commit files to HF hub
Browse files- all_results.json +8 -0
- best_configure.yaml +539 -0
- config.json +35 -0
- eval_results.json +8 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"eval_accuracy": 0.9140625,
|
4 |
+
"eval_loss": 0.4163683354854584,
|
5 |
+
"eval_runtime": 7.4147,
|
6 |
+
"eval_samples_per_second": 34.526,
|
7 |
+
"eval_steps_per_second": 4.316
|
8 |
+
}
|
best_configure.yaml
ADDED
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
advance: null
|
2 |
+
approach: post_training_dynamic_quant
|
3 |
+
bf16_ops_list: []
|
4 |
+
calib_iteration: 1
|
5 |
+
calib_sampling_size: 100
|
6 |
+
framework: pytorch
|
7 |
+
op:
|
8 |
+
? !!python/tuple
|
9 |
+
- distilbert.transformer.layer.0.attention.q_lin
|
10 |
+
- Linear
|
11 |
+
: weight:
|
12 |
+
dtype: int8
|
13 |
+
scheme: sym
|
14 |
+
granularity: per_channel
|
15 |
+
algorithm: minmax
|
16 |
+
bit: 7.0
|
17 |
+
activation:
|
18 |
+
dtype: uint8
|
19 |
+
scheme: asym
|
20 |
+
granularity: per_tensor
|
21 |
+
algorithm: minmax
|
22 |
+
? !!python/tuple
|
23 |
+
- distilbert.transformer.layer.0.attention.k_lin
|
24 |
+
- Linear
|
25 |
+
: weight:
|
26 |
+
dtype: int8
|
27 |
+
scheme: sym
|
28 |
+
granularity: per_channel
|
29 |
+
algorithm: minmax
|
30 |
+
bit: 7.0
|
31 |
+
activation:
|
32 |
+
dtype: uint8
|
33 |
+
scheme: asym
|
34 |
+
granularity: per_tensor
|
35 |
+
algorithm: minmax
|
36 |
+
? !!python/tuple
|
37 |
+
- distilbert.transformer.layer.0.attention.v_lin
|
38 |
+
- Linear
|
39 |
+
: weight:
|
40 |
+
dtype: int8
|
41 |
+
scheme: sym
|
42 |
+
granularity: per_channel
|
43 |
+
algorithm: minmax
|
44 |
+
bit: 7.0
|
45 |
+
activation:
|
46 |
+
dtype: uint8
|
47 |
+
scheme: asym
|
48 |
+
granularity: per_tensor
|
49 |
+
algorithm: minmax
|
50 |
+
? !!python/tuple
|
51 |
+
- distilbert.transformer.layer.0.attention.out_lin
|
52 |
+
- Linear
|
53 |
+
: weight:
|
54 |
+
dtype: int8
|
55 |
+
scheme: sym
|
56 |
+
granularity: per_channel
|
57 |
+
algorithm: minmax
|
58 |
+
bit: 7.0
|
59 |
+
activation:
|
60 |
+
dtype: uint8
|
61 |
+
scheme: asym
|
62 |
+
granularity: per_tensor
|
63 |
+
algorithm: minmax
|
64 |
+
? !!python/tuple
|
65 |
+
- distilbert.transformer.layer.0.ffn.lin1
|
66 |
+
- Linear
|
67 |
+
: weight:
|
68 |
+
dtype: int8
|
69 |
+
scheme: sym
|
70 |
+
granularity: per_channel
|
71 |
+
algorithm: minmax
|
72 |
+
bit: 7.0
|
73 |
+
activation:
|
74 |
+
dtype: uint8
|
75 |
+
scheme: asym
|
76 |
+
granularity: per_tensor
|
77 |
+
algorithm: minmax
|
78 |
+
? !!python/tuple
|
79 |
+
- distilbert.transformer.layer.0.ffn.lin2
|
80 |
+
- Linear
|
81 |
+
: weight:
|
82 |
+
dtype: int8
|
83 |
+
scheme: sym
|
84 |
+
granularity: per_channel
|
85 |
+
algorithm: minmax
|
86 |
+
bit: 7.0
|
87 |
+
activation:
|
88 |
+
dtype: uint8
