update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: ALL_mt5-base_15_spider_10_wikiSQL_sch
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# ALL_mt5-base_15_spider_10_wikiSQL_sch
|
13 |
+
|
14 |
+
This model was trained from scratch on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.4214
|
17 |
+
- Rouge2 Precision: 0.5797
|
18 |
+
- Rouge2 Recall: 0.4033
|
19 |
+
- Rouge2 Fmeasure: 0.4501
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 19
|
40 |
+
- eval_batch_size: 16
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 15
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
|
50 |
+
| 0.498 | 1.0 | 912 | 0.3136 | 0.4916 | 0.3236 | 0.366 |
|
51 |
+
| 0.1561 | 2.0 | 1824 | 0.3188 | 0.541 | 0.3749 | 0.4171 |
|
52 |
+
| 0.1091 | 3.0 | 2736 | 0.3287 | 0.5457 | 0.3776 | 0.4213 |
|
53 |
+
| 0.0831 | 4.0 | 3648 | 0.3423 | 0.5544 | 0.3834 | 0.4277 |
|
54 |
+
| 0.0686 | 5.0 | 4560 | 0.3493 | 0.559 | 0.3831 | 0.4282 |
|
55 |
+
| 0.0616 | 6.0 | 5472 | 0.3660 | 0.5718 | 0.3992 | 0.4448 |
|
56 |
+
| 0.0524 | 7.0 | 6384 | 0.3725 | 0.555 | 0.3883 | 0.4322 |
|
57 |
+
| 0.0469 | 8.0 | 7296 | 0.3804 | 0.5867 | 0.4075 | 0.4551 |
|
58 |
+
| 0.0416 | 9.0 | 8208 | 0.3889 | 0.5725 | 0.3972 | 0.4432 |
|
59 |
+
| 0.0382 | 10.0 | 9120 | 0.4028 | 0.575 | 0.3991 | 0.4455 |
|
60 |
+
| 0.0352 | 11.0 | 10032 | 0.4027 | 0.5754 | 0.3992 | 0.4458 |
|
61 |
+
| 0.0337 | 12.0 | 10944 | 0.4161 | 0.5769 | 0.4015 | 0.4482 |
|
62 |
+
| 0.0322 | 13.0 | 11856 | 0.4168 | 0.5803 | 0.4021 | 0.4493 |
|
63 |
+
| 0.0304 | 14.0 | 12768 | 0.4203 | 0.5783 | 0.4018 | 0.4487 |
|
64 |
+
| 0.0298 | 15.0 | 13680 | 0.4214 | 0.5797 | 0.4033 | 0.4501 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.26.1
|
70 |
+
- Pytorch 2.0.1+cu117
|
71 |
+
- Datasets 2.14.7.dev0
|
72 |
+
- Tokenizers 0.13.3
|