|
|
import os |
|
|
from diffusers import FluxPipeline, AutoencoderKL, FluxTransformer2DModel |
|
|
from diffusers.image_processor import VaeImageProcessor |
|
|
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel, CLIPTextConfig, T5Config |
|
|
import torch |
|
|
import gc |
|
|
from PIL import Image |
|
|
from pipelines.models import TextToImageRequest |
|
|
from torch import Generator |
|
|
from time import perf_counter |
|
|
|
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" |
|
|
|
|
|
class EightQuantize: |
|
|
def __init__(self, bits=8): |
|
|
self.bits = bits |
|
|
self.qmax = (1 << bits) - 1 |
|
|
|
|
|
def __call__(self, x): |
|
|
scale = x.max() / self.qmax |
|
|
x_quant = torch.clip(torch.round(x / scale), 0, self.qmax) |
|
|
return x_quant * scale |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CHECKPOINT = "black-forest-labs/FLUX.1-schnell" |
|
|
DTYPE = torch.bfloat16 |
|
|
NUM_STEPS = 4 |
|
|
|
|
|
def empty_cache(): |
|
|
gc.collect() |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.reset_max_memory_allocated() |
|
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
|
|
def load_pipeline() -> FluxPipeline: |
|
|
empty_cache() |
|
|
is_quantize = 0 |
|
|
_pipe = None |
|
|
pipe = FluxPipeline.from_pretrained(CHECKPOINT, torch_dtype=DTYPE) |
|
|
|
|
|
pipe.text_encoder_2.to(memory_format=torch.channels_last) |
|
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
|
|
|
|
pipe.vae.to(memory_format=torch.channels_last) |
|
|
pipe.vae = torch.compile(pipe.vae) |
|
|
pipe._exclude_from_cpu_offload = ["vae"] |
|
|
|
|
|
try: |
|
|
if is_quantize: |
|
|
quantizer = EightQuantize() |
|
|
with torch.no_grad(): |
|
|
for param in _pipe.vae.parameters(): |
|
|
param.data = quantizer(param.data) |
|
|
except Exception as e: |
|
|
print(f"Quantization warning: {e}") |
|
|
|
|
|
pipe.enable_sequential_cpu_offload() |
|
|
|
|
|
empty_cache() |
|
|
pipe("dog", guidance_scale=0.0, max_sequence_length=256, num_inference_steps=4) |
|
|
return pipe |
|
|
|
|
|
@torch.inference_mode() |
|
|
def infer(request: TextToImageRequest, _pipeline: FluxPipeline) -> Image: |
|
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
|
|
if request.seed is None: |
|
|
generator = None |
|
|
else: |
|
|
generator = Generator(device="cuda").manual_seed(request.seed) |
|
|
|
|
|
empty_cache() |
|
|
image = _pipeline(prompt=request.prompt, |
|
|
width=request.width, |
|
|
height=request.height, |
|
|
guidance_scale=0.0, |
|
|
generator=generator, |
|
|
output_type="pil", |
|
|
max_sequence_length=256, |
|
|
num_inference_steps=NUM_STEPS).images[0] |
|
|
return image |