legitimising": "legitimizing",
|
877 |
+
"leukaemia": "leukemia",
|
878 |
+
"levelled": "leveled",
|
879 |
+
"leveller": "leveler",
|
880 |
+
"levellers": "levelers",
|
881 |
+
"levelling": "leveling",
|
882 |
+
"libelled": "libeled",
|
883 |
+
"libelling": "libeling",
|
884 |
+
"libellous": "libelous",
|
885 |
+
"liberalisation": "liberalization",
|
886 |
+
"liberalise": "liberalize",
|
887 |
+
"liberalised": "liberalized",
|
888 |
+
"liberalises": "liberalizes",
|
889 |
+
"liberalising": "liberalizing",
|
890 |
+
"licence": "license",
|
891 |
+
"licenced": "licensed",
|
892 |
+
"licences": "licenses",
|
893 |
+
"licencing": "licensing",
|
894 |
+
"likeable": "likable",
|
895 |
+
"lionisation": "lionization",
|
896 |
+
"lionise": "lionize",
|
897 |
+
"lionised": "lionized",
|
898 |
+
"lionises": "lionizes",
|
899 |
+
"lionising": "lionizing",
|
900 |
+
"liquidise": "liquidize",
|
901 |
+
"liquidised": "liquidized",
|
902 |
+
"liquidiser": "liquidizer",
|
903 |
+
"liquidisers": "liquidizers",
|
904 |
+
"liquidises": "liquidizes",
|
905 |
+
"liquidising": "liquidizing",
|
906 |
+
"litre": "liter",
|
907 |
+
"litres": "liters",
|
908 |
+
"localise": "localize",
|
909 |
+
"localised": "localized",
|
910 |
+
"localises": "localizes",
|
911 |
+
"localising": "localizing",
|
912 |
+
"louvre": "louver",
|
913 |
+
"louvred": "louvered",
|
914 |
+
"louvres": "louvers",
|
915 |
+
"lustre": "luster",
|
916 |
+
"magnetise": "magnetize",
|
917 |
+
"magnetised": "magnetized",
|
918 |
+
"magnetises": "magnetizes",
|
919 |
+
"magnetising": "magnetizing",
|
920 |
+
"manoeuvrability": "maneuverability",
|
921 |
+
"manoeuvrable": "maneuverable",
|
922 |
+
"manoeuvre": "maneuver",
|
923 |
+
"manoeuvred": "maneuvered",
|
924 |
+
"manoeuvres": "maneuvers",
|
925 |
+
"manoeuvring": "maneuvering",
|
926 |
+
"manoeuvrings": "maneuverings",
|
927 |
+
"marginalisation": "marginalization",
|
928 |
+
"marginalise": "marginalize",
|
929 |
+
"marginalised": "marginalized",
|
930 |
+
"marginalises": "marginalizes",
|
931 |
+
"marginalising": "marginalizing",
|
932 |
+
"marshalled": "marshaled",
|
933 |
+
"marshalling": "marshaling",
|
934 |
+
"marvelled": "marveled",
|
935 |
+
"marvelling": "marveling",
|
936 |
+
"marvellous": "marvelous",
|
937 |
+
"marvellously": "marvelously",
|
938 |
+
"materialisation": "materialization",
|
939 |
+
"materialise": "materialize",
|
940 |
+
"materialised": "materialized",
|
941 |
+
"materialises": "materializes",
|
942 |
+
"materialising": "materializing",
|
943 |
+
"maximisation": "maximization",
|
944 |
+
"maximise": "maximize",
|
945 |
+
"maximised": "maximized",
|
946 |
+
"maximises": "maximizes",
|
947 |
+
"maximising": "maximizing",
|
948 |
+
"meagre": "meager",
|
949 |
+
"mechanisation": "mechanization",
|
950 |
+
"mechanise": "mechanize",
|
951 |
+
"mechanised": "mechanized",
|
952 |
+
"mechanises": "mechanizes",
|
953 |
+
"mechanising": "mechanizing",
|
954 |
+
"mediaeval": "medieval",
|
955 |
+
"memorialise": "memorialize",
|
956 |
+
"memorialised": "memorialized",
|
957 |
+
"memorialises": "memorializes",
|
958 |
+
"memorialising": "memorializing",
|
959 |
+
"memorise": "memorize",
|
960 |
+
"memorised": "memorized",
|
961 |
+
"memorises": "memorizes",
|
962 |
+
"memorising": "memorizing",
|
963 |
+
"mesmerise": "mesmerize",
|
964 |
+
"mesmerised": "mesmerized",
|
965 |
+
"mesmerises": "mesmerizes",
|
966 |
+
"mesmerising": "mesmerizing",
|
967 |
+
"metabolise": "metabolize",
|
968 |
+
"metabolised": "metabolized",
|
969 |
+
"metabolises": "metabolizes",
|
970 |
+
"metabolising": "metabolizing",
|
971 |
+
"metre": "meter",
|
972 |
+
"metres": "meters",
|
973 |
+
"mhm": "hmm",
|
974 |
+
"micrometre": "micrometer",
|
975 |
+
"micrometres": "micrometers",
|
976 |
+
"militarise": "militarize",
|
977 |
+
"militarised": "militarized",
|
978 |
+
"militarises": "militarizes",
|
979 |
+
"militarising": "militarizing",
|
980 |
+
"milligramme": "milligram",
|
981 |
+
"milligrammes": "milligrams",
|
982 |
+
"millilitre": "milliliter",
|
983 |
+
"millilitres": "milliliters",
|
984 |
+
"millimetre": "millimeter",
|
985 |
+
"millimetres": "millimeters",
|
986 |
+
"miniaturisation": "miniaturization",
|
987 |
+
"miniaturise": "miniaturize",
|
988 |
+
"miniaturised": "miniaturized",
|
989 |
+
"miniaturises": "miniaturizes",
|
990 |
+
"miniaturising": "miniaturizing",
|
991 |
+
"minibusses": "minibuses",
|
992 |
+
"minimise": "minimize",
|
993 |
+
"minimised": "minimized",
|
994 |
+
"minimises": "minimizes",
|
995 |
+
"minimising": "minimizing",
|
996 |
+
"misbehaviour": "misbehavior",
|
997 |
+
"misdemeanour": "misdemeanor",
|
998 |
+
"misdemeanours": "misdemeanors",
|
999 |
+
"misspelt": "misspelled",
|
1000 |
+
"mitre": "miter",
|
1001 |
+
"mitres": "miters",
|
1002 |
+
"mm": "hmm",
|
1003 |
+
"mmm": "hmm",
|
1004 |
+
"mobilisation": "mobilization",
|
1005 |
+
"mobilise": "mobilize",
|
1006 |
+
"mobilised": "mobilized",
|
1007 |
+
"mobilises": "mobilizes",
|
1008 |
+
"mobilising": "mobilizing",
|
1009 |
+
"modelled": "modeled",
|
1010 |
+
"modeller": "modeler",
|
1011 |
+
"modellers": "modelers",
|
1012 |
+
"modelling": "modeling",
|
1013 |
+
"modernise": "modernize",
|
1014 |
+
"modernised": "modernized",
|
1015 |
+
"modernises": "modernizes",
|
1016 |
+
"modernising": "modernizing",
|
1017 |
+
"moisturise": "moisturize",
|
1018 |
+
"moisturised": "moisturized",
|
1019 |
+
"moisturiser": "moisturizer",
|
1020 |
+
"moisturisers": "moisturizers",
|
1021 |
+
"moisturises": "moisturizes",
|
1022 |
+
"moisturising": "moisturizing",
|
1023 |
+
"monologue": "monolog",
|
1024 |
+
"monologues": "monologs",
|
1025 |
+
"monopolisation": "monopolization",
|
1026 |
+
"monopolise": "monopolize",
|
1027 |
+
"monopolised": "monopolized",
|
1028 |
+
"monopolises": "monopolizes",
|
1029 |
+
"monopolising": "monopolizing",
|
1030 |
+
"moralise": "moralize",
|
1031 |
+
"moralised": "moralized",
|
1032 |
+
"moralises": "moralizes",
|
1033 |
+
"moralising": "moralizing",
|
1034 |
+
"motorised": "motorized",
|
1035 |
+
"mould": "mold",
|
1036 |
+
"moulded": "molded",
|
1037 |
+
"moulder": "molder",
|
1038 |
+
"mouldered": "moldered",
|
1039 |
+
"mouldering": "moldering",
|
1040 |
+
"moulders": "molders",
|
1041 |
+
"mouldier": "moldier",
|
1042 |
+
"mouldiest": "moldiest",
|
1043 |
+
"moulding": "molding",
|
1044 |
+
"mouldings": "moldings",
|
1045 |
+
"moulds": "molds",
|
1046 |
+
"mouldy": "moldy",
|
1047 |
+
"moult": "molt",
|
1048 |
+
"moulted": "molted",
|
1049 |
+
"moulting": "molting",
|
1050 |
+
"moults": "molts",
|
1051 |
+
"moustache": "mustache",
|
1052 |
+
"moustached": "mustached",
|
1053 |
+
"moustaches": "mustaches",
|
1054 |
+
"moustachioed": "mustachioed",
|
1055 |
+
"multicoloured": "multicolored",
|
1056 |
+
"nationalisation": "nationalization",
|
1057 |
+
"nationalisations": "nationalizations",
|
1058 |
+
"nationalise": "nationalize",
|
1059 |
+
"nationalised": "nationalized",
|
1060 |
+
"nationalises": "nationalizes",
|
1061 |
+
"nationalising": "nationalizing",
|
1062 |
+
"naturalisation": "naturalization",
|
1063 |
+
"naturalise": "naturalize",
|
1064 |
+
"naturalised": "naturalized",
|
1065 |
+
"naturalises": "naturalizes",
|
1066 |
+
"naturalising": "naturalizing",
|
1067 |
+
"neighbour": "neighbor",
|
1068 |
+
"neighbourhood": "neighborhood",
|
1069 |
+
"neighbourhoods": "neighborhoods",
|
1070 |
+
"neighbouring": "neighboring",
|
1071 |
+
"neighbourliness": "neighborliness",
|
1072 |
+
"neighbourly": "neighborly",
|
1073 |
+
"neighbours": "neighbors",
|
1074 |
+
"neutralisation": "neutralization",
|
1075 |
+
"neutralise": "neutralize",
|
1076 |
+
"neutralised": "neutralized",
|
1077 |
+
"neutralises": "neutralizes",
|
1078 |
+
"neutralising": "neutralizing",
|
1079 |
+
"normalisation": "normalization",
|
1080 |
+
"normalise": "normalize",
|
1081 |
+
"normalised": "normalized",
|
1082 |
+
"normalises": "normalizes",
|
1083 |
+
"normalising": "normalizing",
|
1084 |
+
"odour": "odor",
|
1085 |
+
"odourless": "odorless",
|
1086 |
+
"odours": "odors",
|
1087 |
+
"oesophagus": "esophagus",
|
1088 |
+
"oesophaguses": "esophaguses",
|
1089 |
+
"oestrogen": "estrogen",
|
1090 |
+
"offence": "offense",
|
1091 |
+
"offences": "offenses",
|
1092 |
+
"omelette": "omelet",
|
1093 |
+
"omelettes": "omelets",
|
1094 |
+
"optimise": "optimize",
|
1095 |
+
"optimised": "optimized",
|
1096 |
+
"optimises": "optimizes",
|
1097 |
+
"optimising": "optimizing",
|
1098 |
+
"organisation": "organization",
|
1099 |
+
"organisational": "organizational",
|
1100 |
+
"organisations": "organizations",
|
1101 |
+
"organise": "organize",
|
1102 |
+
"organised": "organized",
|
1103 |
+
"organiser": "organizer",
|
1104 |
+
"organisers": "organizers",
|
1105 |
+
"organises": "organizes",
|
1106 |
+
"organising": "organizing",
|
1107 |
+
"orthopaedic": "orthopedic",
|
1108 |
+
"orthopaedics": "orthopedics",
|
1109 |
+
"ostracise": "ostracize",
|
1110 |
+
"ostracised": "ostracized",
|
1111 |
+
"ostracises": "ostracizes",
|
1112 |
+
"ostracising": "ostracizing",
|
1113 |
+
"outmanoeuvre": "outmaneuver",
|
1114 |
+
"outmanoeuvred": "outmaneuvered",
|
1115 |
+
"outmanoeuvres": "outmaneuvers",
|
1116 |
+
"outmanoeuvring": "outmaneuvering",
|
1117 |
+
"overemphasise": "overemphasize",
|
1118 |
+
"overemphasised": "overemphasized",
|
1119 |
+
"overemphasises": "overemphasizes",
|
1120 |
+
"overemphasising": "overemphasizing",
|
1121 |
+
"oxidisation": "oxidization",
|
1122 |
+
"oxidise": "oxidize",
|
1123 |
+
"oxidised": "oxidized",
|
1124 |
+
"oxidises": "oxidizes",
|
1125 |
+
"oxidising": "oxidizing",
|
1126 |
+
"paederast": "pederast",
|
1127 |
+
"paederasts": "pederasts",
|
1128 |
+
"paediatric": "pediatric",
|
1129 |
+
"paediatrician": "pediatrician",
|
1130 |
+
"paediatricians": "pediatricians",
|
1131 |
+
"paediatrics": "pediatrics",
|
1132 |
+
"paedophile": "pedophile",
|
1133 |
+
"paedophiles": "pedophiles",
|
1134 |
+
"paedophilia": "pedophilia",
|
1135 |
+
"palaeolithic": "paleolithic",
|
1136 |
+
"palaeontologist": "paleontologist",
|
1137 |
+
"palaeontologists": "paleontologists",
|
1138 |
+
"palaeontology": "paleontology",
|
1139 |
+
"panelled": "paneled",
|
1140 |
+
"panelling": "paneling",
|
1141 |
+
"panellist": "panelist",
|
1142 |
+
"panellists": "panelists",
|
1143 |
+
"paralyse": "paralyze",
|
1144 |
+
"paralysed": "paralyzed",
|
1145 |
+
"paralyses": "paralyzes",
|
1146 |
+
"paralysing": "paralyzing",
|
1147 |
+
"parcelled": "parceled",
|
1148 |
+
"parcelling": "parceling",
|
1149 |
+
"parlour": "parlor",
|
1150 |
+
"parlours": "parlors",
|
1151 |
+
"particularise": "particularize",
|
1152 |
+
"particularised": "particularized",
|
1153 |
+
"particularises": "particularizes",
|
1154 |
+
"particularising": "particularizing",
|
1155 |
+
"passivisation": "passivization",
|
1156 |
+
"passivise": "passivize",
|
1157 |
+
"passivised": "passivized",
|
1158 |
+
"passivises": "passivizes",
|
1159 |
+
"passivising": "passivizing",
|
1160 |
+
"pasteurisation": "pasteurization",
|
1161 |
+
"pasteurise": "pasteurize",
|
1162 |
+
"pasteurised": "pasteurized",
|
1163 |
+
"pasteurises": "pasteurizes",
|
1164 |
+
"pasteurising": "pasteurizing",
|
1165 |
+
"patronise": "patronize",
|
1166 |
+
"patronised": "patronized",
|
1167 |
+
"patronises": "patronizes",
|
1168 |
+
"patronising": "patronizing",
|
1169 |
+
"patronisingly": "patronizingly",
|
1170 |
+
"pedalled": "pedaled",
|
1171 |
+
"pedalling": "pedaling",
|
1172 |
+
"pedestrianisation": "pedestrianization",
|
1173 |
+
"pedestrianise": "pedestrianize",
|
1174 |
+
"pedestrianised": "pedestrianized",
|
1175 |
+
"pedestrianises": "pedestrianizes",
|
1176 |
+
"pedestrianising": "pedestrianizing",
|
1177 |
+
"penalise": "penalize",
|
1178 |
+
"penalised": "penalized",
|
1179 |
+
"penalises": "penalizes",
|
1180 |
+
"penalising": "penalizing",
|
1181 |
+
"pencilled": "penciled",
|
1182 |
+
"pencilling": "penciling",
|
1183 |
+
"personalise": "personalize",
|
1184 |
+
"personalised": "personalized",
|
1185 |
+
"personalises": "personalizes",
|
1186 |
+
"personalising": "personalizing",
|
1187 |
+
"pharmacopoeia": "pharmacopeia",
|
1188 |
+
"pharmacopoeias": "pharmacopeias",
|
1189 |
+
"philosophise": "philosophize",
|
1190 |
+
