|
import gradio as gr |
|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
class Generator(nn.Module): |
|
def __init__(self, latent_dim=100, img_channels=3, feature_dim=64): |
|
super(Generator, self).__init__() |
|
self.latent_dim = latent_dim |
|
self.model = nn.Sequential( |
|
nn.ConvTranspose2d(latent_dim, feature_dim * 8, 4, 1, 0, bias=False), |
|
nn.BatchNorm2d(feature_dim * 8), |
|
nn.ReLU(True), |
|
nn.ConvTranspose2d(feature_dim * 8, feature_dim * 4, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(feature_dim * 4), |
|
nn.ReLU(True), |
|
nn.ConvTranspose2d(feature_dim * 4, feature_dim * 2, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(feature_dim * 2), |
|
nn.ReLU(True), |
|
nn.ConvTranspose2d(feature_dim * 2, feature_dim, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(feature_dim), |
|
nn.ReLU(True), |
|
nn.ConvTranspose2d(feature_dim, img_channels, 4, 2, 1, bias=False), |
|
nn.Tanh() |
|
) |
|
|
|
def forward(self, z): |
|
return self.model(z) |
|
|
|
def generate_latent_space(self, batch_size): |
|
return torch.randn(batch_size, self.latent_dim, 1, 1, device=device) |
|
|
|
|
|
latent_dim = 100 |
|
generator = Generator(latent_dim=latent_dim) |
|
|
|
generator.load_state_dict(torch.load("generator.pth", map_location=device)) |
|
generator.to(device) |
|
generator.eval() |
|
|
|
|
|
def generate_face(): |
|
with torch.no_grad(): |
|
|
|
z = generator.generate_latent_space(1) |
|
generated_image = generator(z) |
|
generated_image = generated_image.cpu().squeeze(0) |
|
|
|
generated_image = generated_image * 0.5 + 0.5 |
|
|
|
to_pil = transforms.ToPILImage() |
|
image = to_pil(generated_image) |
|
return image |
|
|
|
|
|
demo = gr.Interface( |
|
fn=generate_face, |
|
inputs=[], |
|
outputs="image", |
|
title="CelebA GAN Face Generator", |
|
description="Generates a face image using a pre-trained GAN on the CelebA dataset.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|