easwar03 commited on
Commit
bce7dc1
·
1 Parent(s): a79c5e3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: legal-bert-base-NER
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # legal-bert-base-NER
19
+
20
+ This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0011
23
+ - Accuracy: 0.9998
24
+ - Precision: 0.9992
25
+ - Recall: 0.9988
26
+ - F1: 0.9990
27
+ - Classification Report: precision recall f1-score support
28
+
29
+ LOC 1.00 1.00 1.00 1837
30
+ MISC 1.00 1.00 1.00 922
31
+ ORG 1.00 1.00 1.00 1341
32
+ PER 1.00 1.00 1.00 1842
33
+
34
+ micro avg 1.00 1.00 1.00 5942
35
+ macro avg 1.00 1.00 1.00 5942
36
+ weighted avg 1.00 1.00 1.00 5942
37
+
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 16
58
+ - eval_batch_size: 16
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 5
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Classification Report |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
68
+ | 0.0118 | 2.3 | 500 | 0.0071 | 0.9985 | 0.9896 | 0.9904 | 0.9900 | precision recall f1-score support
69
+
70
+ LOC 0.99 0.99 0.99 1837
71
+ MISC 0.98 0.97 0.98 922
72
+ ORG 0.98 0.99 0.99 1341
73
+ PER 1.00 1.00 1.00 1842
74
+
75
+ micro avg 0.99 0.99 0.99 5942
76
+ macro avg 0.99 0.99 0.99 5942
77
+ weighted avg 0.99 0.99 0.99 5942
78
+ |
79
+ | 0.0043 | 4.61 | 1000 | 0.0011 | 0.9998 | 0.9992 | 0.9988 | 0.9990 | precision recall f1-score support
80
+
81
+ LOC 1.00 1.00 1.00 1837
82
+ MISC 1.00 1.00 1.00 922
83
+ ORG 1.00 1.00 1.00 1341
84
+ PER 1.00 1.00 1.00 1842
85
+
86
+ micro avg 1.00 1.00 1.00 5942
87
+ macro avg 1.00 1.00 1.00 5942
88
+ weighted avg 1.00 1.00 1.00 5942
89
+ |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.30.2
95
+ - Pytorch 2.0.0
96
+ - Datasets 2.1.0
97
+ - Tokenizers 0.13.3