"philosophised": "philosophized",
|
1191 |
+
"philosophises": "philosophizes",
|
1192 |
+
"philosophising": "philosophizing",
|
1193 |
+
"philtre": "filter",
|
1194 |
+
"philtres": "filters",
|
1195 |
+
"phoney": "phony",
|
1196 |
+
"plagiarise": "plagiarize",
|
1197 |
+
"plagiarised": "plagiarized",
|
1198 |
+
"plagiarises": "plagiarizes",
|
1199 |
+
"plagiarising": "plagiarizing",
|
1200 |
+
"plough": "plow",
|
1201 |
+
"ploughed": "plowed",
|
1202 |
+
"ploughing": "plowing",
|
1203 |
+
"ploughman": "plowman",
|
1204 |
+
"ploughmen": "plowmen",
|
1205 |
+
"ploughs": "plows",
|
1206 |
+
"ploughshare": "plowshare",
|
1207 |
+
"ploughshares": "plowshares",
|
1208 |
+
"polarisation": "polarization",
|
1209 |
+
"polarise": "polarize",
|
1210 |
+
"polarised": "polarized",
|
1211 |
+
"polarises": "polarizes",
|
1212 |
+
"polarising": "polarizing",
|
1213 |
+
"politicisation": "politicization",
|
1214 |
+
"politicise": "politicize",
|
1215 |
+
"politicised": "politicized",
|
1216 |
+
"politicises": "politicizes",
|
1217 |
+
"politicising": "politicizing",
|
1218 |
+
"popularisation": "popularization",
|
1219 |
+
"popularise": "popularize",
|
1220 |
+
"popularised": "popularized",
|
1221 |
+
"popularises": "popularizes",
|
1222 |
+
"popularising": "popularizing",
|
1223 |
+
"pouffe": "pouf",
|
1224 |
+
"pouffes": "poufs",
|
1225 |
+
"practise": "practice",
|
1226 |
+
"practised": "practiced",
|
1227 |
+
"practises": "practices",
|
1228 |
+
"practising": "practicing",
|
1229 |
+
"praesidium": "presidium",
|
1230 |
+
"praesidiums": "presidiums",
|
1231 |
+
"pressurisation": "pressurization",
|
1232 |
+
"pressurise": "pressurize",
|
1233 |
+
"pressurised": "pressurized",
|
1234 |
+
"pressurises": "pressurizes",
|
1235 |
+
"pressurising": "pressurizing",
|
1236 |
+
"pretence": "pretense",
|
1237 |
+
"pretences": "pretenses",
|
1238 |
+
"primaeval": "primeval",
|
1239 |
+
"prioritisation": "prioritization",
|
1240 |
+
"prioritise": "prioritize",
|
1241 |
+
"prioritised": "prioritized",
|
1242 |
+
"prioritises": "prioritizes",
|
1243 |
+
"prioritising": "prioritizing",
|
1244 |
+
"privatisation": "privatization",
|
1245 |
+
"privatisations": "privatizations",
|
1246 |
+
"privatise": "privatize",
|
1247 |
+
"privatised": "privatized",
|
1248 |
+
"privatises": "privatizes",
|
1249 |
+
"privatising": "privatizing",
|
1250 |
+
"professionalisation": "professionalization",
|
1251 |
+
"professionalise": "professionalize",
|
1252 |
+
"professionalised": "professionalized",
|
1253 |
+
"professionalises": "professionalizes",
|
1254 |
+
"professionalising": "professionalizing",
|
1255 |
+
"programme": "program",
|
1256 |
+
"programmes": "programs",
|
1257 |
+
"prologue": "prolog",
|
1258 |
+
"prologues": "prologs",
|
1259 |
+
"propagandise": "propagandize",
|
1260 |
+
"propagandised": "propagandized",
|
1261 |
+
"propagandises": "propagandizes",
|
1262 |
+
"propagandising": "propagandizing",
|
1263 |
+
"proselytise": "proselytize",
|
1264 |
+
"proselytised": "proselytized",
|
1265 |
+
"proselytiser": "proselytizer",
|
1266 |
+
"proselytisers": "proselytizers",
|
1267 |
+
"proselytises": "proselytizes",
|
1268 |
+
"proselytising": "proselytizing",
|
1269 |
+
"psychoanalyse": "psychoanalyze",
|
1270 |
+
"psychoanalysed": "psychoanalyzed",
|
1271 |
+
"psychoanalyses": "psychoanalyzes",
|
1272 |
+
"psychoanalysing": "psychoanalyzing",
|
1273 |
+
"publicise": "publicize",
|
1274 |
+
"publicised": "publicized",
|
1275 |
+
"publicises": "publicizes",
|
1276 |
+
"publicising": "publicizing",
|
1277 |
+
"pulverisation": "pulverization",
|
1278 |
+
"pulverise": "pulverize",
|
1279 |
+
"pulverised": "pulverized",
|
1280 |
+
"pulverises": "pulverizes",
|
1281 |
+
"pulverising": "pulverizing",
|
1282 |
+
"pummelled": "pummel",
|
1283 |
+
"pummelling": "pummeled",
|
1284 |
+
"pyjama": "pajama",
|
1285 |
+
"pyjamas": "pajamas",
|
1286 |
+
"pzazz": "pizzazz",
|
1287 |
+
"quarrelled": "quarreled",
|
1288 |
+
"quarrelling": "quarreling",
|
1289 |
+
"radicalise": "radicalize",
|
1290 |
+
"radicalised": "radicalized",
|
1291 |
+
"radicalises": "radicalizes",
|
1292 |
+
"radicalising": "radicalizing",
|
1293 |
+
"rancour": "rancor",
|
1294 |
+
"randomise": "randomize",
|
1295 |
+
"randomised": "randomized",
|
1296 |
+
"randomises": "randomizes",
|
1297 |
+
"randomising": "randomizing",
|
1298 |
+
"rationalisation": "rationalization",
|
1299 |
+
"rationalisations": "rationalizations",
|
1300 |
+
"rationalise": "rationalize",
|
1301 |
+
"rationalised": "rationalized",
|
1302 |
+
"rationalises": "rationalizes",
|
1303 |
+
"rationalising": "rationalizing",
|
1304 |
+
"ravelled": "raveled",
|
1305 |
+
"ravelling": "raveling",
|
1306 |
+
"realisable": "realizable",
|
1307 |
+
"realisation": "realization",
|
1308 |
+
"realisations": "realizations",
|
1309 |
+
"realise": "realize",
|
1310 |
+
"realised": "realized",
|
1311 |
+
"realises": "realizes",
|
1312 |
+
"realising": "realizing",
|
1313 |
+
"recognisable": "recognizable",
|
1314 |
+
"recognisably": "recognizably",
|
1315 |
+
"recognisance": "recognizance",
|
1316 |
+
"recognise": "recognize",
|
1317 |
+
"recognised": "recognized",
|
1318 |
+
"recognises": "recognizes",
|
1319 |
+
"recognising": "recognizing",
|
1320 |
+
"reconnoitre": "reconnoiter",
|
1321 |
+
"reconnoitred": "reconnoitered",
|
1322 |
+
"reconnoitres": "reconnoiters",
|
1323 |
+
"reconnoitring": "reconnoitering",
|
1324 |
+
"refuelled": "refueled",
|
1325 |
+
"refuelling": "refueling",
|
1326 |
+
"regularisation": "regularization",
|
1327 |
+
"regularise": "regularize",
|
1328 |
+
"regularised": "regularized",
|
1329 |
+
"regularises": "regularizes",
|
1330 |
+
"regularising": "regularizing",
|
1331 |
+
"remodelled": "remodeled",
|
1332 |
+
"remodelling": "remodeling",
|
1333 |
+
"remould": "remold",
|
1334 |
+
"remoulded": "remolded",
|
1335 |
+
"remoulding": "remolding",
|
1336 |
+
"remoulds": "remolds",
|
1337 |
+
"reorganisation": "reorganization",
|
1338 |
+
"reorganisations": "reorganizations",
|
1339 |
+
"reorganise": "reorganize",
|
1340 |
+
"reorganised": "reorganized",
|
1341 |
+
"reorganises": "reorganizes",
|
1342 |
+
"reorganising": "reorganizing",
|
1343 |
+
"revelled": "reveled",
|
1344 |
+
"reveller": "reveler",
|
1345 |
+
"revellers": "revelers",
|
1346 |
+
"revelling": "reveling",
|
1347 |
+
"revitalise": "revitalize",
|
1348 |
+
"revitalised": "revitalized",
|
1349 |
+
"revitalises": "revitalizes",
|
1350 |
+
"revitalising": "revitalizing",
|
1351 |
+
"revolutionise": "revolutionize",
|
1352 |
+
"revolutionised": "revolutionized",
|
1353 |
+
"revolutionises": "revolutionizes",
|
1354 |
+
"revolutionising": "revolutionizing",
|
1355 |
+
"rhapsodise": "rhapsodize",
|
1356 |
+
"rhapsodised": "rhapsodized",
|
1357 |
+
"rhapsodises": "rhapsodizes",
|
1358 |
+
"rhapsodising": "rhapsodizing",
|
1359 |
+
"rigour": "rigor",
|
1360 |
+
"rigours": "rigors",
|
1361 |
+
"ritualised": "ritualized",
|
1362 |
+
"rivalled": "rivaled",
|
1363 |
+
"rivalling": "rivaling",
|
1364 |
+
"romanticise": "romanticize",
|
1365 |
+
"romanticised": "romanticized",
|
1366 |
+
"romanticises": "romanticizes",
|
1367 |
+
"romanticising": "romanticizing",
|
1368 |
+
"rumour": "rumor",
|
1369 |
+
"rumoured": "rumored",
|
1370 |
+
"rumours": "rumors",
|
1371 |
+
"sabre": "saber",
|
1372 |
+
"sabres": "sabers",
|
1373 |
+
"saltpetre": "saltpeter",
|
1374 |
+
"sanitise": "sanitize",
|
1375 |
+
"sanitised": "sanitized",
|
1376 |
+
"sanitises": "sanitizes",
|
1377 |
+
"sanitising": "sanitizing",
|
1378 |
+
"satirise": "satirize",
|
1379 |
+
"satirised": "satirized",
|
1380 |
+
"satirises": "satirizes",
|
1381 |
+
"satirising": "satirizing",
|
1382 |
+
"saviour": "savior",
|
1383 |
+
"saviours": "saviors",
|
1384 |
+
"savour": "savor",
|
1385 |
+
"savoured": "savored",
|
1386 |
+
"savouries": "savories",
|
1387 |
+
"savouring": "savoring",
|
1388 |
+
"savours": "savors",
|
1389 |
+
"savoury": "savory",
|
1390 |
+
"scandalise": "scandalize",
|
1391 |
+
"scandalised": "scandalized",
|
1392 |
+
"scandalises": "scandalizes",
|
1393 |
+
"scandalising": "scandalizing",
|
1394 |
+
"sceptic": "skeptic",
|
1395 |
+
"sceptical": "skeptical",
|
1396 |
+
"sceptically": "skeptically",
|
1397 |
+
"scepticism": "skepticism",
|
1398 |
+
"sceptics": "skeptics",
|
1399 |
+
"sceptre": "scepter",
|
1400 |
+
"sceptres": "scepters",
|
1401 |
+
"scrutinise": "scrutinize",
|
1402 |
+
"scrutinised": "scrutinized",
|
1403 |
+
"scrutinises": "scrutinizes",
|
1404 |
+
"scrutinising": "scrutinizing",
|
1405 |
+
"secularisation": "secularization",
|
1406 |
+
"secularise": "secularize",
|
1407 |
+
"secularised": "secularized",
|
1408 |
+
"secularises": "secularizes",
|
1409 |
+
"secularising": "secularizing",
|
1410 |
+
"sensationalise": "sensationalize",
|
1411 |
+
"sensationalised": "sensationalized",
|
1412 |
+
"sensationalises": "sensationalizes",
|
1413 |
+
"sensationalising": "sensationalizing",
|
1414 |
+
"sensitise": "sensitize",
|
1415 |
+
"sensitised": "sensitized",
|
1416 |
+
"sensitises": "sensitizes",
|
1417 |
+
"sensitising": "sensitizing",
|
1418 |
+
"sentimentalise": "sentimentalize",
|
1419 |
+
"sentimentalised": "sentimentalized",
|
1420 |
+
"sentimentalises": "sentimentalizes",
|
1421 |
+
"sentimentalising": "sentimentalizing",
|
1422 |
+
"sepulchre": "sepulcher",
|
1423 |
+
"sepulchres": "sepulchers",
|
1424 |
+
"serialisation": "serialization",
|
1425 |
+
"serialisations": "serializations",
|
1426 |
+
"serialise": "serialize",
|
1427 |
+
"serialised": "serialized",
|
1428 |
+
"serialises": "serializes",
|
1429 |
+
"serialising": "serializing",
|
1430 |
+
"sermonise": "sermonize",
|
1431 |
+
"sermonised": "sermonized",
|
1432 |
+
"sermonises": "sermonizes",
|
1433 |
+
"sermonising": "sermonizing",
|
1434 |
+
"sheikh": "sheik",
|
1435 |
+
"shovelled": "shoveled",
|
1436 |
+
"shovelling": "shoveling",
|
1437 |
+
"shrivelled": "shriveled",
|
1438 |
+
"shrivelling": "shriveling",
|
1439 |
+
"signalise": "signalize",
|
1440 |
+
"signalised": "signalized",
|
1441 |
+
"signalises": "signalizes",
|
1442 |
+
"signalising": "signalizing",
|
1443 |
+
"signalled": "signaled",
|
1444 |
+
"signalling": "signaling",
|
1445 |
+
"smoulder": "smolder",
|
1446 |
+
"smouldered": "smoldered",
|
1447 |
+
"smouldering": "smoldering",
|
1448 |
+
"smoulders": "smolders",
|
1449 |
+
"snivelled": "sniveled",
|
1450 |
+
"snivelling": "sniveling",
|
1451 |
+
"snorkelled": "snorkeled",
|
1452 |
+
"snorkelling": "snorkeling",
|
1453 |
+
"snowplough": "snowplow",
|
1454 |
+
"snowploughs": "snowplow",
|
1455 |
+
"socialisation": "socialization",
|
1456 |
+
"socialise": "socialize",
|
1457 |
+
"socialised": "socialized",
|
1458 |
+
"socialises": "socializes",
|
1459 |
+
"socialising": "socializing",
|
1460 |
+
"sodomise": "sodomize",
|
1461 |
+
"sodomised": "sodomized",
|
1462 |
+
"sodomises": "sodomizes",
|
1463 |
+
"sodomising": "sodomizing",
|
1464 |
+
"solemnise": "solemnize",
|
1465 |
+
"solemnised": "solemnized",
|
1466 |
+
"solemnises": "solemnizes",
|
1467 |
+
"solemnising": "solemnizing",
|
1468 |
+
"sombre": "somber",
|
1469 |
+
"specialisation": "specialization",
|
1470 |
+
"specialisations": "specializations",
|
1471 |
+
"specialise": "specialize",
|
1472 |
+
"specialised": "specialized",
|
1473 |
+
"specialises": "specializes",
|
1474 |
+
"specialising": "specializing",
|
1475 |
+
"spectre": "specter",
|
1476 |
+
"spectres": "specters",
|
1477 |
+
"spiralled": "spiraled",
|
1478 |
+
"spiralling": "spiraling",
|
1479 |
+
"splendour": "splendor",
|
1480 |
+
"splendours": "splendors",
|
1481 |
+
"squirrelled": "squirreled",
|
1482 |
+
"squirrelling": "squirreling",
|
1483 |
+
"stabilisation": "stabilization",
|
1484 |
+
"stabilise": "stabilize",
|
1485 |
+
"stabilised": "stabilized",
|
1486 |
+
"stabiliser": "stabilizer",
|
1487 |
+
"stabilisers": "stabilizers",
|
1488 |
+
"stabilises": "stabilizes",
|
1489 |
+
"stabilising": "stabilizing",
|
1490 |
+
"standardisation": "standardization",
|
1491 |
+
"standardise": "standardize",
|
1492 |
+
"standardised": "standardized",
|
1493 |
+
"standardises": "standardizes",
|
1494 |
+
"standardising": "standardizing",
|
1495 |
+
"stencilled": "stenciled",
|
1496 |
+
"stencilling": "stenciling",
|
1497 |
+