|
89 |
+
scheme: asym
|
90 |
+
granularity: per_tensor
|
91 |
+
algorithm: minmax
|
92 |
+
? !!python/tuple
|
93 |
+
- distilbert.transformer.layer.1.attention.q_lin
|
94 |
+
- Linear
|
95 |
+
: weight:
|
96 |
+
dtype: int8
|
97 |
+
scheme: sym
|
98 |
+
granularity: per_channel
|
99 |
+
algorithm: minmax
|
100 |
+
bit: 7.0
|
101 |
+
activation:
|
102 |
+
dtype: uint8
|
103 |
+
scheme: asym
|
104 |
+
granularity: per_tensor
|
105 |
+
algorithm: minmax
|
106 |
+
? !!python/tuple
|
107 |
+
- distilbert.transformer.layer.1.attention.k_lin
|
108 |
+
- Linear
|
109 |
+
: weight:
|
110 |
+
dtype: int8
|
111 |
+
scheme: sym
|
112 |
+
granularity: per_channel
|
113 |
+
algorithm: minmax
|
114 |
+
bit: 7.0
|
115 |
+
activation:
|
116 |
+
dtype: uint8
|
117 |
+
scheme: asym
|
118 |
+
granularity: per_tensor
|
119 |
+
algorithm: minmax
|
120 |
+
? !!python/tuple
|
121 |
+
- distilbert.transformer.layer.1.attention.v_lin
|
122 |
+
- Linear
|
123 |
+
: weight:
|
124 |
+
dtype: int8
|
125 |
+
scheme: sym
|
126 |
+
granularity: per_channel
|
127 |
+
algorithm: minmax
|
128 |
+
bit: 7.0
|
129 |
+
activation:
|
130 |
+
dtype: uint8
|
131 |
+
scheme: asym
|
132 |
+
granularity: per_tensor
|
133 |
+
algorithm: minmax
|
134 |
+
? !!python/tuple
|
135 |
+
- distilbert.transformer.layer.1.attention.out_lin
|
136 |
+
- Linear
|
137 |
+
: weight:
|
138 |
+
dtype: int8
|
139 |
+
scheme: sym
|
140 |
+
granularity: per_channel
|
141 |
+
algorithm: minmax
|
142 |
+
bit: 7.0
|
143 |
+
activation:
|
144 |
+
dtype: uint8
|
145 |
+
scheme: asym
|
146 |
+
granularity: per_tensor
|
147 |
+
algorithm: minmax
|
148 |
+
? !!python/tuple
|
149 |
+
- distilbert.transformer.layer.1.ffn.lin1
|
150 |
+
- Linear
|
151 |
+
: weight:
|
152 |
+
dtype: int8
|
153 |
+
scheme: sym
|
154 |
+
granularity: per_channel
|
155 |
+
algorithm: minmax
|
156 |
+
bit: 7.0
|
157 |
+
activation:
|
158 |
+
dtype: uint8
|
159 |
+
scheme: asym
|
160 |
+
granularity: per_tensor
|
161 |
+
algorithm: minmax
|
162 |
+
? !!python/tuple
|
163 |
+
- distilbert.transformer.layer.1.ffn.lin2
|
164 |
+
- Linear
|
165 |
+
: weight:
|
166 |
+
dtype: int8
|
167 |
+
scheme: sym
|
168 |
+
granularity: per_channel
|
169 |
+
algorithm: minmax
|
170 |
+
bit: 7.0
|
171 |
+
activation:
|
172 |
+
dtype: uint8
|
173 |
+
scheme: asym
|
174 |
+
granularity: per_tensor
|
175 |
+
algorithm: minmax
|
176 |
+
? !!python/tuple
|
177 |
+
- distilbert.transformer.layer.2.attention.q_lin
|
178 |
+
- Linear
|
179 |
+
: weight:
|
180 |
+
dtype: int8
|
181 |
+
scheme: sym
|
182 |
+
granularity: per_channel
|
183 |
+
algorithm: minmax
|
184 |
+
bit: 7.0
|
185 |
+
activation:
|
186 |
+
dtype: uint8
|
187 |
+
scheme: asym
|
188 |
+
granularity: per_tensor
|
189 |
+
algorithm: minmax
|
190 |
+
