eLarry commited on
Commit
5b82b81
·
1 Parent(s): b5312a2

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.34 +/- 2.86
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13f932f37e4fb8b1821c802ab2f6b655b871005b457a40cc0f056582d37e7a06
3
+ size 107865
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x15b4bcf70>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x15b4b8b70>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678397443604745000,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9Vc2Vycy9pbGFyaS9taW5pY29uZGEzL2VudnMvRFJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vVXNlcnMvaWxhcmkvbWluaWNvbmRhMy9lbnZzL0RSTC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJnfrPqVoA71F7BY/JnfrPqVoA71F7BY/JnfrPqVoA71F7BY/JnfrPqVoA71F7BY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARhhGP7amhT9Tr9k/y8KAP5cVTL//exG/NrZKvwEjx7+Qhpo+c8jMPnurKD/pNjM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAmd+s+pWgDvUXsFj/FYZ87iK9nu6DTgrsmd+s+pWgDvUXsFj/FYZ87iK9nu6DTgrsmd+s+pWgDvUXsFj/FYZ87iK9nu6DTgrsmd+s+pWgDvUXsFj/FYZ87iK9nu6DTgruUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4598934 -0.03208222 0.5895427 ]\n [ 0.4598934 -0.03208222 0.5895427 ]\n [ 0.4598934 -0.03208222 0.5895427 ]\n [ 0.4598934 -0.03208222 0.5895427 ]]",
60
+ "desired_goal": "[[ 0.7738079 1.0441501 1.700663 ]\n [ 1.0059446 -0.79720443 -0.5682983 ]\n [-0.7918428 -1.5557557 0.30180788]\n [ 0.3999668 0.6588666 0.7000566 ]]",
61
+ "observation": "[[ 0.4598934 -0.03208222 0.5895427 0.00486395 -0.00353524 -0.00399251]\n [ 0.4598934 -0.03208222 0.5895427 0.00486395 -0.00353524 -0.00399251]\n [ 0.4598934 -0.03208222 0.5895427 0.00486395 -0.00353524 -0.00399251]\n [ 0.4598934 -0.03208222 0.5895427 0.00486395 -0.00353524 -0.00399251]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAonitvV/WDj5d/YE9qNaxPdetAT5wF109hzj/uy/tYL3Sxt09lEyKvW1Vdj2nQfc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.08470275 0.13948964 0.06347153]\n [ 0.08683521 