"sterilisation": "sterilization",
|
1498 |
+
"sterilisations": "sterilizations",
|
1499 |
+
"sterilise": "sterilize",
|
1500 |
+
"sterilised": "sterilized",
|
1501 |
+
"steriliser": "sterilizer",
|
1502 |
+
"sterilisers": "sterilizers",
|
1503 |
+
"sterilises": "sterilizes",
|
1504 |
+
"sterilising": "sterilizing",
|
1505 |
+
"stigmatisation": "stigmatization",
|
1506 |
+
"stigmatise": "stigmatize",
|
1507 |
+
"stigmatised": "stigmatized",
|
1508 |
+
"stigmatises": "stigmatizes",
|
1509 |
+
"stigmatising": "stigmatizing",
|
1510 |
+
"storey": "story",
|
1511 |
+
"storeys": "stories",
|
1512 |
+
"subsidisation": "subsidization",
|
1513 |
+
"subsidise": "subsidize",
|
1514 |
+
"subsidised": "subsidized",
|
1515 |
+
"subsidiser": "subsidizer",
|
1516 |
+
"subsidisers": "subsidizers",
|
1517 |
+
"subsidises": "subsidizes",
|
1518 |
+
"subsidising": "subsidizing",
|
1519 |
+
"succour": "succor",
|
1520 |
+
"succoured": "succored",
|
1521 |
+
"succouring": "succoring",
|
1522 |
+
"succours": "succors",
|
1523 |
+
"sulphate": "sulfate",
|
1524 |
+
"sulphates": "sulfates",
|
1525 |
+
"sulphide": "sulfide",
|
1526 |
+
"sulphides": "sulfides",
|
1527 |
+
"sulphur": "sulfur",
|
1528 |
+
"sulphurous": "sulfurous",
|
1529 |
+
"summarise": "summarize",
|
1530 |
+
"summarised": "summarized",
|
1531 |
+
"summarises": "summarizes",
|
1532 |
+
"summarising": "summarizing",
|
1533 |
+
"swivelled": "swiveled",
|
1534 |
+
"swivelling": "swiveling",
|
1535 |
+
"symbolise": "symbolize",
|
1536 |
+
"symbolised": "symbolized",
|
1537 |
+
"symbolises": "symbolizes",
|
1538 |
+
"symbolising": "symbolizing",
|
1539 |
+
"sympathise": "sympathize",
|
1540 |
+
"sympathised": "sympathized",
|
1541 |
+
"sympathiser": "sympathizer",
|
1542 |
+
"sympathisers": "sympathizers",
|
1543 |
+
"sympathises": "sympathizes",
|
1544 |
+
"sympathising": "sympathizing",
|
1545 |
+
"synchronisation": "synchronization",
|
1546 |
+
"synchronise": "synchronize",
|
1547 |
+
"synchronised": "synchronized",
|
1548 |
+
"synchronises": "synchronizes",
|
1549 |
+
"synchronising": "synchronizing",
|
1550 |
+
"synthesise": "synthesize",
|
1551 |
+
"synthesised": "synthesized",
|
1552 |
+
"synthesiser": "synthesizer",
|
1553 |
+
"synthesisers": "synthesizers",
|
1554 |
+
"synthesises": "synthesizes",
|
1555 |
+
"synthesising": "synthesizing",
|
1556 |
+
"syphon": "siphon",
|
1557 |
+
"syphoned": "siphoned",
|
1558 |
+
"syphoning": "siphoning",
|
1559 |
+
"syphons": "siphons",
|
1560 |
+
"systematisation": "systematization",
|
1561 |
+
"systematise": "systematize",
|
1562 |
+
"systematised": "systematized",
|
1563 |
+
"systematises": "systematizes",
|
1564 |
+
"systematising": "systematizing",
|
1565 |
+
"tantalise": "tantalize",
|
1566 |
+
"tantalised": "tantalized",
|
1567 |
+
"tantalises": "tantalizes",
|
1568 |
+
"tantalising": "tantalizing",
|
1569 |
+
"tantalisingly": "tantalizingly",
|
1570 |
+
"tasselled": "tasseled",
|
1571 |
+
"technicolour": "technicolor",
|
1572 |
+
"temporise": "temporize",
|
1573 |
+
"temporised": "temporized",
|
1574 |
+
"temporises": "temporizes",
|
1575 |
+
"temporising": "temporizing",
|
1576 |
+
"tenderise": "tenderize",
|
1577 |
+
"tenderised": "tenderized",
|
1578 |
+
"tenderises": "tenderizes",
|
1579 |
+
"tenderising": "tenderizing",
|
1580 |
+
"terrorise": "terrorize",
|
1581 |
+
"terrorised": "terrorized",
|
1582 |
+
"terrorises": "terrorizes",
|
1583 |
+
"terrorising": "terrorizing",
|
1584 |
+
"theatre": "theater",
|
1585 |
+
"theatregoer": "theatergoer",
|
1586 |
+
"theatregoers": "theatergoers",
|
1587 |
+
"theatres": "theaters",
|
1588 |
+
"theorise": "theorize",
|
1589 |
+
"theorised": "theorized",
|
1590 |
+
"theorises": "theorizes",
|
1591 |
+
"theorising": "theorizing",
|
1592 |
+
"tonne": "ton",
|
1593 |
+
"tonnes": "tons",
|
1594 |
+
"towelled": "toweled",
|
1595 |
+
"towelling": "toweling",
|
1596 |
+
"toxaemia": "toxemia",
|
1597 |
+
"tranquillise": "tranquilize",
|
1598 |
+
"tranquillised": "tranquilized",
|
1599 |
+
"tranquilliser": "tranquilizer",
|
1600 |
+
"tranquillisers": "tranquilizers",
|
1601 |
+
"tranquillises": "tranquilizes",
|
1602 |
+
"tranquillising": "tranquilizing",
|
1603 |
+
"tranquillity": "tranquility",
|
1604 |
+
"tranquillize": "tranquilize",
|
1605 |
+
"tranquillized": "tranquilized",
|
1606 |
+
"tranquillizer": "tranquilizer",
|
1607 |
+
"tranquillizers": "tranquilizers",
|
1608 |
+
"tranquillizes": "tranquilizes",
|
1609 |
+
"tranquillizing": "tranquilizing",
|
1610 |
+
"tranquilly": "tranquility",
|
1611 |
+
"transistorised": "transistorized",
|
1612 |
+
"traumatise": "traumatize",
|
1613 |
+
"traumatised": "traumatized",
|
1614 |
+
"traumatises": "traumatizes",
|
1615 |
+
"traumatising": "traumatizing",
|
1616 |
+
"travelled": "traveled",
|
1617 |
+
"traveller": "traveler",
|
1618 |
+
"travellers": "travelers",
|
1619 |
+
"travelling": "traveling",
|
1620 |
+
"travelog": "travelogue",
|
1621 |
+
"travelogs": "travelogues",
|
1622 |
+
"trialled": "trialed",
|
1623 |
+
"trialling": "trialing",
|
1624 |
+
"tricolour": "tricolor",
|
1625 |
+
"tricolours": "tricolors",
|
1626 |
+
"trivialise": "trivialize",
|
1627 |
+
"trivialised": "trivialized",
|
1628 |
+
"trivialises": "trivializes",
|
1629 |
+
"trivialising": "trivializing",
|
1630 |
+
"tumour": "tumor",
|
1631 |
+
"tumours": "tumors",
|
1632 |
+
"tunnelled": "tunneled",
|
1633 |
+
"tunnelling": "tunneling",
|
1634 |
+
"tyrannise": "tyrannize",
|
1635 |
+
"tyrannised": "tyrannized",
|
1636 |
+
"tyrannises": "tyrannizes",
|
1637 |
+
"tyrannising": "tyrannizing",
|
1638 |
+
"tyre": "tire",
|
1639 |
+
"tyres": "tires",
|
1640 |
+
"unauthorised": "unauthorized",
|
1641 |
+
"uncivilised": "uncivilized",
|
1642 |
+
"underutilised": "underutilized",
|
1643 |
+
"unequalled": "unequaled",
|
1644 |
+
"unfavourable": "unfavorable",
|
1645 |
+
"unfavourably": "unfavorably",
|
1646 |
+
"unionisation": "unionization",
|
1647 |
+
"unionise": "unionize",
|
1648 |
+
"unionised": "unionized",
|
1649 |
+
"unionises": "unionizes",
|
1650 |
+
"unionising": "unionizing",
|
1651 |
+
"unorganised": "unorganized",
|
1652 |
+
"unravelled": "unraveled",
|
1653 |
+
"unravelling": "unraveling",
|
1654 |
+
"unrecognisable": "unrecognizable",
|
1655 |
+
"unrecognised": "unrecognized",
|
1656 |
+
"unrivalled": "unrivaled",
|
1657 |
+
"unsavoury": "unsavory",
|
1658 |
+
"untrammelled": "untrammeled",
|
1659 |
+
"urbanisation": "urbanization",
|
1660 |
+
"urbanise": "urbanize",
|
1661 |
+
"urbanised": "urbanized",
|
1662 |
+
"urbanises": "urbanizes",
|
1663 |
+
"urbanising": "urbanizing",
|
1664 |
+
"utilisable": "utilizable",
|
1665 |
+
"utilisation": "utilization",
|
1666 |
+
"utilise": "utilize",
|
1667 |
+
"utilised": "utilized",
|
1668 |
+
"utilises": "utilizes",
|
1669 |
+
"utilising": "utilizing",
|
1670 |
+
"valour": "valor",
|
1671 |
+
"vandalise": "vandalize",
|
1672 |
+
"vandalised": "vandalized",
|
1673 |
+
"vandalises": "vandalizes",
|
1674 |
+
"vandalising": "vandalizing",
|
1675 |
+
"vaporisation": "vaporization",
|
1676 |
+
"vaporise": "vaporize",
|
1677 |
+
"vaporised": "vaporized",
|
1678 |
+
"vaporises": "vaporizes",
|
1679 |
+
"vaporising": "vaporizing",
|
1680 |
+
"vapour": "vapor",
|
1681 |
+
"vapours": "vapors",
|
1682 |
+
"verbalise": "verbalize",
|
1683 |
+
"verbalised": "verbalized",
|
1684 |
+
"verbalises": "verbalizes",
|
1685 |
+
"verbalising": "verbalizing",
|
1686 |
+
"victimisation": "victimization",
|
1687 |
+
"victimise": "victimize",
|
1688 |
+
"victimised": "victimized",
|
1689 |
+
"victimises": "victimizes",
|
1690 |
+
"victimising": "victimizing",
|
1691 |
+
"videodisc": "videodisk",
|
1692 |
+
"videodiscs": "videodisks",
|
1693 |
+
"vigour": "vigor",
|
1694 |
+
"visualisation": "visualization",
|
1695 |
+
"visualisations": "visualizations",
|
1696 |
+
"visualise": "visualize",
|
1697 |
+
"visualised": "visualized",
|
1698 |
+
"visualises": "visualizes",
|
1699 |
+
"visualising": "visualizing",
|
1700 |
+
"vocalisation": "vocalization",
|
1701 |
+
"vocalisations": "vocalizations",
|
1702 |
+
"vocalise": "vocalize",
|
1703 |
+
"vocalised": "vocalized",
|
1704 |
+
"vocalises": "vocalizes",
|
1705 |
+
"vocalising": "vocalizing",
|
1706 |
+
"vulcanised": "vulcanized",
|
1707 |
+
"vulgarisation": "vulgarization",
|
1708 |
+
"vulgarise": "vulgarize",
|
1709 |
+
"vulgarised": "vulgarized",
|
1710 |
+
"vulgarises": "vulgarizes",
|
1711 |
+
"vulgarising": "vulgarizing",
|
1712 |
+
"waggon": "wagon",
|
1713 |
+
"waggons": "wagons",
|
1714 |
+
"watercolour": "watercolor",
|
1715 |
+
"watercolours": "watercolors",
|
1716 |
+
"weaselled": "weaseled",
|
1717 |
+
"weaselling": "weaseling",
|
1718 |
+
"westernisation": "westernization",
|
1719 |
+
"westernise": "westernize",
|
1720 |
+
"westernised": "westernized",
|
1721 |
+
"westernises": "westernizes",
|
1722 |
+
"westernising": "westernizing",
|
1723 |
+
"womanise": "womanize",
|
1724 |
+
"womanised": "womanized",
|
1725 |
+
"womaniser": "womanizer",
|
1726 |
+
"womanisers": "womanizers",
|
1727 |
+
"womanises": "womanizes",
|
1728 |
+
"womanising": "womanizing",
|
1729 |
+
"woollen": "woolen",
|
1730 |
+
"woollens": "woolens",
|
1731 |
+
"woollies": "woolies",
|
1732 |
+
"woolly": "wooly",
|
1733 |
+
"worshipped": "worshiped",
|
1734 |
+
"worshipper": "worshiper",
|
1735 |
+
"worshipping": "worshiping",
|
1736 |
+
"yodelled": "yodeled",
|
1737 |
+
"yodelling": "yodeling",
|
1738 |
+
"yoghourt": "yogurt",
|
1739 |
+
"yoghourts": "yogurts",
|
1740 |
+
"yoghurt": "yogurt",
|
1741 |
+
"yoghurts": "yogurts"
|
1742 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chunk_length": 30,
|
3 |
+
"feature_extractor_type": "WhisperFeatureExtractor",
|
4 |
+
"feature_size": 128,
|
5 |
+
"hop_length": 160,
|
6 |
+
"n_fft": 400,
|
7 |
+
"n_samples": 480000,
|
8 |
+
"nb_max_frames": 3000,
|
9 |
+
"padding_side": "right",
|
10 |
+
"padding_value": 0.0,
|
11 |
+
"processor_class": "WhisperProcessor",
|
12 |
+
"return_attention_mask": false,
|
13 |
+
"sampling_rate": 16000
|
14 |
+
}
|
run_distillation.py
ADDED
@@ -0,0 +1,1693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation.
|
18 |
+
"""
|
19 |
+
# You can also adapt this script for your own distillation tasks. Pointers for this are left as comments.
|
20 |
+
|
21 |
+
import logging
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import shutil
|
25 |
+
import sys
|
26 |
+
import time
|
27 |
+
from dataclasses import dataclass, field
|
28 |
+
from functools import partial
|
29 |
+
from pathlib import Path
|
30 |
+
from typing import Any, Dict, List, Optional, Union
|
31 |
+
|
32 |
+
import datasets
|
33 |
+
import evaluate
|
34 |
+
import numpy as np
|
35 |
+
import torch
|
36 |
+
import torch.nn as nn
|
37 |
+
import transformers
|
38 |
+
from accelerate import Accelerator
|
39 |
+
from accelerate.logging import get_logger
|
40 |
+
from datasets import (
|
41 |
+
DatasetDict,
|
42 |
+
IterableDataset,
|
43 |
+
IterableDatasetDict,
|
44 |
+
concatenate_datasets,
|
45 |
+
interleave_datasets,
|
46 |
+
load_dataset,
|
47 |
+
)
|
48 |
+
from huggingface_hub import create_repo, get_full_repo_name, upload_folder
|
49 |
+
from torch.utils.data import DataLoader
|
50 |
+
from tqdm import tqdm
|
51 |
+
from transformers import (
|
52 |
+
AddedToken,
|
53 |
+
HfArgumentParser,
|
54 |
+
Seq2SeqTrainingArguments,
|
55 |
+
WhisperConfig,
|
56 |
+
WhisperFeatureExtractor,
|
57 |
+
WhisperForConditionalGeneration,
|
58 |
+
WhisperProcessor,
|
59 |
+
WhisperTokenizerFast,
|
60 |
+
get_scheduler,
|
61 |
+
set_seed,
|
62 |
+
)
|
63 |
+
from transformers.modeling_outputs import BaseModelOutput
|
64 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer, EnglishTextNormalizer
|
65 |
+
from transformers.utils import check_min_version
|
66 |
+
from transformers.utils.versions import require_version
|
67 |
+
|
68 |
+
|
69 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
70 |
+
check_min_version("4.34.0.dev0")
|
71 |
+
|
72 |
+
require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`")
|
73 |
+
|
74 |
+
logger = get_logger(__name__)
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class ModelArguments:
|
79 |
+
"""
|
80 |
+
Arguments pertaining to which model/config/tokenizer we are going to distill from.