? !!python/tuple
|
191 |
+
- distilbert.transformer.layer.2.attention.k_lin
|
192 |
+
- Linear
|
193 |
+
: weight:
|
194 |
+
dtype: int8
|
195 |
+
scheme: sym
|
196 |
+
granularity: per_channel
|
197 |
+
algorithm: minmax
|
198 |
+
bit: 7.0
|
199 |
+
activation:
|
200 |
+
dtype: uint8
|
201 |
+
scheme: asym
|
202 |
+
granularity: per_tensor
|
203 |
+
algorithm: minmax
|
204 |
+
? !!python/tuple
|
205 |
+
- distilbert.transformer.layer.2.attention.v_lin
|
206 |
+
- Linear
|
207 |
+
: weight:
|
208 |
+
dtype: int8
|
209 |
+
scheme: sym
|
210 |
+
granularity: per_channel
|
211 |
+
algorithm: minmax
|
212 |
+
bit: 7.0
|
213 |
+
activation:
|
214 |
+
dtype: uint8
|
215 |
+
scheme: asym
|
216 |
+
granularity: per_tensor
|
217 |
+
algorithm: minmax
|
218 |
+
? !!python/tuple
|
219 |
+
- distilbert.transformer.layer.2.attention.out_lin
|
220 |
+
- Linear
|
221 |
+
: weight:
|
222 |
+
dtype: int8
|
223 |
+
scheme: sym
|
224 |
+
granularity: per_channel
|
225 |
+
algorithm: minmax
|
226 |
+
bit: 7.0
|
227 |
+
activation:
|
228 |
+
dtype: uint8
|
229 |
+
scheme: asym
|
230 |
+
granularity: per_tensor
|
231 |
+
algorithm: minmax
|
232 |
+
? !!python/tuple
|
233 |
+
- distilbert.transformer.layer.2.ffn.lin1
|
234 |
+
- Linear
|
235 |
+
: weight:
|
236 |
+
dtype: int8
|
237 |
+
scheme: sym
|
238 |
+
granularity: per_channel
|
239 |
+
algorithm: minmax
|
240 |
+
bit: 7.0
|
241 |
+
activation:
|
242 |
+
dtype: uint8
|
243 |
+
scheme: asym
|
244 |
+
granularity: per_tensor
|
245 |
+
algorithm: minmax
|
246 |
+
? !!python/tuple
|
247 |
+
- distilbert.transformer.layer.2.ffn.lin2
|
248 |
+
- Linear
|
249 |
+
: weight:
|
250 |
+
dtype: int8
|
251 |
+
scheme: sym
|
252 |
+
granularity: per_channel
|
253 |
+
algorithm: minmax
|
254 |
+
bit: 7.0
|
255 |
+
activation:
|
256 |
+
dtype: uint8
|
257 |
+
scheme: asym
|
258 |
+
granularity: per_tensor
|
259 |
+
algorithm: minmax
|
260 |
+
? !!python/tuple
|
261 |
+
- distilbert.transformer.layer.3.attention.q_lin
|
262 |
+
- Linear
|
263 |
+
: weight:
|
264 |
+
dtype: int8
|
265 |
+
scheme: sym
|
266 |
+
granularity: per_channel
|
267 |
+
algorithm: minmax
|
268 |
+
bit: 7.0
|
269 |
+
activation:
|
270 |
+
dtype: uint8
|
271 |
+
scheme: asym
|
272 |
+
granularity: per_tensor
|
273 |
+
algorithm: minmax
|
274 |
+
? !!python/tuple
|
275 |
+
- distilbert.transformer.layer.3.attention.k_lin
|
276 |
+
- Linear
|
277 |
+
: weight:
|
278 |
+
dtype: int8
|
279 |
+
scheme: sym
|
280 |
+
granularity: per_channel
|
281 |
+
algorithm: minmax
|
282 |
+
bit: 7.0
|
283 |
+
activation:
|
284 |
+
dtype: uint8
|
285 |
+
scheme: asym
|
286 |
+
granularity: per_tensor
|
287 |
+
algorithm: minmax
|
288 |
+
? !!python/tuple
|
289 |
+
- distilbert.transformer.layer.3.attention.v_lin
|
290 |
+
- Linear
|
291 |