0.12663971 0.05397743]\n [-0.00778872 -0.0549137 0.10828938]\n [-0.06752887 0.06014006 0.12073069]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR6ta0lEWJsCUhpRSlIwBbJRLMowBdJRHQI5CFaB7NSt1fZQoaAZoCWgPQwgBGM+goR8EwJSGlFKUaBVLMmgWR0COQadxQzk7dX2UKGgGaAloD0MIt+171F8PC8CUhpRSlGgVSzJoFkdAjkEwiJO32HV9lChoBmgJaA9DCHtrYKsEi/m/lIaUUpRoFUsyaBZHQI5AxjawljV1fZQoaAZoCWgPQwjqr1dYcD8JwJSGlFKUaBVLMmgWR0COQ8iFj/dZdX2UKGgGaAloD0MIMiJRaFl3BcCUhpRSlGgVSzJoFkdAjkNaDoQnQnV9lChoBmgJaA9DCKzj+KHSCAfAlIaUUpRoFUsyaBZHQI5C4meDnNh1fZQoaAZoCWgPQwhIG0esxZcRwJSGlFKUaBVLMmgWR0COQngkTpPidX2UKGgGaAloD0MIBtZx/FCp/7+UhpRSlGgVSzJoFkdAjkVyeI2wV3V9lChoBmgJaA9DCIuNeR1xSPO/lIaUUpRoFUsyaBZHQI5FA93bEgp1fZQoaAZoCWgPQwj6KvnYXQALwJSGlFKUaBVLMmgWR0CORIxyGSIQdX2UKGgGaAloD0MIg8DKoUU2FMCUhpRSlGgVSzJoFkdAjkQiLMs6JnV9lChoBmgJaA9DCGr5gas8QQrAlIaUUpRoFUsyaBZHQI5HDfek56t1fZQoaAZoCWgPQwioixTKwrcYwJSGlFKUaBVLMmgWR0CORp+az/p/dX2UKGgGaAloD0MIhq+vdamRCsCUhpRSlGgVSzJoFkdAjkYoNmUW23V9lChoBmgJaA9DCCdnKO54QxHAlIaUUpRoFUsyaBZHQI5FvczqKP51fZQoaAZoCWgPQwhSLLe0GnIKwJSGlFKUaBVLMmgWR0COSKkpI+W4dX2UKGgGaAloD0MIon2s4LfBCMCUhpRSlGgVSzJoFkdAjkg64lQdj3V9lChoBmgJaA9DCGFwzR39bx/AlIaUUpRoFUsyaBZHQI5Hw4KhL5B1fZQoaAZoCWgPQwiXAz3UtsEAwJSGlFKUaBVLMmgWR0COR1k7wKBvdX2UKGgGaAloD0MIZ0Y/Gk65AMCUhpRSlGgVSzJoFkdAjkpHkcS5AnV9lChoBmgJaA9DCFDHYwYqowzAlIaUUpRoFUsyaBZHQI5J2Tot+Th1fZQoaAZoCWgPQwgT86ykFR/+v5SGlFKUaBVLMmgWR0COSWHUMG5ddX2UKGgGaAloD0MIyJkmbD/ZEsCUhpRSlGgVSzJoFkdAjkj3gtOEd3V9lChoBmgJaA9DCDaTb7a5cQ/AlIaUUpRoFUsyaBZHQI5L1KAavRt1fZQoaAZoCWgPQwhnuWx0zs/4v5SGlFKUaBVLMmgWR0COS2YCyQgcdX2UKGgGaAloD0MIt2PqruxSEcCUhpRSlGgVSzJoFkdAjkrum78Nx3V9lChoBmgJaA9DCDJ3LSEf9APAlIaUUpRoFUsyaBZHQI5KhHG0eEJ1fZQoaAZoCWgPQwiu1onL8WoFwJSGlFKUaBVLMmgWR0COTWn+hoM8dX2UKGgGaAloD0MIRwINNnWOGcCUhpRSlGgVSzJoFkdAjkz7p3X7L3V9lChoBmgJaA9DCI6R7BFq5gjAlIaUUpRoFUsyaBZHQI5MhJI1+Ap1fZQoaAZoCWgPQwjpDmJnCj0MwJSGlFKUaBVLMmgWR0COTBpdrwfAdX2UKGgGaAloD0MI9wKzQpHOC8CUhpRSlGgVSzJoFkdAjk8GD15B1XV9lChoBmgJaA9DCC3ovTEEQBHAlIaUUpRoFUsyaBZHQI5Ol9+gDih1fZQoaAZoCWgPQwiMSBRa1j0LwJSGlFKUaBVLMmgWR0COTiCZnctYdX2UKGgGaAloD0MI6WFodXKG+b+UhpRSlGgVSzJoFkdAjk22GRFI/nV9lChoBmgJaA9DCJkrg2qDMxXAlIaUUpRoFUsyaBZHQI5QoJJGvwF1fZQoaAZoCWgPQwjp8uZwrcYewJSGlFKUaBVLMmgWR0COUDIT4+KTdX2UKGgGaAloD0MIsn+eBgwSC8CUhpRSlGgVSzJoFkdAjk+6qCHymXV9lChoBmgJaA9DCBIz+zxGCRHAlIaUUpRoFUsyaBZHQI5PUGqxTsJ1fZQoaAZoCWgPQwiERrBx/XsTwJSGlFKUaBVLMmgWR0COUjarWAf/dX2UKGgGaAloD0MIYeP6d322EcCUhpRSlGgVSzJoFkdAjlHIYvWYnnV9lChoBmgJaA9DCLZJRWPt7/W/lIaUUpRoFUsyaBZHQI5RUUXYUWV1fZQoaAZoCWgPQwjxKmub4jEXwJSGlFKUaBVLMmgWR0COUOcU/OdHdX2UKGgGaAloD0MIKPBOPj029r+UhpRSlGgVSzJoFkdAjlPZGax5cHV9lChoBmgJaA9DCGZPAptzcAnAlIaUUpRoFUsyaBZHQI5TasQumJp1fZQoaAZoCWgPQwiastMP6jISwJSGlFKUaBVLMmgWR0COUvNyo4uLdX2UKGgGaAloD0MI2ClWDcLsFMCUhpRSlGgVSzJoFkdAjlKJOvdM03V9lChoBmgJaA9DCGPUtfY+1QvAlIaUUpRoFUsyaBZHQI5VcC9ytFN1fZQoaAZoCWgPQwhs6jwq/i/8v5SGlFKUaBVLMmgWR0COVQHKwIMSdX2UKGgGaAloD0MI5wDBHD2+8r+UhpRSlGgVSzJoFkdAjlSKekHlfnV9lChoBmgJaA9DCERpb/CFSRTAlIaUUpRoFUsyaBZHQI5UIC6pYLd1fZQoaAZoCWgPQwhLeEKvP/kVwJSGlFKUaBVLMmgWR0COVwdPtUn5dX2UKGgGaAloD0MITny1ozhH9r+UhpRSlGgVSzJoFkdAjlaZCF9KEnV9lChoBmgJaA9DCBbAlIEDugTAlIaUUpRoFUsyaBZHQI5WIa72+PB1fZQoaAZoCWgPQwjXaaSl8rYEwJSGlFKUaBVLMmgWR0COVbdepn6EdX2UKGgGaAloD0MIPL1SliEOE8CUhpRSlGgVSzJoFkdAjli3Kji4rnV9lChoBmgJaA9DCJfl6zL8byLAlIaUUpRoFUsyaBZHQI5YSO/+Kj11fZQoaAZoCWgPQwjnj2ltGtsZwJSGlFKUaBVLMmgWR0COV9HDrJKbdX2UKGgGaAloD0MIxeI3hZUqFcCUhpRSlGgVSzJoFkdAjldn3cpLEnV9lChoBmgJaA9DCAfOGVHaG/u/lIaUUpRoFUsyaBZHQI5ar/4qPOp1fZQoaAZoCWgPQwjaq4+HvlsZwJSGlFKUaBVLMmgWR0COWkLVnVXndX2UKGgGaAloD0MIEcgljjwQB8CUhpRSlGgVSzJoFkdAjlnLlmvnsHV9lChoBmgJaA9DCIoe+BisaCDAlIaUUpRoFUsyaBZHQI5ZYVymygR1fZQoaAZoCWgPQwgIkKFjB1X9v5SGlFKUaBVLMmgWR0COXIk1Mue0dX2UKGgGaAloD0MIWMfxQ6XR/r+UhpRSlGgVSzJoFkdAjlwa4+bExnV9lChoBmgJaA9DCO1JYHMO3gDAlIaUUpRoFUsyaBZHQI5bo3gk1Mx1fZQoaAZoCWgPQwgrUfaWcj4MwJSGlFKUaBVLMmgWR0COWzkhib2EdX2UKGgGaAloD0MIi/m5oSmLHMCUhpRSlGgVSzJoFkdAjl4mHP/rB3V9lChoBmgJaA9DCPVHGAYsueW/lIaUUpRoFUsyaBZHQI5dt8uzyBl1fZQoaAZoCWgPQwhaKQRyiSPtv5SGlFKUaBVLMmgWR0COXUCYCyQgdX2UKGgGaAloD0MIVaNXA5RG9L+UhpRSlGgVSzJoFkdAjlzWmP5pJ3V9lChoBmgJaA9DCJwYkpOJm/q/lIaUUpRoFUsyaBZHQI5f8EgW8Ad1fZQoaAZoCWgPQwgtCVBTy5YQwJSGlFKUaBVLMmgWR0COX4H3UQTVdX2UKGgGaAloD0MIsKvJU1bTGMCUhpRSlGgVSzJoFkdAjl8KjBVMmHV9lChoBmgJaA9DCO3T8ZiBqgzAlIaUUpRoFUsyaBZHQI5eoHPeHi51fZQoaAZoCWgPQwhpGan3VA4AwJSGlFKUaBVLMmgWR0COYcT0QK8ddX2UKGgGaAloD0MIYY4ev7fxI8CUhpRSlGgVSzJoFkdAjmFWmxdIG3V9lChoBmgJaA9DCLMkQE0tGxnAlIaUUpRoFUsyaBZHQI5g3yoXKr91fZQoaAZoCWgPQwg5XoHoSVkAwJSGlFKUaBVLMmgWR0COYHVz6rNodX2UKGgGaAloD0MIFjJXBtXG/7+UhpRSlGgVSzJoFkdAjmOFqJuVHHV9lChoBmgJaA9DCJASu7a3ixnAlIaUUpRoFUsyaBZHQI5jF0YCQtB1fZQoaAZoCWgPQwhksrj/yHT7v5SGlFKUaBVLMmgWR0COYp/io86ndX2UKGgGaAloD0MIQndJnBUBGcCUhpRSlGgVSzJoFkdAjmI1ndweeXV9lChoBmgJaA9DCHmRCfg1sg7AlIaUUpRoFUsyaBZHQI5lTobGWD91fZQoaAZoCWgPQwinWDUIc1sJwJSGlFKUaBVLMmgWR0COZOBGQSzxdX2UKGgGaAloD0MIiSR6GcVy9b+UhpRSlGgVSzJoFkdAjmRpPhybQXV9lChoBmgJaA9DCJmfG5qyoxLAlIaUUpRoFUsyaBZHQI5j/07KaG51fZQoaAZoCWgPQwjuJvim6bP4v5SGlFKUaBVLMmgWR0COZxULDye7dX2UKGgGaAloD0MIAtiACHFlA8CUhpRSlGgVSzJoFkdAjmamt6ol2XV9lChoBmgJaA9DCJHUQsnklPO/lIaUUpRoFUsyaBZHQI5mL2HtWuJ1fZQoaAZoCWgPQwip+Sr52B0SwJSGlFKUaBVLMmgWR0COZcU3XI2gdX2UKGgGaAloD0MIjCyZY3l3CsCUhpRSlGgVSzJoFkdAjmjLgn+hoXV9lChoBmgJaA9DCP7uHTUmVBnAlIaUUpRoFUsyaBZHQI5oXSlWOp91fZQoaAZoCWgPQwiRYoBEE2gBwJSGlFKUaBVLMmgWR0COZ+XqJMxodX2UKGgGaAloD0MIsI7jh0ojGcCUhpRSlGgVSzJoFkdAjmd7qIJqqXV9lChoBmgJaA9DCE0wnGuYofC/lIaUUpRoFUsyaBZHQI5qe0zCUHJ1fZQoaAZoCWgPQwiit3h4zzEVwJSGlFKUaBVLMmgWR0COagzMzMzNdX2UKGgGaAloD0MIHuG04EUvI8CUhpRSlGgVSzJoFkdAjmmVbiZOSHV9lChoBmgJaA9DCC+lLhnHSN6/lIaUUpRoFUsyaBZHQI5pK2KEWZZ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d8f403c21c923c5598982b7fa7d301a896ca05f214e586a11f3f1e5e2a431c7
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa0ae501c589efc6f9b179965869a09fbb84b50c8ca20c219e3b32080d236f2b
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: macOS-13.2-arm64-arm-64bit Darwin Kernel Version 22.3.0: Thu Jan 5 20:48:54 PST 2023; root:xnu-8792.81.2~2/RELEASE_ARM64_T6000