|
81 |
+
"""
|
82 |
+
|
83 |
+
model_name_or_path: str = field(
|
84 |
+
metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"}
|
85 |
+
)
|
86 |
+
teacher_model_name_or_path: str = field(
|
87 |
+
metadata={"help": "Path to pretrained teacher model or model identifier from huggingface.co/models"}
|
88 |
+
)
|
89 |
+
config_name: Optional[str] = field(
|
90 |
+
default=None,
|
91 |
+
metadata={"help": "Pretrained config name or path if not the same as model_name"},
|
92 |
+
)
|
93 |
+
tokenizer_name: Optional[str] = field(
|
94 |
+
default=None,
|
95 |
+
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
|
96 |
+
)
|
97 |
+
feature_extractor_name: Optional[str] = field(
|
98 |
+
default=None,
|
99 |
+
metadata={"help": "feature extractor name or path if not the same as model_name"},
|
100 |
+
)
|
101 |
+
cache_dir: Optional[str] = field(
|
102 |
+
default=None,
|
103 |
+
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
104 |
+
)
|
105 |
+
use_fast_tokenizer: bool = field(
|
106 |
+
default=True,
|
107 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
108 |
+
)
|
109 |
+
model_revision: str = field(
|
110 |
+
default="main",
|
111 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
112 |
+
)
|
113 |
+
subfolder: str = field(
|
114 |
+
default="",
|
115 |
+
metadata={
|
116 |
+
"help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can"
|
117 |
+
"specify the folder name here."
|
118 |
+
},
|
119 |
+
)
|
120 |
+
token: str = field(
|
121 |
+
default=None,
|
122 |
+
metadata={
|
123 |
+
"help": (
|
124 |
+
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
125 |
+
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
126 |
+
)
|
127 |
+
},
|
128 |
+
)
|
129 |
+
attn_implementation: Optional[str] = field(
|
130 |
+
default=None,
|
131 |
+
metadata={
|
132 |
+
"help": (
|
133 |
+
"Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n"
|
134 |
+
"1. `eager` or `None`: default Transformers attention implementation.\n"
|
135 |
+
"2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n"
|
136 |
+
"3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)."
|
137 |
+
)
|
138 |
+
},
|
139 |
+
)
|
140 |
+
|
141 |
+
def __post_init__(self):
|
142 |
+
if self.attn_implementation not in [None, "eager", "sdpa", "flash_attention_2"]:
|
143 |
+
raise ValueError(
|
144 |
+
f"Got `--attn_implementation={self.attn_implementation}`, which is an invalid attention type. Should be one of:\n"
|
145 |
+
"1. `eager` or `None`: default Transformers attention implementation.\n"
|
146 |
+
"2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n"
|
147 |
+
"3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)."
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
@dataclass
|
152 |
+
class DataTrainingArguments:
|
153 |
+
"""
|
154 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
155 |
+
"""
|
156 |
+
|
157 |
+
train_dataset_name: str = field(
|
158 |
+
default=None,
|
159 |
+
metadata={
|
160 |
+
"help": "The name of the training dataset to use (via the datasets library). Load and combine "
|
161 |
+
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load LibriSpeech "
|
162 |
+
"and Common Voice, set `train_dataset_name='librispeech_asr+common_voice'`."
|
163 |
+
},
|
164 |
+
)
|
165 |
+
train_dataset_config_name: Optional[str] = field(
|
166 |
+
default=None,
|
167 |
+
metadata={
|
168 |
+
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
|
169 |
+
"multiple datasets by separating dataset configs by a '+' symbol. Note that the order of the configs should "
|
170 |
+
"match the order of the datasets."
|
171 |
+
},
|
172 |
+
)
|
173 |
+
train_dataset_samples: str = field(
|
174 |
+
default=None,
|
175 |
+
metadata={
|
176 |
+
"help": "Number of samples in each dataset when loading multiple datasets with streaming mode. "
|
177 |
+
"Not required when using one dataset or non-streaming mode. The sample values provide the sampling "
|
178 |
+
"probability for each dataset. Setting them equal to the number of sample values ensures that every "
|
179 |
+
"sample from every dataset is used once per epoch."
|
180 |
+
},
|
181 |
+
)
|
182 |
+
eval_dataset_name: str = field(
|
183 |
+
default=None,
|
184 |
+
metadata={
|
185 |
+
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training "
|
186 |
+
"dataset name if unspecified. Load multiple evaluation datasets by separating dataset "
|
187 |
+
"ids by a '+' symbol."
|
188 |
+
},
|
189 |
+
)
|
190 |
+
eval_dataset_config_name: Optional[str] = field(
|
191 |
+
default=None,
|
192 |
+
metadata={
|
193 |
+
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the "
|
194 |
+
"training dataset config name if unspecified."
|
195 |
+
},
|
196 |
+
)
|
197 |
+
dataset_cache_dir: Optional[str] = field(
|
198 |
+
default=None,
|
199 |
+
metadata={"help": "Path to cache directory for saving and loading datasets"},
|
200 |
+
)
|
201 |
+
overwrite_cache: bool = field(
|
202 |
+
default=False,
|
203 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
204 |
+
)
|
205 |
+
preprocessing_num_workers: Optional[int] = field(
|
206 |
+
default=None,
|
207 |
+
metadata={"help": "The number of processes to use for the preprocessing if using non-streaming mode."},
|
208 |
+
)
|
209 |
+
preprocessing_batch_size: Optional[int] = field(
|
210 |
+
default=256,
|
211 |
+
metadata={"help": "Number of examples per batch provided to the `prepare_dataset` function."},
|
212 |
+
)
|
213 |
+
max_train_samples: Optional[int] = field(
|
214 |
+
default=None,
|
215 |
+
metadata={
|
216 |
+
"help": (
|
217 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this value if set."
|
218 |
+
)
|
219 |
+
},
|
220 |
+
)
|
221 |
+
max_eval_samples: Optional[int] = field(
|
222 |
+
default=None,
|
223 |
+
metadata={
|
224 |
+
"help": (
|
225 |
+
"For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set."
|
226 |
+
)
|
227 |
+
},
|
228 |
+
)
|
229 |
+
audio_column_name: str = field(
|
230 |
+
default="audio",
|
231 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
232 |
+
)
|
233 |
+
text_column_name: str = field(
|
234 |
+
default=None,
|
235 |
+
metadata={"help": "The name of the dataset column containing the text data in the training set."},
|
236 |
+
)
|
237 |
+
eval_text_column_name: str = field(
|
238 |
+
default="text",
|
239 |
+
metadata={"help": ("The name of the dataset column containing the text data in the evaluation set.")},
|
240 |
+
)
|
241 |
+
max_duration_in_seconds: float = field(
|
242 |
+
default=30.0,
|
243 |
+
metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"},
|
244 |
+
)
|
245 |
+
min_duration_in_seconds: float = field(
|
246 |
+
default=0.0,
|
247 |
+
metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"},
|
248 |
+
)
|
249 |
+
max_label_length: int = field(
|
250 |
+
default=448,
|
251 |
+
metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
|
252 |
+
)
|
253 |
+
pad_target_to_multiple_of: Optional[int] = field(
|
254 |
+
default=None,
|
255 |
+
metadata={
|
256 |
+
"help": (
|
257 |
+
"If set will pad the target sequence to a multiple of the provided"
|
258 |
+
" value. This is important to avoid triggering recompilations on TPU."
|
259 |
+
" If unspecified, will default to padding the targets to max length."
|
260 |
+
)
|
261 |
+
},
|
262 |
+
)
|
263 |
+
preprocessing_only: bool = field(
|
264 |
+
default=False,
|
265 |
+
metadata={
|
266 |
+
"help": (
|
267 |
+
"Whether to only do data preprocessing and skip training. This is"
|
268 |
+
" especially useful when data preprocessing errors out in distributed"
|
269 |
+
" training due to timeout. In this case, one should run the"
|
270 |
+
" preprocessing in a non-distributed setup with"
|
271 |
+
" `preprocessing_only=True` so that the cached datasets can"
|
272 |
+
" consequently be loaded in distributed training"
|
273 |
+
)
|
274 |
+
},
|
275 |
+
)
|
276 |
+
train_split_name: str = field(
|
277 |
+
default="train",
|
278 |
+
metadata={
|
279 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
280 |
+
},
|
281 |
+
)
|
282 |
+
eval_split_name: str = field(
|
283 |
+
default="validation",
|
284 |
+
metadata={
|
285 |
+
"help": (
|
286 |
+
"The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'"
|
287 |
+
)
|
288 |
+
},
|
289 |
+
)
|
290 |
+
streaming: bool = field(
|
291 |
+
default=True,
|
292 |
+
metadata={"help": "Whether to use Datasets' streaming mode to load and pre-process the data."},
|
293 |
+
)
|
294 |
+
wer_threshold: float = field(
|
295 |
+
default=None,
|
296 |
+
metadata={
|
297 |
+
"help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` "
|
298 |
+
"WER with the normalised transcriptions. This only takes effect if training on pseudo-labels targets."
|
299 |
+
"If `--use_pseudo_labels=False`, then no WER filtering is performed, since we train directly on the text"
|
300 |
+
"transcriptions."
|
301 |
+
},
|
302 |
+
)
|
303 |
+
use_pseudo_labels: bool = field(
|
304 |
+
default=True,
|
305 |
+
metadata={
|
306 |
+
"help": "Whether or not to use pseudo-label transcriptions as the targets. If True, the pseudo-labels "
|
307 |
+
"must be in the dataset column `whisper_transcript` from the previous pseudo-labelling step. This is "
|
308 |
+
"not currently yet configurable."
|
309 |
+
},
|
310 |
+
)
|
311 |
+
timestamp_probability: float = field(
|
312 |
+
default=0.2, metadata={"help": "Probability for training on timestamped tokens if the data contains it."}
|
313 |
+
)
|
314 |
+
condition_on_prev_probability: float = field(
|
315 |
+
default=0.2, metadata={"help": "Probability for conditioning on the previous text example."}
|
316 |
+
)
|
317 |
+
return_timestamps: bool = field(
|
318 |
+
default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."}
|
319 |
+
)
|
320 |
+
language: str = field(
|
321 |
+
default=None,
|
322 |
+
metadata={
|
323 |
+
"help": (
|
324 |
+
"Language for multilingual distillation. This argument should be set for multilingual distillation "
|
325 |
+
"only. For English speech recognition, it should be left as `None`."
|
326 |
+
)
|
327 |
+
},
|
328 |
+
)
|
329 |
+
task: str = field(
|
330 |
+
default="transcribe",
|
331 |
+
metadata={
|
332 |
+
"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."
|
333 |
+
"This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`."
|
334 |
+
},
|
335 |
+
)
|
336 |
+
wandb_project: str = field(
|
337 |
+
default="distil-whisper",
|
338 |
+
metadata={"help": "The name of the wandb project."},
|
339 |
+
)
|
340 |
+
|
341 |
+
|
342 |
+
@dataclass
|
343 |
+
class DistillationTrainingArguments(Seq2SeqTrainingArguments):
|
344 |
+
freeze_encoder: Optional[bool] = field(
|
345 |
+
default=False,
|
346 |
+
metadata={
|
347 |
+
"help": (
|
348 |
+
"Whether to freeze the entire encoder model. Only recommended when the entire encoder has been "
|
349 |
+
"copied from the teacher model."
|
350 |
+
)
|
351 |
+
},
|
352 |
+
)
|
353 |
+
freeze_embed_positions: Optional[bool] = field(
|
354 |
+
default=False,
|
355 |
+
metadata={"help": "Whether to freeze the decoder embedding positions."},
|
356 |
+
)
|
357 |
+
temperature: Optional[float] = field(
|
358 |
+
default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."}
|
359 |
+
)
|
360 |
+
kl_weight: Optional[float] = field(
|
361 |
+
default=1.0,
|
362 |
+
metadata={
|
363 |
+
"help": (
|
364 |
+
"Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
|
365 |
+
"computed between the teacher-student hidden states and attentions."
|
366 |
+
)
|
367 |
+
},
|
368 |
+
)
|
369 |
+
dtype: Optional[str] = field(
|
370 |
+
default="float32",
|
371 |
+
metadata={
|
372 |
+
"help": (
|
373 |
+
"The data type (dtype) in which to run training. One of `float32` (full-precision), "
|
374 |
+
"`float16` or `bfloat16` (both half-precision)."
|
375 |
+
)
|
376 |
+
},
|
377 |
+
)
|
378 |
+
|
379 |
+
|
380 |
+
@dataclass
|
381 |
+
class DataCollatorSpeechSeq2SeqWithPadding:
|
382 |
+
"""
|
383 |
+
Data collator that will dynamically pad the inputs received.
|
384 |
+
Args:
|
385 |
+
processor ([`Wav2Vec2Processor`])
|
386 |
+
The processor used for proccessing the data.
|
387 |
+
decoder_start_token_id (:obj: `int`)
|
388 |
+
The start-of-sequence token id of the decoder.
|
389 |
+
decoder_prev_token_id (:obj: `int`)
|
390 |
+
The start-of-prompt token id of the decoder
|
391 |
+
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
392 |
+
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
|
393 |
+
among:
|
394 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
395 |
+
sequence if provided).
|
396 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
397 |
+
maximum acceptable input length for the model if that argument is not provided.
|
398 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
399 |
+
different lengths).
|
400 |
+
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
401 |
+
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
|
402 |
+
See above for details.
|
403 |
+
max_target_length (:obj:`int`, `optional`):
|
404 |
+
Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
|
405 |
+
"""
|
406 |
+
|
407 |
+
processor: Any
|
408 |
+
decoder_start_token_id: int
|
409 |
+
decoder_prev_token_id: int
|
410 |
+
input_padding: Union[bool, str] = "max_length"
|
411 |
+
target_padding: Union[bool, str] = "max_length"
|
412 |
+
max_target_length: Optional[int] = None
|
413 |
+
|
414 |
+
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
|
415 |
+
# split inputs and labels since they have to be of different lengths and need
|
416 |
+
# different padding methods
|
417 |
+
|
418 |
+
# dataloader returns a list of features which we convert to a dict
|
419 |
+
input_features = {"input_features": [feature["input_features"] for feature in features]}
|
420 |
+
label_features = {"input_ids": [feature["labels"] for feature in features]}
|
421 |
+
|
422 |
+
# reformat list to dict and set to pytorch format
|
423 |
+
batch = self.processor.feature_extractor.pad(
|
424 |
+
input_features,
|
425 |
+
padding=self.input_padding,
|
426 |
+
return_tensors="pt",
|
427 |
+
)
|
428 |
+
|
429 |
+
labels_batch = self.processor.tokenizer.pad(
|
430 |
+
label_features,
|
431 |
+
max_length=self.max_target_length,
|
432 |
+
padding=self.target_padding,
|
433 |
+
return_tensors="pt",
|
434 |
+
)
|
435 |
+
|
436 |
+
# shift labels to the right to get decoder input ids
|
437 |
+
labels = labels_batch["input_ids"]
|
438 |
+
decoder_input_ids = labels[:, :-1]
|
439 |
+
labels = labels[:, 1:]
|
440 |
+
labels_mask = labels_batch.attention_mask[:, 1:]
|
441 |
+
|
442 |
+
# replace padding with -100 to ignore correctly when computing the loss
|
443 |
+
labels = labels.masked_fill(labels_mask.ne(1), -100)
|
444 |
+
|
445 |
+
# replace initial prompt tokens with -100 to ignore correctly when computing the loss
|
446 |
+
bos_index = torch.argmax((labels == self.decoder_start_token_id).long(), dim=1)
|
447 |
+
bos_index = torch.where(bos_index > 0, bos_index + 1, bos_index)
|
448 |
+
prompt_mask = torch.arange(labels.shape[1]) < bos_index[:, None]
|
449 |
+
labels = torch.where(prompt_mask, -100, labels)
|
450 |
+
|
451 |
+
batch["labels"] = labels
|
452 |
+
batch["decoder_input_ids"] = decoder_input_ids
|
453 |
+
|
454 |
+
return batch
|
455 |
+
|
456 |
+
|
457 |
+
def log_metric(
|
458 |
+
accelerator,
|
459 |
+
metrics: Dict,
|
460 |
+
train_time: float,
|
461 |
+
step: int,
|
462 |
+
epoch: int,
|
463 |
+
learning_rate: float = None,
|
464 |
+
prefix: str = "train",
|
465 |
+
):
|
466 |
+
"""Helper function to log all training/evaluation metrics with the correct prefixes and styling."""