+
: weight:
|
292 |
+
dtype: int8
|
293 |
+
scheme: sym
|
294 |
+
granularity: per_channel
|
295 |
+
algorithm: minmax
|
296 |
+
bit: 7.0
|
297 |
+
activation:
|
298 |
+
dtype: uint8
|
299 |
+
scheme: asym
|
300 |
+
granularity: per_tensor
|
301 |
+
algorithm: minmax
|
302 |
+
? !!python/tuple
|
303 |
+
- distilbert.transformer.layer.3.attention.out_lin
|
304 |
+
- Linear
|
305 |
+
: weight:
|
306 |
+
dtype: int8
|
307 |
+
scheme: sym
|
308 |
+
granularity: per_channel
|
309 |
+
algorithm: minmax
|
310 |
+
bit: 7.0
|
311 |
+
activation:
|
312 |
+
dtype: uint8
|
313 |
+
scheme: asym
|
314 |
+
granularity: per_tensor
|
315 |
+
algorithm: minmax
|
316 |
+
? !!python/tuple
|
317 |
+
- distilbert.transformer.layer.3.ffn.lin1
|
318 |
+
- Linear
|
319 |
+
: weight:
|
320 |
+
dtype: int8
|
321 |
+
scheme: sym
|
322 |
+
granularity: per_channel
|
323 |
+
algorithm: minmax
|
324 |
+
bit: 7.0
|
325 |
+
activation:
|
326 |
+
dtype: uint8
|
327 |
+
scheme: asym
|
328 |
+
granularity: per_tensor
|
329 |
+
algorithm: minmax
|
330 |
+
? !!python/tuple
|
331 |
+
- distilbert.transformer.layer.3.ffn.lin2
|
332 |
+
- Linear
|
333 |
+
: weight:
|
334 |
+
dtype: int8
|
335 |
+
scheme: sym
|
336 |
+
granularity: per_channel
|
337 |
+
algorithm: minmax
|
338 |
+
bit: 7.0
|
339 |
+
activation:
|
340 |
+
dtype: uint8
|
341 |
+
scheme: asym
|
342 |
+
granularity: per_tensor
|
343 |
+
algorithm: minmax
|
344 |
+
? !!python/tuple
|
345 |
+
- distilbert.transformer.layer.4.attention.q_lin
|
346 |
+
- Linear
|
347 |
+
: weight:
|
348 |
+
dtype: int8
|
349 |
+
scheme: sym
|
350 |
+
granularity: per_channel
|
351 |
+
algorithm: minmax
|
352 |
+
bit: 7.0
|
353 |
+
activation:
|
354 |
+
dtype: uint8
|
355 |
+
scheme: asym
|
356 |
+
granularity: per_tensor
|
357 |
+
algorithm: minmax
|
358 |
+
? !!python/tuple
|
359 |
+
- distilbert.transformer.layer.4.attention.k_lin
|
360 |
+
- Linear
|
361 |
+
: weight:
|
362 |
+
dtype: int8
|
363 |
+
scheme: sym
|
364 |
+
granularity: per_channel
|
365 |
+
algorithm: minmax
|
366 |
+
bit: 7.0
|
367 |
+
activation:
|
368 |
+
dtype: uint8
|
369 |
+
scheme: asym
|
370 |
+
granularity: per_tensor
|
371 |
+
algorithm: minmax
|
372 |
+
? !!python/tuple
|
373 |
+
- distilbert.transformer.layer.4.attention.v_lin
|
374 |
+
- Linear
|
375 |
+
: weight:
|
376 |
+
dtype: int8
|
377 |
+
scheme: sym
|
378 |
+
granularity: per_channel
|
379 |
+
algorithm: minmax
|
380 |
+
bit: 7.0
|
381 |
+
activation:
|
382 |
+
dtype: uint8
|
383 |
+
scheme: asym
|
384 |
+
granularity: per_tensor
|
385 |
+
algorithm: minmax
|
386 |
+
? !!python/tuple
|
387 |
+
- distilbert.transformer.layer.4.attention.out_lin
|
388 |
+
- Linear
|
389 |
+
: weight:
|
390 |
+
dtype: int8
|
391 |
+
scheme: sym
|
392 |
+
granularity: per_channel