2
+ - Python: 3.8.15
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x15b4bcf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x15b4b8b70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678397443604745000, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9Vc2Vycy9pbGFyaS9taW5pY29uZGEzL2VudnMvRFJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vVXNlcnMvaWxhcmkvbWluaWNvbmRhMy9lbnZzL0RSTC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJnfrPqVoA71F7BY/JnfrPqVoA71F7BY/JnfrPqVoA71F7BY/JnfrPqVoA71F7BY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARhhGP7amhT9Tr9k/y8KAP5cVTL//exG/NrZKvwEjx7+Qhpo+c8jMPnurKD/pNjM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAmd+s+pWgDvUXsFj/FYZ87iK9nu6DTgrsmd+s+pWgDvUXsFj/FYZ87iK9nu6DTgrsmd+s+pWgDvUXsFj/FYZ87iK9nu6DTgrsmd+s+pWgDvUXsFj/FYZ87iK9nu6DTgruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4598934 -0.03208222 0.5895427 ]\n [ 0.4598934 -0.03208222 0.5895427 ]\n [ 0.4598934 -0.03208222 0.5895427 ]\n [ 0.4598934 -0.03208222 0.5895427 ]]", "desired_goal": "[[ 0.7738079 1.0441501 1.700663 ]\n [ 1.0059446 -0.79720443 -0.5682983 ]\n [-0.7918428 -1.5557557 0.30180788]\n [ 0.3999668 0.6588666 0.7000566 ]]", "observation": "[[ 0.4598934 -0.03208222 0.5895427 0.00486395 -0.00353524 -0.00399251]\n [ 0.4598934 -0.03208222 0.5895427 0.00486395 -0.00353524 -0.00399251]\n [ 0.4598934 -0.03208222 0.5895427 0.00486395 -0.00353524 -0.00399251]\n [ 0.4598934 -0.03208222 0.5895427 0.00486395 -0.00353524 -0.00399251]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAonitvV/WDj5d/YE9qNaxPdetAT5wF109hzj/uy/tYL3Sxt09lEyKvW1Vdj2nQfc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]]", "desired_goal": "[[-0.08470275 0.13948964 0.06347153]\n [ 0.08683521 0.12663971 0.05397743]\n [-0.00778872 -0.0549137 0.10828938]\n [-0.06752887 0.06014006 