|
467 |
+
log_metrics = {}
|
468 |
+
for k, v in metrics.items():
|
469 |
+
log_metrics[f"{prefix}/{k}"] = v
|
470 |
+
log_metrics[f"{prefix}/time"] = train_time
|
471 |
+
log_metrics[f"{prefix}/epoch"] = epoch
|
472 |
+
if learning_rate is not None:
|
473 |
+
log_metrics[f"{prefix}/learning_rate"] = learning_rate
|
474 |
+
accelerator.log(log_metrics, step=step)
|
475 |
+
|
476 |
+
|
477 |
+
def log_pred(
|
478 |
+
accelerator,
|
479 |
+
pred_str: List[str],
|
480 |
+
label_str: List[str],
|
481 |
+
norm_pred_str: List[str],
|
482 |
+
norm_label_str: List[str],
|
483 |
+
step: int,
|
484 |
+
prefix: str = "eval",
|
485 |
+
num_lines: int = 200000,
|
486 |
+
):
|
487 |
+
"""Helper function to log target/predicted transcriptions to weights and biases (wandb)."""
|
488 |
+
if accelerator.is_main_process:
|
489 |
+
wandb_tracker = accelerator.get_tracker("wandb")
|
490 |
+
# pretty name for current step: step 50000 -> step 50k
|
491 |
+
cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step
|
492 |
+
prefix_pretty = prefix.replace("/", "-")
|
493 |
+
|
494 |
+
# convert str data to a wandb compatible format
|
495 |
+
str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))]
|
496 |
+
# log as a table with the appropriate headers
|
497 |
+
wandb_tracker.log_table(
|
498 |
+
table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
|
499 |
+
columns=["Target", "Pred", "Norm Target", "Norm Pred"],
|
500 |
+
data=str_data[:num_lines],
|
501 |
+
step=step,
|
502 |
+
)
|
503 |
+
|
504 |
+
# log incorrect normalised predictions
|
505 |
+
str_data = np.asarray(str_data)
|
506 |
+
str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]]
|
507 |
+
# log as a table with the appropriate headers
|
508 |
+
wandb_tracker.log_table(
|
509 |
+
table_name=f"incorrect_predictions/{prefix_pretty}-step-{cur_step_pretty}",
|
510 |
+
columns=["Target", "Pred", "Norm Target", "Norm Pred"],
|
511 |
+
data=str_data_incorrect[:num_lines],
|
512 |
+
step=step,
|
513 |
+
)
|
514 |
+
|
515 |
+
|
516 |
+
def convert_dataset_str_to_list(
|
517 |
+
dataset_names,
|
518 |
+
dataset_config_names,
|
519 |
+
splits=None,
|
520 |
+
text_column_names=None,
|
521 |
+
dataset_samples=None,
|
522 |
+
default_split="train",
|
523 |
+
) -> List[Dict]:
|
524 |
+
"""
|
525 |
+
Given three lists of dataset names, configs and splits, this function groups the corresponding
|
526 |
+
names/configs/splits. Each dataset is assigned a unique dictionary with these metadata values, and the
|
527 |
+
function returns a list of dictionaries, one for each dataset.
|
528 |
+
"""
|
529 |
+
if isinstance(dataset_names, str):
|
530 |
+
dataset_names = dataset_names.split("+")
|
531 |
+
dataset_config_names = dataset_config_names.split("+") if dataset_config_names is not None else None
|
532 |
+
splits = splits.split("+") if splits is not None else None
|
533 |
+
text_column_names = text_column_names.split("+") if text_column_names is not None else None
|
534 |
+
dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
|
535 |
+
|
536 |
+
# basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
|
537 |
+
if dataset_config_names is not None and len(dataset_names) != len(dataset_config_names):
|
538 |
+
raise ValueError(
|
539 |
+
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
|
540 |
+
f" {len(dataset_config_names)} configs."
|
541 |
+
)
|
542 |
+
|
543 |
+
if splits is not None and len(splits) != len(dataset_names):
|
544 |
+
raise ValueError(
|
545 |
+
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
|
546 |
+
)
|
547 |
+
|
548 |
+
if text_column_names is not None and len(text_column_names) != len(dataset_names):
|
549 |
+
raise ValueError(
|
550 |
+
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
|
551 |
+
f" {len(text_column_names)} text column names."
|
552 |
+
)
|
553 |
+
|
554 |
+
if dataset_samples is not None:
|
555 |
+
if len(dataset_samples) != len(dataset_names):
|
556 |
+
raise ValueError(
|
557 |
+
f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
|
558 |
+
f"{len(dataset_samples)} samples."
|
559 |
+
)
|
560 |
+
dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
|
561 |
+
else:
|
562 |
+
dataset_samples = [None] * len(dataset_names)
|
563 |
+
|
564 |
+
dataset_config_names = (
|
565 |
+
dataset_config_names if dataset_config_names is not None else ["default" for _ in range(len(dataset_names))]
|
566 |
+
)
|
567 |
+
text_column_names = (
|
568 |
+
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))]
|
569 |
+
)
|
570 |
+
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]
|
571 |
+
|
572 |
+
dataset_names_dict = []
|
573 |
+
for i, ds_name in enumerate(dataset_names):
|
574 |
+
dataset_names_dict.append(
|
575 |
+
{
|
576 |
+
"name": ds_name,
|
577 |
+
"config": dataset_config_names[i],
|
578 |
+
"split": splits[i],
|
579 |
+
"text_column_name": text_column_names[i],
|
580 |
+
"samples": dataset_samples[i],
|
581 |
+
}
|
582 |
+
)
|
583 |
+
return dataset_names_dict
|
584 |
+
|
585 |
+
|
586 |
+
def load_multiple_datasets(
|
587 |
+
dataset_names: Union[List, str],
|
588 |
+
dataset_config_names: Union[List, str],
|
589 |
+
splits: Optional[Union[List, str]] = None,
|
590 |
+
text_column_names: Optional[List] = None,
|
591 |
+
sampling_rate: Optional[int] = 16000,
|
592 |
+
stopping_strategy: Optional[str] = "first_exhausted",
|
593 |
+
dataset_samples: Optional[Union[List, np.array]] = None,
|
594 |
+
streaming: Optional[bool] = True,
|
595 |
+
seed: Optional[int] = None,
|
596 |
+
accelerator: Optional[Accelerator] = None,
|
597 |
+
use_pseudo_labels: float = None,
|
598 |
+
**kwargs,
|
599 |
+
) -> IterableDataset:
|
600 |
+
dataset_names_dict = convert_dataset_str_to_list(
|
601 |
+
dataset_names, dataset_config_names, splits, text_column_names, dataset_samples
|
602 |
+
)
|
603 |
+
|
604 |
+
if dataset_samples is not None:
|
605 |
+
dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
|
606 |
+
probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
|
607 |
+
else:
|
608 |
+
probabilities = None
|
609 |
+
|
610 |
+
all_datasets = []
|
611 |
+
# iterate over the datasets we want to interleave
|
612 |
+
for dataset_dict in tqdm(
|
613 |
+
dataset_names_dict,
|
614 |
+
desc="Combining datasets...",
|
615 |
+
disable=not accelerator.is_local_main_process if accelerator is not None else False,
|
616 |
+
):
|
617 |
+
dataset = load_dataset(
|
618 |
+
dataset_dict["name"],
|
619 |
+
dataset_dict["config"],
|
620 |
+
split=dataset_dict["split"],
|
621 |
+
streaming=streaming,
|
622 |
+
**kwargs,
|
623 |
+
)
|
624 |
+
# resample to specified sampling rate
|
625 |
+
dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
|
626 |
+
dataset_features = dataset.features.keys()
|
627 |
+
columns_to_keep = {"audio", "text"}
|
628 |
+
|
629 |
+
if dataset_dict["text_column_name"] not in dataset_features:
|
630 |
+
raise ValueError(
|
631 |
+
f"Text column name {dataset_dict['text_column_name']} not found in dataset"
|
632 |
+
f" '{dataset_dict['name']}'. Make sure to set `--text_column_name` to the"
|
633 |
+
f" correct text column - one of {', '.join(dataset_features)}."
|
634 |
+
)
|
635 |
+
|
636 |
+
# blanket renaming of all transcription columns to text
|
637 |
+
if dataset_dict["text_column_name"] != "text":
|
638 |
+
dataset = dataset.rename_column(dataset_dict["text_column_name"], "text")
|
639 |
+
|
640 |
+
if use_pseudo_labels:
|
641 |
+
if "whisper_transcript" not in dataset_features:
|
642 |
+
raise ValueError(
|
643 |
+
f"Pseudo-label column `whisper_transcript` not found in dataset {dataset_dict['name']}. Ensure"
|
644 |
+
"pseudo-labels are present in the dataset under this column name, or train directly on the text "
|
645 |
+
"labels by setting `--use_pseudo_labels=False` and defining the appropriate `--text_column_name`."
|
646 |
+
)
|
647 |
+
columns_to_keep.add("whisper_transcript")
|
648 |
+
|
649 |
+
if "condition_on_prev" in dataset_features:
|
650 |
+
columns_to_keep.add("condition_on_prev")
|
651 |
+
|
652 |
+
dataset_features = dataset.features.keys()
|
653 |
+
dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
|
654 |
+
all_datasets.append(dataset)
|
655 |
+
|
656 |
+
if len(all_datasets) == 1:
|
657 |
+
# we have a single dataset so just return it as is
|
658 |
+
return all_datasets[0]
|
659 |
+
|
660 |
+
if streaming:
|
661 |
+
interleaved_dataset = interleave_datasets(
|
662 |
+
all_datasets,
|
663 |
+
stopping_strategy=stopping_strategy,
|
664 |
+
probabilities=probabilities,
|
665 |
+
seed=seed,
|
666 |
+
)
|
667 |
+
else:
|
668 |
+
interleaved_dataset = concatenate_datasets(all_datasets)
|
669 |
+
|
670 |
+
return interleaved_dataset
|
671 |
+
|
672 |
+
|
673 |
+
def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]:
|
674 |
+
"""Helper function to sort saved checkpoints from oldest to newest."""
|
675 |
+
ordering_and_checkpoint_path = []
|
676 |
+
|
677 |
+
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
|
678 |
+
|
679 |
+
for path in glob_checkpoints:
|
680 |
+
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
|
681 |
+
if regex_match is not None and regex_match.groups() is not None:
|
682 |
+
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
|
683 |
+
|
684 |
+
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
|
685 |
+
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
|
686 |
+
return checkpoints_sorted
|
687 |
+
|
688 |
+
|
689 |
+
def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint") -> None:
|
690 |
+
"""Helper function to delete old checkpoints."""
|
691 |
+
if save_total_limit is None or save_total_limit <= 0:
|
692 |
+
return
|
693 |
+
# Check if we should delete older checkpoint(s)
|
694 |
+
checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix)
|
695 |
+
if len(checkpoints_sorted) <= save_total_limit:
|
696 |
+
return
|
697 |
+
|
698 |
+
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
|
699 |
+
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
|
700 |
+
for checkpoint in checkpoints_to_be_deleted:
|
701 |
+
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
|
702 |
+
shutil.rmtree(checkpoint, ignore_errors=True)
|
703 |
+
|
704 |
+
|
705 |
+
_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$")
|
706 |
+
|
707 |
+
|
708 |
+
def get_last_checkpoint(folder):
|
709 |
+
content = os.listdir(folder)
|
710 |
+
checkpoints = [
|
711 |
+
path
|
712 |
+
for path in content
|
713 |
+
if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path))
|
714 |
+
]
|
715 |
+
if len(checkpoints) == 0:
|
716 |
+
return
|
717 |
+
return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))
|
718 |
+
|
719 |
+
|
720 |
+
def get_parameter_names(model, forbidden_layer_types, forbidden_module=None):
|
721 |
+
"""
|
722 |
+
Returns the names of the model parameters that are not inside a forbidden layer or forbidden module.
|
723 |
+
Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser
|
724 |
+
(e.g. if the module is frozen).
|
725 |
+
"""
|
726 |
+
result = []
|
727 |
+
for name, child in model.named_children():
|
728 |
+
result += [
|
729 |
+
f"{name}.{n}"
|
730 |
+
for n in get_parameter_names(child, forbidden_layer_types, forbidden_module)
|
731 |
+
if not (
|
732 |
+
isinstance(child, tuple(forbidden_layer_types))
|
733 |
+
or (child in tuple(forbidden_module) if forbidden_module is not None else False)
|
734 |
+
)
|
735 |
+
]
|
736 |
+
# Add model specific parameters (defined with nn.Parameter) since they are not in any child.
|
737 |
+
result += list(model._parameters.keys())
|
738 |
+
return result
|
739 |
+
|
740 |
+
|
741 |
+
def main():
|
742 |
+
# 1. Parse input arguments
|
743 |
+
# We keep distinct sets of args, for cleaner separation of model/data/training related args
|
744 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments))
|
745 |
+
|
746 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
747 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
748 |
+
# let's parse it to get our arguments.
|
749 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
750 |
+
else:
|
751 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
752 |
+
|
753 |
+
# 2. Initialize the accelerator
|
754 |
+
# We will let the accelerator handle device placement for us in this example
|
755 |
+
# We simply have to specify the training precision and any trackers being used
|
756 |
+
# We'll use the same dtype arguments as our JAX/Flax training script and convert
|
757 |
+
# it to accelerate format
|
758 |
+
if training_args.dtype == "float16":
|
759 |
+
mixed_precision = "fp16"
|
760 |
+
teacher_dtype = torch.float16
|
761 |
+
elif training_args.dtype == "bfloat16":
|
762 |
+
mixed_precision = "bf16"
|
763 |
+
teacher_dtype = torch.bfloat16
|
764 |
+
else:
|
765 |
+
mixed_precision = "no"
|
766 |
+
teacher_dtype = torch.float32
|
767 |
+
|
768 |
+
accelerator = Accelerator(
|
769 |
+
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
|
770 |
+
mixed_precision=mixed_precision,
|
771 |
+
log_with=training_args.report_to,
|
772 |
+
project_dir=training_args.output_dir,
|
773 |
+
)
|
774 |
+
|
775 |
+
accelerator.init_trackers(project_name=data_args.wandb_project)
|
776 |
+
|
777 |
+
# 3. Set-up basic logging
|
778 |
+
# Create one log on every process with the configuration for debugging
|
779 |
+
logging.basicConfig(
|
780 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
781 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
782 |
+
level=logging.INFO,
|
783 |
+
)
|
784 |
+
# Log a small summary on each proces
|
785 |
+
logger.warning(
|
786 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
787 |
+
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
788 |
+
)
|
789 |
+
|
790 |
+
# Set the verbosity to info of the Transformers logger (on main process only)
|
791 |
+
if accelerator.is_local_main_process:
|
792 |
+
datasets.utils.logging.set_verbosity_warning()
|
793 |
+
transformers.utils.logging.set_verbosity_info()
|
794 |
+
else:
|
795 |
+
datasets.utils.logging.set_verbosity_error()
|
796 |
+
transformers.utils.logging.set_verbosity_error()
|
797 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
798 |
+
|
799 |
+
# 4. Detecting last checkpoint and eventually continue from last checkpoint
|
800 |
+
last_checkpoint = None
|
801 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
802 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
803 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
804 |
+
raise ValueError(
|
805 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
806 |
+
"Use --overwrite_output_dir to overcome."