|
393 |
+
algorithm: minmax
|
394 |
+
bit: 7.0
|
395 |
+
activation:
|
396 |
+
dtype: uint8
|
397 |
+
scheme: asym
|
398 |
+
granularity: per_tensor
|
399 |
+
algorithm: minmax
|
400 |
+
? !!python/tuple
|
401 |
+
- distilbert.transformer.layer.4.ffn.lin1
|
402 |
+
- Linear
|
403 |
+
: weight:
|
404 |
+
dtype: int8
|
405 |
+
scheme: sym
|
406 |
+
granularity: per_channel
|
407 |
+
algorithm: minmax
|
408 |
+
bit: 7.0
|
409 |
+
activation:
|
410 |
+
dtype: uint8
|
411 |
+
scheme: asym
|
412 |
+
granularity: per_tensor
|
413 |
+
algorithm: minmax
|
414 |
+
? !!python/tuple
|
415 |
+
- distilbert.transformer.layer.4.ffn.lin2
|
416 |
+
- Linear
|
417 |
+
: weight:
|
418 |
+
dtype: int8
|
419 |
+
scheme: sym
|
420 |
+
granularity: per_channel
|
421 |
+
algorithm: minmax
|
422 |
+
bit: 7.0
|
423 |
+
activation:
|
424 |
+
dtype: uint8
|
425 |
+
scheme: asym
|
426 |
+
granularity: per_tensor
|
427 |
+
algorithm: minmax
|
428 |
+
? !!python/tuple
|
429 |
+
- distilbert.transformer.layer.5.attention.q_lin
|
430 |
+
- Linear
|
431 |
+
: weight:
|
432 |
+
dtype: int8
|
433 |
+
scheme: sym
|
434 |
+
granularity: per_channel
|
435 |
+
algorithm: minmax
|
436 |
+
bit: 7.0
|
437 |
+
activation:
|
438 |
+
dtype: uint8
|
439 |
+
scheme: asym
|
440 |
+
granularity: per_tensor
|
441 |
+
algorithm: minmax
|
442 |
+
? !!python/tuple
|
443 |
+
- distilbert.transformer.layer.5.attention.k_lin
|
444 |
+
- Linear
|
445 |
+
: weight:
|
446 |
+
dtype: int8
|
447 |
+
scheme: sym
|
448 |
+
granularity: per_channel
|
449 |
+
algorithm: minmax
|
450 |
+
bit: 7.0
|
451 |
+
activation:
|
452 |
+
dtype: uint8
|
453 |
+
scheme: asym
|
454 |
+
granularity: per_tensor
|
455 |
+
algorithm: minmax
|
456 |
+
? !!python/tuple
|
457 |
+
- distilbert.transformer.layer.5.attention.v_lin
|
458 |
+
- Linear
|
459 |
+
: weight:
|
460 |
+
dtype: int8
|
461 |
+
scheme: sym
|
462 |
+
granularity: per_channel
|
463 |
+
algorithm: minmax
|
464 |
+
bit: 7.0
|
465 |
+
activation:
|
466 |
+
dtype: uint8
|
467 |
+
scheme: asym
|
468 |
+
granularity: per_tensor
|
469 |
+
algorithm: minmax
|
470 |
+
? !!python/tuple
|
471 |
+
- distilbert.transformer.layer.5.attention.out_lin
|
472 |
+
- Linear
|
473 |
+
: weight:
|
474 |
+
dtype: int8
|
475 |
+
scheme: sym
|
476 |
+
granularity: per_channel
|
477 |
+
algorithm: minmax
|
478 |
+
bit: 7.0
|
479 |
+
activation:
|
480 |
+
dtype: uint8
|
481 |
+
scheme: asym
|
482 |
+
granularity: per_tensor
|
483 |
+
algorithm: minmax
|
484 |
+
? !!python/tuple
|
485 |
+
- distilbert.transformer.layer.5.ffn.lin1
|
486 |
+
- Linear
|
487 |
+
: weight:
|
488 |
+
dtype: int8
|
489 |
+
scheme: sym
|
490 |
+
granularity: per_channel
|
491 |
+
algorithm: minmax
|
492 |
+
bit: 7.0
|
493 |
+
activation:
|
494 |
+
dtype: uint8
|
495 |