0.12073069]]", "observation": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR6ta0lEWJsCUhpRSlIwBbJRLMowBdJRHQI5CFaB7NSt1fZQoaAZoCWgPQwgBGM+goR8EwJSGlFKUaBVLMmgWR0COQadxQzk7dX2UKGgGaAloD0MIt+171F8PC8CUhpRSlGgVSzJoFkdAjkEwiJO32HV9lChoBmgJaA9DCHtrYKsEi/m/lIaUUpRoFUsyaBZHQI5AxjawljV1fZQoaAZoCWgPQwjqr1dYcD8JwJSGlFKUaBVLMmgWR0COQ8iFj/dZdX2UKGgGaAloD0MIMiJRaFl3BcCUhpRSlGgVSzJoFkdAjkNaDoQnQnV9lChoBmgJaA9DCKzj+KHSCAfAlIaUUpRoFUsyaBZHQI5C4meDnNh1fZQoaAZoCWgPQwhIG0esxZcRwJSGlFKUaBVLMmgWR0COQngkTpPidX2UKGgGaAloD0MIBtZx/FCp/7+UhpRSlGgVSzJoFkdAjkVyeI2wV3V9lChoBmgJaA9DCIuNeR1xSPO/lIaUUpRoFUsyaBZHQI5FA93bEgp1fZQoaAZoCWgPQwj6KvnYXQALwJSGlFKUaBVLMmgWR0CORIxyGSIQdX2UKGgGaAloD0MIg8DKoUU2FMCUhpRSlGgVSzJoFkdAjkQiLMs6JnV9lChoBmgJaA9DCGr5gas8QQrAlIaUUpRoFUsyaBZHQI5HDfek56t1fZQoaAZoCWgPQwioixTKwrcYwJSGlFKUaBVLMmgWR0CORp+az/p/dX2UKGgGaAloD0MIhq+vdamRCsCUhpRSlGgVSzJoFkdAjkYoNmUW23V9lChoBmgJaA9DCCdnKO54QxHAlIaUUpRoFUsyaBZHQI5FvczqKP51fZQoaAZoCWgPQwhSLLe0GnIKwJSGlFKUaBVLMmgWR0COSKkpI+W4dX2UKGgGaAloD0MIon2s4LfBCMCUhpRSlGgVSzJoFkdAjkg64lQdj3V9lChoBmgJaA9DCGFwzR39bx/AlIaUUpRoFUsyaBZHQI5Hw4KhL5B1fZQoaAZoCWgPQwiXAz3UtsEAwJSGlFKUaBVLMmgWR0COR1k7wKBvdX2UKGgGaAloD0MIZ0Y/Gk65AMCUhpRSlGgVSzJoFkdAjkpHkcS5AnV9lChoBmgJaA9DCFDHYwYqowzAlIaUUpRoFUsyaBZHQI5J2Tot+Th1fZQoaAZoCWgPQwgT86ykFR/+v5SGlFKUaBVLMmgWR0COSWHUMG5ddX2UKGgGaAloD0MIyJkmbD/ZEsCUhpRSlGgVSzJoFkdAjkj3gtOEd3V9lChoBmgJaA9DCDaTb7a5cQ/AlIaUUpRoFUsyaBZHQI5L1KAavRt1fZQoaAZoCWgPQwhnuWx0zs/4v5SGlFKUaBVLMmgWR0COS2YCyQgcdX2UKGgGaAloD0MIt2PqruxSEcCUhpRSlGgVSzJoFkdAjkrum78Nx3V9lChoBmgJaA9DCDJ3LSEf9APAlIaUUpRoFUsyaBZHQI5KhHG0eEJ1fZQoaAZoCWgPQwiu1onL8WoFwJSGlFKUaBVLMmgWR0COTWn+hoM8dX2UKGgGaAloD0MIRwINNnWOGcCUhpRSlGgVSzJoFkdAjkz7p3X7L3V9lChoBmgJaA9DCI6R7BFq5gjAlIaUUpRoFUsyaBZHQI5MhJI1+Ap1fZQoaAZoCWgPQwjpDmJnCj0MwJSGlFKUaBVLMmgWR0COTBpdrwfAdX2UKGgGaAloD0MI9wKzQpHOC8CUhpRSlGgVSzJoFkdAjk8GD15B1XV9lChoBmgJaA9DCC3ovTEEQBHAlIaUUpRoFUsyaBZHQI5Ol9+gDih1fZQoaAZoCWgPQwiMSBRa1j0LwJSGlFKUaBVLMmgWR0COTiCZnctYdX2UKGgGaAloD0MI6WFodXKG+b+UhpRSlGgVSzJoFkdAjk22GRFI/nV9lChoBmgJaA9DCJkrg2qDMxXAlIaUUpRoFUsyaBZHQI5QoJJGvwF1fZQoaAZoCWgPQwjp8uZwrcYewJSGlFKUaBVLMmgWR0COUDIT4+KTdX2UKGgGaAloD0MIsn+eBgwSC8CUhpRSlGgVSzJoFkdAjk+6qCHymXV9lChoBmgJaA9DCBIz+zxGCRHAlIaUUpRoFUsyaBZHQI5PUGqxTsJ1fZQoaAZoCWgPQwiERrBx/XsTwJSGlFKUaBVLMmgWR0COUjarWAf/dX2UKGgGaAloD0MIYeP6d322EcCUhpRSlGgVSzJoFkdAjlHIYvWYnnV9lChoBmgJaA9DCLZJRWPt7/W/lIaUUpRoFUsyaBZHQI5RUUXYUWV1fZQoaAZoCWgPQwjxKmub4jEXwJSGlFKUaBVLMmgWR0COUOcU/OdHdX2UKGgGaAloD0MIKPBOPj029r+UhpRSlGgVSzJoFkdAjlPZGax5cHV9lChoBmgJaA9DCGZPAptzcAnAlIaUUpRoFUsyaBZHQI5TasQumJp1fZQoaAZoCWgPQwiastMP6jISwJSGlFKUaBVLMmgWR0COUvNyo4uLdX2UKGgGaAloD0MI2ClWDcLsFMCUhpRSlGgVSzJoFkdAjlKJOvdM03V9lChoBmgJaA9DCGPUtfY+1QvAlIaUUpRoFUsyaBZHQI5VcC9ytFN1fZQoaAZoCWgPQwhs6jwq/i/8v5SGlFKUaBVLMmgWR0COVQHKwIMSdX2UKGgGaAloD0MI5wDBHD2+8r+UhpRSlGgVSzJoFkdAjlSKekHlfnV9lChoBmgJaA9DCERpb/CFSRTAlIaUUpRoFUsyaBZHQI5UIC6pYLd1fZQoaAZoCWgPQwhLeEKvP/kVwJSGlFKUaBVLMmgWR0COVwdPtUn5dX2UKGgGaAloD0MITny1ozhH9r+UhpRSlGgVSzJoFkdAjlaZCF9KEnV9lChoBmgJaA9DCBbAlIEDugTAlIaUUpRoFUsyaBZHQI5WIa72+PB1fZQoaAZoCWgPQwjXaaSl8rYEwJSGlFKUaBVLMmgWR0COVbdepn6EdX2UKGgGaAloD0MIPL1SliEOE8CUhpRSlGgVSzJoFkdAjli3Kji4rnV9lChoBmgJaA9DCJfl6zL8byLAlIaUUpRoFUsyaBZHQI5YSO/+Kj11fZQoaAZoCWgPQwjnj2ltGtsZwJSGlFKUaBVLMmgWR0COV9HDrJKbdX2UKGgGaAloD0MIxeI3hZUqFcCUhpRSlGgVSzJoFkdAjldn3cpLEnV9lChoBmgJaA9DCAfOGVHaG/u/lIaUUpRoFUsyaBZHQI5ar/4qPOp1fZQoaAZoCWgPQwjaq4+HvlsZwJSGlFKUaBVLMmgWR0COWkLVnVXndX2UKGgGaAloD0MIEcgljjwQB8CUhpRSlGgVSzJoFkdAjlnLlmvnsHV9lChoBmgJaA9DCIoe+BisaCDAlIaUUpRoFUsyaBZHQI5ZYVymygR1fZQoaAZoCWgPQwgIkKFjB1X9v5SGlFKUaBVLMmgWR0COXIk1Mue0dX2UKGgGaAloD0MIWMfxQ6XR/r+UhpRSlGgVSzJoFkdAjlwa4+bExnV9lChoBmgJaA9DCO1JYHMO3gDAlIaUUpRoFUsyaBZHQI5bo3gk1Mx1fZQoaAZoCWgPQwgrUfaWcj4MwJSGlFKUaBVLMmgWR0COWzkhib2EdX2UKGgGaAloD0MIi/m5oSmLHMCUhpRSlGgVSzJoFkdAjl4mHP/rB3V9lChoBmgJaA9DCPVHGAYsueW/lIaUUpRoFUsyaBZHQI5dt8uzyBl1fZQoaAZoCWgPQwhaKQRyiSPtv5SGlFKUaBVLMmgWR0COXUCYCyQgdX2UKGgGaAloD0MIVaNXA5RG9L+UhpRSlGgVSzJoFkdAjlzWmP5pJ3V9lChoBmgJaA9DCJwYkpOJm/q/lIaUUpRoFUsyaBZHQI5f8EgW8Ad1fZQoaAZoCWgPQwgtCVBTy5YQwJSGlFKUaBVLMmgWR0COX4H3UQTVdX2UKGgGaAloD0MIsKvJU1bTGMCUhpRSlGgVSzJoFkdAjl8KjBVMmHV9lChoBmgJaA9DCO3T8ZiBqgzAlIaUUpRoFUsyaBZHQI5eoHPeHi51fZQoaAZoCWgPQwhpGan3VA4AwJSGlFKUaBVLMmgWR0COYcT0QK8ddX2UKGgGaAloD0MIYY4ev7fxI8CUhpRSlGgVSzJoFkdAjmFWmxdIG3V9lChoBmgJaA9DCLMkQE0tGxnAlIaUUpRoFUsyaBZHQI5g3yoXKr91fZQoaAZoCWgPQwg5XoHoSVkAwJSGlFKUaBVLMmgWR0COYHVz6rNodX2UKGgGaAloD0MIFjJXBtXG/7+UhpRSlGgVSzJoFkdAjmOFqJuVHHV9lChoBmgJaA9DCJASu7a3ixnAlIaUUpRoFUsyaBZHQI5jF0YCQtB1fZQoaAZoCWgPQwhksrj/yHT7v5SGlFKUaBVLMmgWR0COYp/io86ndX2UKGgGaAloD0MIQndJnBUBGcCUhpRSlGgVSzJoFkdAjmI1ndweeXV9lChoBmgJaA9DCHmRCfg1sg7AlIaUUpRoFUsyaBZHQI5lTobGWD91fZQoaAZoCWgPQwinWDUIc1sJwJSGlFKUaBVLMmgWR0COZOBGQSzxdX2UKGgGaAloD0MIiSR6GcVy9b+UhpRSlGgVSzJoFkdAjmRpPhybQXV9lChoBmgJaA9DCJmfG5qyoxLAlIaUUpRoFUsyaBZHQI5j/07KaG51fZQoaAZoCWgPQwjuJvim6bP4v5SGlFKUaBVLMmgWR0COZxULDye7dX2UKGgGaAloD0MIAtiACHFlA8CUhpRSlGgVSzJoFkdAjmamt6ol2XV9lChoBmgJaA9DCJHUQsnklPO/lIaUUpRoFUsyaBZHQI5mL2HtWuJ1fZQoaAZoCWgPQwip+Sr52B0SwJSGlFKUaBVLMmgWR0COZcU3XI2gdX2UKGgGaAloD0MIjCyZY3l3CsCUhpRSlGgVSzJoFkdAjmjLgn+hoXV9lChoBmgJaA9DCP7uHTUmVBnAlIaUUpRoFUsyaBZHQI5oXSlWOp91fZQoaAZoCWgPQwiRYoBEE2gBwJSGlFKUaBVLMmgWR0COZ+XqJMxodX2UKGgGaAloD0MIsI7jh0ojGcCUhpRSlGgVSzJoFkdAjmd7qIJqqXV9lChoBmgJaA9DCE0wnGuYofC/lIaUUpRoFUsyaBZHQI5qe0zCUHJ1fZQoaAZoCWgPQwiit3h4zzEVwJSGlFKUaBVLMmgWR0COagzMzMzNdX2UKGgGaAloD0MIHuG04EUvI8CUhpRSlGgVSzJoFkdAjmmVbiZOSHV9lChoBmgJaA9DCC+lLhnHSN6/lIaUUpRoFUsyaBZHQI5pK2KEWZZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "macOS-13.2-arm64-arm-64bit Darwin Kernel Version 22.3.0: Thu Jan 5 20:48:54 PST 2023; root:xnu-8792.81.2~2/RELEASE_ARM64_T6000", "Python": "3.8.15", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.24.1", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (337 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.341816176474095, "std_reward": 2.8605962131982716, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T16:54:09.785017"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:793fd2e438a42b7151ae26bc9938462ba6291d38dcdba9d0fc462271de2f7aa9
3
+ size 3056