|
807 |
+
)
|
808 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
809 |
+
logger.info(
|
810 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
811 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
812 |
+
)
|
813 |
+
|
814 |
+
# 5. Handle the repository creation
|
815 |
+
if accelerator.is_main_process:
|
816 |
+
if training_args.push_to_hub:
|
817 |
+
if training_args.hub_model_id is None:
|
818 |
+
repo_name = get_full_repo_name(
|
819 |
+
Path(training_args.output_dir).absolute().name,
|
820 |
+
token=training_args.hub_token,
|
821 |
+
)
|
822 |
+
else:
|
823 |
+
repo_name = training_args.hub_model_id
|
824 |
+
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
|
825 |
+
|
826 |
+
with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
|
827 |
+
if "wandb" not in gitignore:
|
828 |
+
gitignore.write("wandb\n")
|
829 |
+
elif training_args.output_dir is not None:
|
830 |
+
os.makedirs(training_args.output_dir, exist_ok=True)
|
831 |
+
accelerator.wait_for_everyone()
|
832 |
+
|
833 |
+
# 6. Load dataset - either streaming or non-streaming (offline)
|
834 |
+
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
|
835 |
+
|
836 |
+
# set seed for determinism
|
837 |
+
set_seed(training_args.seed)
|
838 |
+
|
839 |
+
if training_args.do_train:
|
840 |
+
raw_datasets["train"] = load_multiple_datasets(
|
841 |
+
data_args.train_dataset_name,
|
842 |
+
data_args.train_dataset_config_name,
|
843 |
+
splits=data_args.train_split_name,
|
844 |
+
text_column_names=data_args.text_column_name,
|
845 |
+
use_pseudo_labels=data_args.use_pseudo_labels,
|
846 |
+
streaming=data_args.streaming,
|
847 |
+
dataset_samples=data_args.train_dataset_samples,
|
848 |
+
seed=training_args.seed,
|
849 |
+
accelerator=accelerator,
|
850 |
+
cache_dir=data_args.dataset_cache_dir,
|
851 |
+
token=model_args.token,
|
852 |
+
)
|
853 |
+
raw_datasets_train_features = list(raw_datasets["train"].features.keys())
|
854 |
+
|
855 |
+
if training_args.do_eval:
|
856 |
+
dataset_names_dict = convert_dataset_str_to_list(
|
857 |
+
data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
|
858 |
+
(
|
859 |
+
data_args.eval_dataset_config_name
|
860 |
+
if data_args.eval_dataset_config_name
|
861 |
+
else data_args.train_dataset_config_name
|
862 |
+
),
|
863 |
+
splits=data_args.eval_split_name,
|
864 |
+
text_column_names=data_args.eval_text_column_name,
|
865 |
+
)
|
866 |
+
all_eval_splits = []
|
867 |
+
if len(dataset_names_dict) == 1:
|
868 |
+
# load a single eval set
|
869 |
+
dataset_dict = dataset_names_dict[0]
|
870 |
+
all_eval_splits.append("eval")
|
871 |
+
raw_datasets["eval"] = load_dataset(
|
872 |
+
dataset_dict["name"],
|
873 |
+
dataset_dict["config"],
|
874 |
+
split=dataset_dict["split"],
|
875 |
+
cache_dir=data_args.dataset_cache_dir,
|
876 |
+
token=model_args.token,
|
877 |
+
streaming=data_args.streaming,
|
878 |
+
)
|
879 |
+
if data_args.eval_text_column_name != "text":
|
880 |
+
raw_datasets["eval"] = raw_datasets["eval"].rename_column(data_args.eval_text_column_name, "text")
|
881 |
+
else:
|
882 |
+
# load multiple eval sets
|
883 |
+
for dataset_dict in dataset_names_dict:
|
884 |
+
if dataset_dict["name"] == "esb/diagnostic-dataset":
|
885 |
+
# for the ESB diagnostic dataset, the dataset name is effectively the config
|
886 |
+
pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}"
|
887 |
+
else:
|
888 |
+
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
|
889 |
+
all_eval_splits.append(pretty_name)
|
890 |
+
raw_datasets[pretty_name] = load_dataset(
|
891 |
+
dataset_dict["name"],
|
892 |
+
dataset_dict["config"],
|
893 |
+
split=dataset_dict["split"],
|
894 |
+
cache_dir=data_args.dataset_cache_dir,
|
895 |
+
token=model_args.token,
|
896 |
+
streaming=data_args.streaming,
|
897 |
+
)
|
898 |
+
# make column names consistent (text, audio)
|
899 |
+
if dataset_dict["text_column_name"] != "text":
|
900 |
+
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
|
901 |
+
dataset_dict["text_column_name"], "text"
|
902 |
+
)
|
903 |
+
raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
|
904 |
+
set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"}
|
905 |
+
)
|
906 |
+
|
907 |
+
if not training_args.do_train and not training_args.do_eval:
|
908 |
+
raise ValueError(
|
909 |
+
"Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
|
910 |
+
)
|
911 |
+
|
912 |
+
# 7. Load pretrained model, tokenizer, and feature extractor
|
913 |
+
config = WhisperConfig.from_pretrained(
|
914 |
+
(model_args.config_name if model_args.config_name else model_args.model_name_or_path),
|
915 |
+
cache_dir=model_args.cache_dir,
|
916 |
+
revision=model_args.model_revision,
|
917 |
+
token=model_args.token,
|
918 |
+
)
|
919 |
+
feature_extractor = WhisperFeatureExtractor.from_pretrained(
|
920 |
+
(model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path),
|
921 |
+
cache_dir=model_args.cache_dir,
|
922 |
+
revision=model_args.model_revision,
|
923 |
+
token=model_args.token,
|
924 |
+
)
|
925 |
+
tokenizer = WhisperTokenizerFast.from_pretrained(
|
926 |
+
(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
|
927 |
+
cache_dir=model_args.cache_dir,
|
928 |
+
use_fast=model_args.use_fast_tokenizer,
|
929 |
+
revision=model_args.model_revision,
|
930 |
+
token=model_args.token,
|
931 |
+
)
|
932 |
+
|
933 |
+
# override timestamp tokens until tokenizer issues are fixed in transformers
|
934 |
+
timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)]
|
935 |
+
tokenizer.add_tokens(timestamps)
|
936 |
+
|
937 |
+
# The teacher model can safely be cast to the dtype of training since we don't
|
938 |
+
# update the params
|
939 |
+
teacher_model = WhisperForConditionalGeneration.from_pretrained(
|
940 |
+
model_args.teacher_model_name_or_path,
|
941 |
+
cache_dir=model_args.cache_dir,
|
942 |
+
token=model_args.token,
|
943 |
+
low_cpu_mem_usage=True,
|
944 |
+
torch_dtype=teacher_dtype,
|
945 |
+
attn_implementation=model_args.attn_implementation,
|
946 |
+
)
|
947 |
+
|
948 |
+
student_model = WhisperForConditionalGeneration.from_pretrained(
|
949 |
+
model_args.model_name_or_path,
|
950 |
+
config=config,
|
951 |
+
cache_dir=model_args.cache_dir,
|
952 |
+
revision=model_args.model_revision,
|
953 |
+
subfolder=model_args.subfolder,
|
954 |
+
token=model_args.token,
|
955 |
+
low_cpu_mem_usage=True,
|
956 |
+
attn_implementation=model_args.attn_implementation,
|
957 |
+
)
|
958 |
+
|
959 |
+
if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None:
|
960 |
+
raise ValueError(
|
961 |
+
f"Make sure that `config.decoder_start_token_id` is correctly defined for both the "
|
962 |
+
f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the "
|
963 |
+
f"student and {teacher_model.config.decoder_start_token_id} for the teacher."
|
964 |
+
)
|
965 |
+
|
966 |
+
# enable gradient checkpointing if necessary
|
967 |
+
if training_args.gradient_checkpointing:
|
968 |
+
student_model.gradient_checkpointing_enable()
|
969 |
+
|
970 |
+
def set_trainable_parameters(module, requires_grad=False):
|
971 |
+
for param in module.parameters():
|
972 |
+
param.requires_grad = requires_grad
|
973 |
+
module._requires_grad = requires_grad
|
974 |
+
|
975 |
+
# freeze student encoder if necessary
|
976 |
+
if training_args.freeze_encoder:
|
977 |
+
set_trainable_parameters(student_model.model.encoder, requires_grad=False)
|
978 |
+
student_model.model.encoder.gradient_checkpointing = False
|
979 |
+
|
980 |
+
if training_args.freeze_embed_positions:
|
981 |
+
# set_trainable_parameters(student_model.model.decoder.embed_tokens, requires_grad=False)
|
982 |
+
set_trainable_parameters(student_model.model.decoder.embed_positions, requires_grad=False)
|
983 |
+
if student_model.model.decoder.gradient_checkpointing:
|
984 |
+
logger.info(
|
985 |
+
"Disabling gradient checkpointing in the decoder since it's incompatible with `freeze_embed_positions`."
|
986 |
+
)
|
987 |
+
|
988 |
+
share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model
|
989 |
+
if share_hidden_states:
|
990 |
+
# tie the weights for the teacher encoder if we're freezing the student and it's the same as the teacher
|
991 |
+
teacher_model.model.encoder = student_model.model.encoder
|
992 |
+
|
993 |
+
if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual:
|
994 |
+
# We need to set the language and task ids for previously multilingual checkpoints
|
995 |
+
is_multilingual = True
|
996 |
+
tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task, predict_timestamps=False)
|
997 |
+
student_model.generation_config.update(
|
998 |
+
**{
|
999 |
+
"language": data_args.language,
|
1000 |
+
"task": data_args.task,
|
1001 |
+
}
|
1002 |
+
)
|
1003 |
+
elif data_args.language is not None:
|
1004 |
+
raise ValueError(
|
1005 |
+
"Setting language token for an English-only checkpoint is not permitted. The language argument should "
|
1006 |
+
"only be set for multilingual checkpoints."
|
1007 |
+
)
|
1008 |
+
else:
|
1009 |
+
is_multilingual = False
|
1010 |
+
|
1011 |
+
# 8. Create a single speech processor - make sure all processes wait until data is saved
|
1012 |
+
if accelerator.is_main_process:
|
1013 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
1014 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
1015 |
+
# save the config and generation config as well
|
1016 |
+
config.save_pretrained(training_args.output_dir)
|
1017 |
+
student_model.generation_config.save_pretrained(training_args.output_dir)
|
1018 |
+
|
1019 |
+
accelerator.wait_for_everyone()
|
1020 |
+
processor = WhisperProcessor.from_pretrained(training_args.output_dir)
|
1021 |
+
|
1022 |
+
# 9. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
|
1023 |
+
# so we just need to set the correct target sampling rate.
|
1024 |
+
sampling_rate = feature_extractor.sampling_rate
|
1025 |
+
raw_datasets = raw_datasets.cast_column(
|
1026 |
+
data_args.audio_column_name,
|
1027 |
+
datasets.features.Audio(sampling_rate=sampling_rate),
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
# 10. Preprocessing the datasets: we need to read the audio files as arrays and tokenize the targets.
|
1031 |
+
# 10.1: Define the pre-processing constants
|
1032 |
+
max_input_length = int(data_args.max_duration_in_seconds * sampling_rate)
|
1033 |
+
min_input_length = int(data_args.min_duration_in_seconds * sampling_rate)
|
1034 |
+
max_label_length = (
|
1035 |
+
data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length
|
1036 |
+
)
|
1037 |
+
|
1038 |
+
timestamp_probability = data_args.timestamp_probability
|
1039 |
+
condition_on_prev_probability = data_args.condition_on_prev_probability
|
1040 |
+
return_timestamps = data_args.return_timestamps if timestamp_probability > 0 else False
|
1041 |
+
|
1042 |
+
timestamp_ids = tokenizer.timestamp_ids()
|
1043 |
+
timestamp_begin = tokenizer.all_special_ids[-1]
|
1044 |
+
timestamp_position = 3 if is_multilingual else 1
|
1045 |
+
|
1046 |
+
decoder_start_token_id = student_model.config.decoder_start_token_id # <|startoftranscript|>
|
1047 |
+
decoder_prev_token_id = tokenizer.all_special_ids[-3] # <|startofprev|>
|
1048 |
+
prompt_cutoff_length = max_label_length // 2
|
1049 |
+
|
1050 |
+
num_workers = data_args.preprocessing_num_workers
|
1051 |
+
dataloader_num_workers = training_args.dataloader_num_workers
|
1052 |
+
prefetch_factor = 2 # training_args.dataloader_prefetch_factor
|
1053 |
+
|
1054 |
+
metric = evaluate.load("wer")
|
1055 |
+
normalizer = (
|
1056 |
+
BasicTextNormalizer()
|
1057 |
+
if data_args.language is not None
|
1058 |
+
else EnglishTextNormalizer(tokenizer.english_spelling_normalizer)
|
1059 |
+
)
|
1060 |
+
wer_threshold = data_args.wer_threshold
|
1061 |
+
use_pseudo_labels = data_args.use_pseudo_labels
|
1062 |
+
train_text_column_name = "whisper_transcript" if use_pseudo_labels else "text"
|
1063 |
+
|
1064 |
+
# 10.2: filter based on maximum number of training/evaluation samples
|
1065 |
+
if training_args.do_train and data_args.max_train_samples is not None:
|
1066 |
+
raw_datasets["train"] = (
|
1067 |
+
raw_datasets["train"].take(data_args.max_train_samples)
|
1068 |
+
if data_args.streaming
|
1069 |
+
else raw_datasets["train"].select(range(data_args.max_train_samples))
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
if training_args.do_eval and data_args.max_eval_samples is not None:
|
1073 |
+
for eval_split in all_eval_splits:
|
1074 |
+
raw_datasets[eval_split] = (
|
1075 |
+
raw_datasets[eval_split].take(data_args.max_eval_samples)
|
1076 |
+
if data_args.streaming
|
1077 |
+
else raw_datasets[eval_split].select(range(data_args.max_eval_samples))
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
# 10.3: filter training data based on WER threshold -> this is KEY to good distillation performance
|
1081 |
+
def is_wer_in_range(ground_truth, whisper_transcript):
|
1082 |
+
norm_ground_truth = normalizer(ground_truth)
|
1083 |
+
if whisper_transcript is not None and whisper_transcript.upper() == whisper_transcript:
|
1084 |
+
# filter entirely upper-case transcriptions: these are erroneous generations from large-v3
|
1085 |
+
return False
|
1086 |
+
elif len(norm_ground_truth) > 0 and whisper_transcript is not None:
|
1087 |
+
norm_whisper_transcript = normalizer(whisper_transcript)
|
1088 |
+
wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth])
|
1089 |
+
return wer < wer_threshold
|
1090 |
+
else:
|
1091 |
+
# filter automatically since we can't know the WER
|
1092 |
+
return False
|
1093 |
+
|
1094 |
+
filter_by_wer_threshold = partial(
|
1095 |
+
raw_datasets["train"].filter,
|
1096 |
+
function=is_wer_in_range,
|
1097 |
+
input_columns=["text", "whisper_transcript"],
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
if wer_threshold is not None and use_pseudo_labels:
|
1101 |
+
with accelerator.main_process_first():
|
1102 |
+
raw_datasets["train"] = (
|
1103 |
+
filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer")
|
1104 |
+
if not data_args.streaming
|
1105 |
+
else filter_by_wer_threshold()
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
# 10.4: pre-process training/evaluation datasets
|
1109 |
+
def prepare_train_dataset(batch):
|
1110 |
+
"""
|
1111 |
+
Pre-process the raw dataset in a three stage process:
|
1112 |
+
1. Convert the audio arrays to log-mel spectrogram inputs
|
1113 |
+