+
scheme: asym
|
496 |
+
granularity: per_tensor
|
497 |
+
algorithm: minmax
|
498 |
+
? !!python/tuple
|
499 |
+
- distilbert.transformer.layer.5.ffn.lin2
|
500 |
+
- Linear
|
501 |
+
: weight:
|
502 |
+
dtype: int8
|
503 |
+
scheme: sym
|
504 |
+
granularity: per_channel
|
505 |
+
algorithm: minmax
|
506 |
+
bit: 7.0
|
507 |
+
activation:
|
508 |
+
dtype: uint8
|
509 |
+
scheme: asym
|
510 |
+
granularity: per_tensor
|
511 |
+
algorithm: minmax
|
512 |
+
? !!python/tuple
|
513 |
+
- pre_classifier
|
514 |
+
- Linear
|
515 |
+
: weight:
|
516 |
+
dtype: int8
|
517 |
+
scheme: sym
|
518 |
+
granularity: per_channel
|
519 |
+
algorithm: minmax
|
520 |
+
bit: 7.0
|
521 |
+
activation:
|
522 |
+
dtype: uint8
|
523 |
+
scheme: asym
|
524 |
+
granularity: per_tensor
|
525 |
+
algorithm: minmax
|
526 |
+
? !!python/tuple
|
527 |
+
- classifier
|
528 |
+
- Linear
|
529 |
+
: weight:
|
530 |
+
dtype: int8
|
531 |
+
scheme: sym
|
532 |
+
granularity: per_channel
|
533 |
+
algorithm: minmax
|
534 |
+
bit: 7.0
|
535 |
+
activation:
|
536 |
+
dtype: uint8
|
537 |
+
scheme: asym
|
538 |
+
granularity: per_tensor
|
539 |
+
algorithm: minmax
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased-finetuned-sst-2-english",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"finetuning_task": "sst-2",
|
11 |
+
"hidden_dim": 3072,
|
12 |
+
"id2label": {
|
13 |
+
"0": "NEGATIVE",
|
14 |
+
"1": "POSITIVE"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"label2id": {
|
18 |
+
"NEGATIVE": 0,
|
19 |
+
"POSITIVE": 1
|
20 |
+
},
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "distilbert",
|
23 |
+
"n_heads": 12,
|
24 |
+
"n_layers": 6,
|
25 |
+
"output_past": true,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"problem_type": "single_label_classification",
|
28 |
+
"qa_dropout": 0.1,
|
29 |
+
"seq_classif_dropout": 0.2,
|
30 |
+
"sinusoidal_pos_embds": false,
|
31 |
+
"tie_weights_": true,
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.16.2",
|
34 |
+
"vocab_size": 30522
|
35 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"eval_accuracy": 0.9140625,
|
4 |
+
"eval_loss": 0.4163683354854584,
|
5 |
+
"eval_runtime": 7.4147,
|
6 |
+
"eval_samples_per_second": 34.526,
|
7 |
+
"eval_steps_per_second": 4.316
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c26bbb1c8fe2e14ebb47bb01a181fbecbc9be9701eebca44aa7aa59af26fa0d
|
3 |
+
size 139407425
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "distilbert-base-uncased-finetuned-sst-2-english", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "DistilBertTokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:517b5da8c631bd38130817f6712c8388a1c2674d4b6c2214a2d0ba5cd8999187
|
3 |
+
size 2991
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|