2. Possibly filter the timestamp tokens from the token ids (depending on the timestamp probability)
|
1114 |
+
3. Possibly add prompt tokens if conditioning on previous text (depending on the conditioning probability)
|
1115 |
+
"""
|
1116 |
+
# process audio input
|
1117 |
+
audio = [sample["array"] for sample in batch["audio"]]
|
1118 |
+
inputs = feature_extractor(audio, sampling_rate=sampling_rate)
|
1119 |
+
batch["input_features"] = inputs.input_features
|
1120 |
+
batch["input_length"] = [len(sample) for sample in audio]
|
1121 |
+
|
1122 |
+
# process text targets - for training these are the Whisper-generated pseudo-labels
|
1123 |
+
input_str_batched = batch[train_text_column_name]
|
1124 |
+
condition_on_prev_batched = batch.get("condition_on_prev", len(input_str_batched) * [None])
|
1125 |
+
|
1126 |
+
all_token_ids = []
|
1127 |
+
all_token_ids_unprompted = []
|
1128 |
+
for prev_ids, input_str in zip(condition_on_prev_batched, input_str_batched):
|
1129 |
+
token_ids = tokenizer(input_str, add_special_tokens=not use_pseudo_labels).input_ids
|
1130 |
+
|
1131 |
+
# check whether we have timestamps in the PLs and filter if required
|
1132 |
+
has_timestamps = len(set(token_ids) & set(timestamp_ids)) > 0
|
1133 |
+
if has_timestamps:
|
1134 |
+
# sample from binomial distribution to get probability of training on timestamps
|
1135 |
+
predict_timestamps = bool(np.random.binomial(1, timestamp_probability))
|
1136 |
+
if not predict_timestamps:
|
1137 |
+
# filter timestamps and insert the <|notimestamps|> task token
|
1138 |
+
token_ids = [token for token in token_ids if token < timestamp_begin]
|
1139 |
+
token_ids.insert(timestamp_position, timestamp_begin)
|
1140 |
+
|
1141 |
+
all_token_ids_unprompted.append(token_ids)
|
1142 |
+
# check whether to condition on previous text - we do this with probability condition_on_prev_probability
|
1143 |
+
condition_on_prev = bool(np.random.binomial(1, condition_on_prev_probability))
|
1144 |
+
if not condition_on_prev:
|
1145 |
+
prev_ids = None
|
1146 |
+
elif "condition_on_prev" not in batch and len(all_token_ids_unprompted) > 1:
|
1147 |
+
# prompt ids are the penultimate token ids in the batch
|
1148 |
+
prev_ids = all_token_ids_unprompted[-2]
|
1149 |
+
|
1150 |
+
if prev_ids is not None:
|
1151 |
+
if has_timestamps and not predict_timestamps:
|
1152 |
+
# filter timestamp ids from prompt when not predicting timestamps
|
1153 |
+
prev_ids = [token for token in prev_ids if token < timestamp_begin]
|
1154 |
+
|
1155 |
+
# check that the length of the prompt does not exceed more than half the max label length (224)
|
1156 |
+
if len(prev_ids) > prompt_cutoff_length:
|
1157 |
+
prev_ids = prev_ids[-prompt_cutoff_length + 1 :]
|
1158 |
+
prev_ids = [decoder_prev_token_id] + prev_ids
|
1159 |
+
|
1160 |
+
# and that the total length of the labels does not exceed the max label length (448)
|
1161 |
+
if len(prev_ids + token_ids) > max_label_length:
|
1162 |
+
trim_length = len(prev_ids + token_ids) - max_label_length + 1
|
1163 |
+
prev_ids = prev_ids[trim_length:]
|
1164 |
+
prev_ids = [decoder_prev_token_id] + prev_ids
|
1165 |
+
|
1166 |
+
token_ids = prev_ids + token_ids
|
1167 |
+
|
1168 |
+
all_token_ids.append(token_ids)
|
1169 |
+
|
1170 |
+
batch["labels"] = all_token_ids
|
1171 |
+
return batch
|
1172 |
+
|
1173 |
+
def prepare_eval_dataset(batch):
|
1174 |
+
# process audio input
|
1175 |
+
sample = batch["audio"]
|
1176 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
1177 |
+
batch["input_features"] = inputs.input_features[0]
|
1178 |
+
batch["input_length"] = len(sample["array"])
|
1179 |
+
|
1180 |
+
# process targets - for evaluation these are the ground-truth transcriptions
|
1181 |
+
input_str = batch["text"]
|
1182 |
+
batch["labels"] = tokenizer(input_str).input_ids
|
1183 |
+
return batch
|
1184 |
+
|
1185 |
+
vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
|
1186 |
+
if training_args.do_train:
|
1187 |
+
# with streaming mode we can only have 1 worker, whereas with non-streaming
|
1188 |
+
# we can use `num_workers` (which is much faster)
|
1189 |
+
# We gate the pre-processing function accordingly
|
1190 |
+
map_fn_train = partial(
|
1191 |
+
raw_datasets["train"].map,
|
1192 |
+
function=prepare_train_dataset,
|
1193 |
+
remove_columns=raw_datasets_train_features,
|
1194 |
+
batched=True,
|
1195 |
+
batch_size=data_args.preprocessing_batch_size,
|
1196 |
+
)
|
1197 |
+
with accelerator.main_process_first():
|
1198 |
+
vectorized_datasets["train"] = (
|
1199 |
+
map_fn_train(num_proc=num_workers, desc="preprocess train dataset")
|
1200 |
+
if not data_args.streaming
|
1201 |
+
else map_fn_train()
|
1202 |
+
)
|
1203 |
+
if training_args.do_eval:
|
1204 |
+
for eval_split in all_eval_splits:
|
1205 |
+
raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys())
|
1206 |
+
map_fn_eval = partial(
|
1207 |
+
raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features
|
1208 |
+
)
|
1209 |
+
with accelerator.main_process_first():
|
1210 |
+
vectorized_datasets[eval_split] = (
|
1211 |
+
map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset")
|
1212 |
+
if not data_args.streaming
|
1213 |
+
else map_fn_eval()
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
# 10.5: Filter training data with inputs longer than `max_input_length`
|
1217 |
+
def is_audio_in_length_range(length):
|
1218 |
+
return min_input_length < length < max_input_length
|
1219 |
+
|
1220 |
+
filter_by_audio_fn = partial(
|
1221 |
+
vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"]
|
1222 |
+
)
|
1223 |
+
with accelerator.main_process_first():
|
1224 |
+
vectorized_datasets = (
|
1225 |
+
filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length")
|
1226 |
+
if not data_args.streaming
|
1227 |
+
else filter_by_audio_fn()
|
1228 |
+
)
|
1229 |
+
|
1230 |
+
# 10.6: Filter training data with labels longer than `max_label_length`
|
1231 |
+
def is_labels_in_length_range(labels):
|
1232 |
+
return 0 < len(labels) <= max_label_length
|
1233 |
+
|
1234 |
+
filter_by_labels_fn = partial(
|
1235 |
+
vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"]
|
1236 |
+
)
|
1237 |
+
with accelerator.main_process_first():
|
1238 |
+
vectorized_datasets = (
|
1239 |
+
filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset")
|
1240 |
+
if not data_args.streaming
|
1241 |
+
else filter_by_labels_fn()
|
1242 |
+
)
|
1243 |
+
|
1244 |
+
# Pre-processing complete!
|
1245 |
+
# For large datasets it is advised to run the preprocessing on a
|
1246 |
+
# single machine first with `--preprocessing_only` since there will mostly likely
|
1247 |
+
# be a timeout when running the script in distributed mode.
|
1248 |
+
# In a second step, `--preprocessing_only` can then be set to `False` to load the
|
1249 |
+
# cached dataset
|
1250 |
+
if data_args.preprocessing_only:
|
1251 |
+
if data_args.streaming:
|
1252 |
+
raise ValueError(
|
1253 |
+
"When using streaming mode, dataset pre-processing is performed on the fly, hence there is no notion"
|
1254 |
+
"of a cached pre-processed dataset. Remove the argument `--preprocessing_only` to run pre-processing "
|
1255 |
+
"on the fly with streaming mode."
|
1256 |
+
)
|
1257 |
+
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
|
1258 |
+
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
|
1259 |
+
return
|
1260 |
+
|
1261 |
+
# 11. Define Evaluation Metrics
|
1262 |
+
def compute_metrics(preds, labels):
|
1263 |
+
# replace padded labels by the padding token
|
1264 |
+
for idx in range(len(labels)):
|
1265 |
+
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id
|
1266 |
+
|
1267 |
+
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps)
|
1268 |
+
# we do not want to group tokens when computing the metrics
|
1269 |
+
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
1270 |
+
wer_ortho = 100 * metric.compute(predictions=pred_str, references=label_str)
|
1271 |
+
|
1272 |
+
# normalize everything and re-compute the WER
|
1273 |
+
norm_pred_str = [normalizer(pred) for pred in pred_str]
|
1274 |
+
norm_label_str = [normalizer(label) for label in label_str]
|
1275 |
+
# for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here
|
1276 |
+
pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
|
1277 |
+
label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
|
1278 |
+
# filtering step to only evaluate the samples that correspond to non-zero normalized references:
|
1279 |
+
norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
|
1280 |
+
norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
|
1281 |
+
|
1282 |
+
wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)
|
1283 |
+
return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str
|
1284 |
+
|
1285 |
+
# 12. Define Training Schedule
|
1286 |
+
# Store some constants
|
1287 |
+
per_device_train_batch_size = int(training_args.per_device_train_batch_size)
|
1288 |
+
train_batch_size = per_device_train_batch_size * accelerator.num_processes
|
1289 |
+
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
|
1290 |
+
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
|
1291 |
+
|
1292 |
+
if not data_args.streaming and training_args.max_steps < 0:
|
1293 |
+
num_epochs = int(training_args.num_train_epochs)
|
1294 |
+
steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
|
1295 |
+
total_train_steps = steps_per_epoch * num_epochs
|
1296 |
+
elif training_args.max_steps > 0:
|
1297 |
+
logger.info("max_steps is given, it will override any value given in num_train_epochs")
|
1298 |
+
total_train_steps = int(training_args.max_steps)
|
1299 |
+
if not data_args.streaming:
|
1300 |
+
steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
|
1301 |
+
num_epochs = int(np.ceil(total_train_steps / steps_per_epoch))
|
1302 |
+
else:
|
1303 |
+
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
|
1304 |
+
num_epochs = sys.maxsize
|
1305 |
+
steps_per_epoch = total_train_steps
|
1306 |
+
else:
|
1307 |
+
raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset")
|
1308 |
+
|
1309 |
+
if training_args.eval_steps is None:
|
1310 |
+
logger.info(
|
1311 |
+
f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}"
|
1312 |
+
)
|
1313 |
+
eval_steps = steps_per_epoch
|
1314 |
+
else:
|
1315 |
+
eval_steps = training_args.eval_steps
|
1316 |
+
|
1317 |
+
# 13. Define optimizer, LR scheduler, collator
|
1318 |
+
decay_parameters = get_parameter_names(
|
1319 |
+
student_model,
|
1320 |
+
[nn.LayerNorm],
|
1321 |
+
forbidden_module=[student_model.model.encoder] if training_args.freeze_encoder else None,
|
1322 |
+
)
|
1323 |
+
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
1324 |
+
optimizer_grouped_parameters = [
|
1325 |
+
{
|
1326 |
+
"params": [param for name, param in student_model.named_parameters() if name in decay_parameters],
|
1327 |
+
"weight_decay": training_args.weight_decay,
|
1328 |
+
},
|
1329 |
+
{
|
1330 |
+
"params": [param for name, param in student_model.named_parameters() if name not in decay_parameters],
|
1331 |
+
"weight_decay": 0.0,
|
1332 |
+
},
|
1333 |
+
]
|
1334 |
+
optimizer = torch.optim.AdamW(
|
1335 |
+
params=optimizer_grouped_parameters,
|
1336 |
+
lr=training_args.learning_rate,
|
1337 |
+
betas=(training_args.adam_beta1, training_args.adam_beta2),
|
1338 |
+
eps=training_args.adam_epsilon,
|
1339 |
+
)
|
1340 |
+
|
1341 |
+
# LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
|
1342 |
+
lr_scheduler = get_scheduler(
|
1343 |
+
name=training_args.lr_scheduler_type,
|
1344 |
+
optimizer=optimizer,
|
1345 |
+
num_warmup_steps=training_args.warmup_steps * accelerator.num_processes,
|
1346 |
+
num_training_steps=total_train_steps * accelerator.num_processes,
|
1347 |
+
)
|
1348 |
+
|
1349 |
+
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
|
1350 |
+
processor=processor,
|
1351 |
+
decoder_start_token_id=decoder_start_token_id,
|
1352 |
+
decoder_prev_token_id=decoder_prev_token_id,
|
1353 |
+
input_padding="longest",
|
1354 |
+
target_padding="max_length",
|
1355 |
+
max_target_length=max_label_length,
|
1356 |
+
)
|
1357 |
+
|
1358 |
+
# 14. Define generation arguments - we need to do this before we wrap the models in DDP
|
1359 |
+
# so that we can still access the configs
|
1360 |
+
num_beams = (
|
1361 |
+
training_args.generation_num_beams
|
1362 |
+
if training_args.generation_num_beams is not None
|
1363 |
+
else getattr(student_model.generation_config, "num_beams", 1)
|
1364 |
+
)
|
1365 |
+
|
1366 |
+
gen_kwargs = {
|
1367 |
+
"max_length": max_label_length,
|
1368 |
+
"num_beams": num_beams,
|
1369 |
+
"return_timestamps": return_timestamps,
|
1370 |
+
}
|
1371 |
+
if is_multilingual:
|
1372 |
+
# forcing the language and task tokens helps multilingual models in their generations
|
1373 |
+
gen_kwargs.update(
|
1374 |
+
{
|
1375 |
+
"language": data_args.language,
|
1376 |
+
"task": data_args.task,
|
1377 |
+
}
|
1378 |
+
)
|
1379 |
+
|
1380 |
+
# 15. Prepare everything with accelerate
|
1381 |
+
student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare(
|
1382 |
+
student_model, teacher_model, optimizer, lr_scheduler
|
1383 |
+
)
|
1384 |
+
|
1385 |
+
def kl_divergence(target_distribution, log_predicted_distribution, labels):
|
1386 |
+
kl_loss = nn.KLDivLoss(reduction="none")
|
1387 |
+
divergence = kl_loss(log_predicted_distribution, target_distribution)
|
1388 |
+
# ignore padded tokens from divergence, i.e. where labels are not set to -100
|
1389 |
+
padding_mask = labels >= 0
|
1390 |
+
padding_mask = padding_mask.unsqueeze(-1)
|
1391 |
+
divergence = divergence * padding_mask
|
1392 |
+
# take the average over the mini-batch
|
1393 |
+
divergence = divergence.sum() / padding_mask.sum()
|
1394 |
+
return divergence
|
1395 |
+
|
1396 |
+
# Define gradient update step fn
|
1397 |
+
def train_step(
|
1398 |
+
batch,
|
1399 |
+
temperature=2.0,
|
1400 |
+
):
|
1401 |
+
student_model.train()
|
1402 |
+
teacher_model.eval()
|
1403 |
+
|
1404 |
+
student_outputs = student_model(**batch)
|
1405 |
+
with torch.no_grad():
|
1406 |
+
if share_hidden_states:
|
1407 |
+
# if the student and teacher share the same frozen encoder then we don't have to recompute the
|
1408 |
+
# encoder hidden-states for the teacher model, we can just re-use from the student
|
1409 |
+
encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype))
|
1410 |
+
teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"])
|
1411 |
+
else:
|
1412 |
+
# do the full forward pass for the teacher model (encoder + decoder)
|
1413 |
+
teacher_outputs = teacher_model(**batch)
|
1414 |
+
|
1415 |
+
# CE (data) loss
|
1416 |
+
ce_loss = student_outputs.loss
|
1417 |
+
# rescale distribution by temperature to ensure gradients scale correctly
|
1418 |
+
teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1)
|
1419 |
+
# log softmax of student predictions for numerical stability
|
1420 |
+
student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1)
|
1421 |
+
# KL-divergence loss (scaled by temperature)
|
1422 |
+
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2
|
1423 |
+
|
1424 |
+
# use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
|
1425 |
+
loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
|
1426 |
+
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
|
1427 |
+
return loss, metrics
|
1428 |
+
|
1429 |
+
# Define eval fn
|
1430 |
+
def eval_step(batch):
|
1431 |
+
student_model.eval()
|
1432 |
+
teacher_model.eval()
|
1433 |
+
|
1434 |
+
with torch.no_grad():
|
1435 |
+
student_outputs = student_model(**batch)
|
1436 |
+
if share_hidden_states:
|
1437 |
+
encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype))
|
1438 |
+
teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"])
|
1439 |
+
else:
|
1440 |
+
teacher_outputs = teacher_model(**batch)
|
1441 |
+
|
1442 |
+
# CE (data) loss
|
1443 |
+
ce_loss = student_outputs.loss
|
1444 |
+
|
1445 |
+
# log softmax / softmax for numerical stability
|
1446 |
+
student_distribution = nn.functional.log_softmax(student_outputs.logits, dim=-1)
|
1447 |
+
teacher_distribution = nn.functional.softmax(teacher_outputs.logits, dim=-1)
|
1448 |
+
# temperature is always 1 for eval
|
1449 |
+
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"])
|
1450 |
+
|
1451 |
+
# use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
|
1452 |
+
loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
|
1453 |
+
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
|
1454 |
+
return metrics
|
1455 |
+
|
1456 |
+
def generate_step(batch):
|
1457 |
+
student_model.eval()
|
1458 |
+
output_ids = accelerator.unwrap_model(student_model).generate(batch["input_features"], **gen_kwargs)
|
1459 |
+
output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id)
|
1460 |
+
return output_ids
|
1461 |
+
|
1462 |
+
logger.info("***** Running training *****")
|
1463 |
+
logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
|
1464 |
+
if not data_args.streaming:
|
1465 |
+
logger.info(f" Num epochs = {num_epochs}")
|
1466 |
+
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
|
1467 |
+
logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
|
1468 |
+
logger.info(
|
1469 |
+
f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
|
1470 |
+
)
|
1471 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
1472 |
+
|
1473 |
+
# ======================== Training ================================
|
1474 |
+
train_time = 0
|
1475 |
+
train_start = time.time()
|
1476 |
+
steps_trained_progress_bar = tqdm(
|
1477 |
+
range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
|
1478 |
+
)
|
1479 |
+
continue_training = True
|
1480 |
+
epochs_trained = 0
|
1481 |
+
cur_step = 0
|
1482 |
+
|
1483 |
+
checkpoint = None
|
1484 |
+
if training_args.resume_from_checkpoint is not None:
|
1485 |
+
checkpoint = training_args.resume_from_checkpoint
|
1486 |
+
elif last_checkpoint is not None:
|
1487 |
+
checkpoint = last_checkpoint
|
1488 |
+
|
1489 |
+
if checkpoint is not None:
|
1490 |
+
accelerator.load_state(checkpoint)
|
1491 |
+
# Find num steps and epoch from saved state string pattern
|
1492 |
+
pattern = r"checkpoint-(\d+)-epoch-(\d+)"
|
1493 |
+
match = re.search(pattern, checkpoint)
|
1494 |
+
cur_step = int(match.group(1))
|
1495 |
+
epochs_trained = int(match.group(2))
|
1496 |
+
|
1497 |
+
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
|
1498 |
+
logger.info(f" Continuing training from epoch {epochs_trained}")
|
1499 |
+
logger.info(f" Continuing training from global step {cur_step}")
|
1500 |
+
|
1501 |
+
steps_trained_progress_bar.update(cur_step)
|
1502 |
+
|
1503 |
+
for epoch in range(0, epochs_trained):
|
1504 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1505 |
+
|
1506 |
+
if not data_args.streaming and training_args.max_steps < 0:
|
1507 |
+
# we know exactly the number of steps per epoch, so can skip through the required number of batches
|
1508 |
+
resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
|
1509 |
+
else:
|
1510 |
+
# Currently we don't know how many steps we've taken in the current epoch
|
1511 |
+
# So we just shuffle the dataset one extra time and start from a fresh epoch
|
1512 |
+
# This is "good enough" for our purposes but not fully correct
|
1513 |
+
resume_step = None
|
1514 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1515 |
+
else:
|
1516 |
+
resume_step = None
|
1517 |
+
|
1518 |
+
for epoch in range(epochs_trained, num_epochs):
|
1519 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1520 |
+
train_dataloader = DataLoader(
|
1521 |
+
vectorized_datasets["train"],
|
1522 |
+
collate_fn=data_collator,
|
1523 |
+
batch_size=per_device_train_batch_size,
|
1524 |
+
num_workers=dataloader_num_workers,
|
1525 |
+
prefetch_factor=prefetch_factor,
|
1526 |
+
pin_memory=training_args.dataloader_pin_memory,
|
1527 |
+
)
|
1528 |
+
train_dataloader = accelerator.prepare(train_dataloader)
|
1529 |
+
if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
|
1530 |
+
train_dataloader.dataset.set_epoch(epoch)
|
1531 |
+
|
1532 |
+
if resume_step is not None:
|
1533 |
+
# Skip the first N batches in the dataloader when resuming from a checkpoint
|
1534 |
+
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
|
1535 |
+
resume_step = None
|
1536 |
+
|
1537 |
+
for batch in train_dataloader:
|
1538 |
+
with accelerator.accumulate(student_model):
|
1539 |
+
loss, train_metric = train_step(batch, temperature=training_args.temperature)
|
1540 |
+
accelerator.backward(loss)
|
1541 |
+
if accelerator.sync_gradients:
|
1542 |
+
accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm)
|
1543 |
+
optimizer.step()
|
1544 |
+
lr_scheduler.step()
|
1545 |
+
optimizer.zero_grad()
|
1546 |
+
|
1547 |
+
# Check if the accelerator has performed an optimization step behind the scenes
|
1548 |
+
if accelerator.sync_gradients:
|
1549 |
+
steps_trained_progress_bar.update(1)
|
1550 |
+
cur_step += 1
|
1551 |
+
|
1552 |
+
if cur_step % training_args.logging_steps == 0:
|
1553 |
+
steps_trained_progress_bar.write(
|
1554 |
+
f"Step... ({cur_step} / {total_train_steps} | Loss:"
|
1555 |
+
f" {train_metric['loss']}, Learning Rate:"
|
1556 |
+
f" {lr_scheduler.get_last_lr()[0]})"
|
1557 |
+
)
|
1558 |
+
log_metric(
|
1559 |
+
accelerator,
|
1560 |
+
metrics=train_metric,
|
1561 |
+
learning_rate=lr_scheduler.get_last_lr()[0],
|
1562 |
+
train_time=train_time + time.time() - train_start,
|
1563 |
+
step=cur_step,
|
1564 |
+
epoch=epoch,
|
1565 |
+
prefix="train",
|
1566 |
+
)
|
1567 |
+
|
1568 |
+
# save checkpoint and weights after each save_steps and at the end of training
|
1569 |
+
if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
|
1570 |
+
intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
|
1571 |
+
accelerator.save_state(output_dir=intermediate_dir)
|
1572 |
+
accelerator.wait_for_everyone()
|
1573 |
+
if accelerator.is_main_process:
|
1574 |
+
rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir)
|
1575 |
+
|
1576 |
+
if training_args.push_to_hub:
|
1577 |
+
upload_folder(
|
1578 |
+
folder_path=training_args.output_dir,
|
1579 |
+
repo_id=repo_name,
|
1580 |
+
repo_type="model",
|
1581 |
+
commit_message=f"Saving train state of step {cur_step}",
|
1582 |
+
)
|
1583 |
+
|
1584 |
+
if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
|
1585 |
+
train_time += time.time() - train_start
|
1586 |
+
student_model.eval()
|
1587 |
+
# ======================== Evaluating ==============================
|
1588 |
+
for eval_split in all_eval_splits:
|
1589 |
+
eval_metrics = []
|
1590 |
+
eval_preds = []
|
1591 |
+
eval_labels = []
|
1592 |
+
eval_start = time.time()
|
1593 |
+
|
1594 |
+
validation_dataloader = DataLoader(
|
1595 |
+
vectorized_datasets[eval_split],
|
1596 |
+
collate_fn=data_collator,
|
1597 |
+
batch_size=per_device_eval_batch_size,
|
1598 |
+
drop_last=False,
|
1599 |
+
num_workers=dataloader_num_workers,
|
1600 |
+
prefetch_factor=prefetch_factor,
|
1601 |
+
pin_memory=training_args.dataloader_pin_memory,
|
1602 |
+
)
|
1603 |
+
validation_dataloader = accelerator.prepare(validation_dataloader)
|
1604 |
+
|
1605 |
+
for batch in tqdm(
|
1606 |
+
validation_dataloader,
|
1607 |
+
desc=f"Evaluating {eval_split}...",
|
1608 |
+
position=2,
|
1609 |
+
disable=not accelerator.is_local_main_process,
|
1610 |
+
):
|
1611 |
+
# Model forward
|
1612 |
+
eval_metric = eval_step(batch)
|
1613 |
+
eval_metric = accelerator.gather_for_metrics(eval_metric)
|
1614 |
+
eval_metrics.append(eval_metric)
|
1615 |
+
|
1616 |
+
# generation
|
1617 |
+
if training_args.predict_with_generate:
|
1618 |
+
generated_ids = generate_step(batch)
|
1619 |
+
# Gather all predictions and targets
|
1620 |
+
generated_ids, labels = accelerator.gather_for_metrics(
|
1621 |
+
(generated_ids, batch["labels"])
|
1622 |
+
)
|
1623 |
+
eval_preds.extend(generated_ids)
|
1624 |
+
eval_labels.extend(labels)
|
1625 |
+
|
1626 |
+
eval_time = time.time() - eval_start
|
1627 |
+
# normalize eval metrics
|
1628 |
+
eval_metrics = {
|
1629 |
+
key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0]
|
1630 |
+
}
|
1631 |
+
|
1632 |
+
# compute WER metric
|
1633 |
+
wer_desc = ""
|
1634 |
+
if training_args.predict_with_generate:
|
1635 |
+
wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(
|
1636 |
+
eval_preds, eval_labels
|
1637 |
+
)
|
1638 |
+
eval_metrics.update(wer_metric)
|
1639 |
+
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
|
1640 |
+
log_pred(
|
1641 |
+
accelerator,
|
1642 |
+
pred_str,
|
1643 |
+
label_str,
|
1644 |
+
norm_pred_str,
|
1645 |
+
norm_label_str,
|
1646 |
+
step=cur_step,
|
1647 |
+
prefix=eval_split,
|
1648 |
+
)
|
1649 |
+
|
1650 |
+
# Print metrics and update progress bar
|
1651 |
+
steps_trained_progress_bar.write(
|
1652 |
+
f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
|
1653 |
+
f" {wer_desc})"
|
1654 |
+
)
|
1655 |
+
|
1656 |
+
log_metric(
|
1657 |
+
accelerator,
|
1658 |
+
metrics=eval_metrics,
|
1659 |
+
train_time=eval_time,
|
1660 |
+
step=cur_step,
|
1661 |
+
epoch=epoch,
|
1662 |
+
prefix=eval_split,
|
1663 |
+
)
|
1664 |
+
|
1665 |
+
# flush the train metrics
|
1666 |
+
train_start = time.time()
|
1667 |
+
|
1668 |
+
# break condition
|
1669 |
+
if cur_step == total_train_steps:
|
1670 |
+
|
1671 |
+
# un-wrap student model for save
|
1672 |
+
student_model = accelerator.unwrap_model(student_model)
|
1673 |
+
student_model.save_pretrained(training_args.output_dir)
|
1674 |
+
|
1675 |
+
if training_args.push_to_hub:
|
1676 |
+
upload_folder(
|
1677 |
+
folder_path=training_args.output_dir,
|
1678 |
+
repo_id=repo_name,
|
1679 |
+
repo_type="model",
|
1680 |
+
commit_message=f"Saving final weights of step {cur_step}",
|
1681 |
+
)
|
1682 |
+
|
1683 |
+
continue_training = False
|
1684 |
+
break
|
1685 |
+
|
1686 |
+
if not continue_training:
|
1687 |
+
break
|
1688 |
+
|
1689 |
+
accelerator.end_training()
|
1690 |
+
|
1691 |
+
|
1692 |
+
if __name__ == "__main__":
|
1693 |
+
main()
|
special_tokens_map.json
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|startoftranscript|>",
|
4 |
+
"<|en|>",
|
5 |
+
"<|zh|>",
|
6 |
+
"<|de|>",
|
7 |
+
"<|es|>",
|
8 |
+
"<|ru|>",
|
9 |
+
"<|ko|>",
|
10 |
+
"<|fr|>",
|
11 |
+
"<|ja|>",
|
12 |
+
"<|pt|>",
|
13 |
+
"<|tr|>",
|
14 |
+
"<|pl|>",
|
15 |
+
"<|ca|>",
|
16 |
+
"<|nl|>",
|
17 |
+
"<|ar|>",
|
18 |
+
"<|sv|>",
|
19 |
+
"<|it|>",
|
20 |
+
"<|id|>",
|
21 |
+
"<|hi|>",
|
22 |
+
"<|fi|>",
|
23 |
+
"<|vi|>",
|
24 |
+
"<|he|>",
|
25 |
+
"<|uk|>",
|
26 |
+
"<|el|>",
|
27 |
+
"<|ms|>",
|
28 |
+
"<|cs|>",
|
29 |
+
"<|ro|>",
|
30 |
+
"<|da|>",
|
31 |
+
"<|hu|>",
|
32 |
+
"<|ta|>",
|
33 |
+
"<|no|>",
|
34 |
+
"<|th|>",
|
35 |
+
"<|ur|>",
|
36 |
+
"<|hr|>",
|
37 |
+
"<|bg|>",
|
38 |
+
"<|lt|>",
|
39 |
+
"<|la|>",
|
40 |
+
"<|mi|>",
|
41 |
+
"<|ml|>",
|
42 |
+
"<|cy|>",
|
43 |
+
"<|sk|>",
|
44 |
+
"<|te|>",
|
45 |
+
"<|fa|>",
|
46 |
+
"<|lv|>",
|
47 |
+
"<|bn|>",
|
48 |
+
"<|sr|>",
|
49 |
+
"<|az|>",
|
50 |
+
"<|sl|>",
|
51 |
+
"<|kn|>",
|
52 |
+
"<|et|>",
|
53 |
+
"<|mk|>",
|
54 |
+
"<|br|>",
|
55 |
+
"<|eu|>",
|
56 |
+
"<|is|>",
|
57 |
+
"<|hy|>",
|
58 |
+
"<|ne|>",
|
59 |
+
"<|mn|>",
|
60 |
+
"<|bs|>",
|
61 |
+
"<|kk|>",
|
62 |
+
"<|sq|>",
|
63 |
+
"<|sw|>",
|
64 |
+
"<|gl|>",
|
65 |
+
"<|mr|>",
|
66 |
+
"<|pa|>",
|
67 |
+
"<|si|>",
|
68 |
+
"<|km|>",
|
69 |
+
"<|sn|>",
|
70 |
+
"<|yo|>",
|
71 |
+
"<|so|>",
|
72 |
+
"<|af|>",
|
73 |
+
"<|oc|>",
|
74 |
+
"<|ka|>",
|
75 |
+
"<|be|>",
|
76 |
+
"<|tg|>",
|
77 |
+
"<|sd|>",
|
78 |
+
"<|gu|>",
|
79 |
+
"<|am|>",
|
80 |
+
"<|yi|>",
|
81 |
+
"<|lo|>",
|
82 |
+
"<|uz|>",
|
83 |
+
"<|fo|>",
|
84 |
+
"<|ht|>",
|
85 |
+
"<|ps|>",
|
86 |
+
"<|tk|>",
|
87 |
+
"<|nn|>",
|
88 |
+
"<|mt|>",
|
89 |
+
"<|sa|>",
|
90 |
+
"<|lb|>",
|
91 |
+
"<|my|>",
|
92 |
+
"<|bo|>",
|
93 |
+
"<|tl|>",
|
94 |
+
"<|mg|>",
|
95 |
+
"<|as|>",
|
96 |
+
"<|tt|>",
|
97 |
+
"<|haw|>",
|
98 |
+
"<|ln|>",
|
99 |
+
"<|ha|>",
|
100 |
+
"<|ba|>",
|
101 |
+
"<|jw|>",
|
102 |
+
"<|su|>",
|
103 |
+
"<|yue|>",
|
104 |
+
"<|translate|>",
|
105 |
+
"<|transcribe|>",
|
106 |
+
"<|startoflm|>",
|
107 |
+
"<|startofprev|>",
|
108 |
+
"<|nospeech|>",
|
109 |
+
"<|notimestamps|>"
|
110 |
+
],
|
111 |
+
"bos_token": {
|
112 |
+
"content": "<|endoftext|>",
|
113 |
+
"lstrip": false,
|
114 |
+
"normalized": false,
|
115 |
+
"rstrip": false,
|
116 |
+
"single_word": false
|
117 |
+
},
|
118 |
+
"eos_token": {
|
119 |
+
"content": "<|endoftext|>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false
|
124 |
+
},
|
125 |
+
"pad_token": {
|
126 |
+
"content": "<|endoftext|>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false
|
131 |
+
},
|
132 |
+
"unk_token": {
|
133 |
+
"content": "<|endoftext|>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false
|
138 |
+
}
|
139 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|