dyu200206 commited on
Commit
73c26f0
1 Parent(s): 5d6efbe

Upload my first PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 141.87 +/- 90.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d9d88b912d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d9d88b91360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d9d88b913f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d9d88b91480>", "_build": "<function ActorCriticPolicy._build at 0x7d9d88b91510>", "forward": "<function ActorCriticPolicy.forward at 0x7d9d88b915a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d9d88b91630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d9d88b916c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d9d88b91750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d9d88b917e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d9d88b91870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d9d88b91900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d9d88b3a5c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710214509319558637, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM2DTr32F7c/7Y54vp97Vr6WOU69dRaevQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQ6WBBiTdOMAWyUTbkBjAF0lEdAn0jFWfbsW3V9lChoBkdAY7PA+pwS8WgHTcMBaAhHQJ9L3bWVeKN1fZQoaAZHwFa0xWkrPMVoB017AWgIR0CfTr9x6v7ndX2UKGgGR0Br28ANoakzaAdNfgFoCEdAn1ZvMGHHm3V9lChoBkdAZFP2Dg62fGgHTUACaAhHQJ9ZnMeOn2t1fZQoaAZHwFMHo0Q9RrJoB02OAWgIR0CfW8W/rSmZdX2UKGgGR8BTs8khRqGlaAdNewFoCEdAn13CVbA1vXV9lChoBkdAa192TPjXF2gHTbQBaAhHQJ9leNCJGfB1fZQoaAZHQGN/Oa4MF2VoB03QAWgIR0CfaAAPNFBqdX2UKGgGR8BSOkLH+6y0aAdNswFoCEdAn2pSPU8V6HV9lChoBkdAVO0GQjlgdGgHTegDaAhHQJ9vvfk3juN1fZQoaAZHQGyXNsWO6upoB016AWgIR0Cfd1zDXOGCdX2UKGgGR0Bp+xxJd0JXaAdNtAFoCEdAn3qSxu89OnV9lChoBkdAZfVzLfUF0WgHTbUCaAhHQJ9/V2A5Jbt1fZQoaAZHwDl8L9deIEdoB02WAWgIR0CfgYgFHJ9zdX2UKGgGR0BXZxBZ6lchaAdN6ANoCEdAn4xVbJOnEXV9lChoBkdAVXNvm5lOGmgHTegDaAhHQJ+RyYSg5BF1fZQoaAZHQGtstVrAP/doB02FAWgIR0CfmVGqgh8qdX2UKGgGR8BeLptNzr/saAdN4wFoCEdAn5vyncclxHV9lChoBkdAaW8ykbgjyGgHTaYBaAhHQJ+eNi1Aqut1fZQoaAZHQGh3O89Oh01oB02vAWgIR0CfoH+VTrE+dX2UKGgGR0BWgl+mWMS9aAdN6ANoCEdAn60H1jAi3XV9lChoBkfASUeaScLBsWgHTUUBaAhHQJ+uyDf3vhJ1fZQoaAZHQGTZPKMefZpoB03BAmgIR0CfspNtqHoHdX2UKGgGR0BnydVzZHuraAdNfwFoCEdAn7SaJhvzfHV9lChoBkfATtQiHIp6QmgHTTcBaAhHQJ+7pIK+i8F1fZQoaAZHQGMvM6RyOrBoB00EAmgIR0CfvnAvcrRTdX2UKGgGR0BvNJeLNwBHaAdNdAFoCEdAn8BpYT0xunV9lChoBkdAZ7bvUjLSu2gHTdkBaAhHQJ/DAC1Z1V51fZQoaAZHQGcD3yRSxaBoB02JAmgIR0Cfy/508vEkdX2UKGgGR0Bold/WlMyraAdN8gFoCEdAn86w0GeMAHV9lChoBkdAV8aW+oLofWgHTegDaAhHQJ/UL/Pw/gR1fZQoaAZHwEbsBas6q81oB03LAWgIR0Cf10ldTo+wdX2UKGgGR0Bo5lYfW+XaaAdNrgFoCEdAn+AHqRlpXnV9lChoBkdAawf3cpLEk2gHTZ4BaAhHQJ/iRb2USqV1fZQoaAZHQFjHW2gFotdoB03oA2gIR0Cf57XCCSRsdX2UKGgGR0BmF8OZssQNaAdNugFoCEdAn++FRpDeCXV9lChoBkdAaZdzcRDkVGgHTZ0BaAhHQJ/xyki2Ujd1fZQoaAZHwFQ2OfukUK1oB01XAWgIR0Cf87WjoIOZdX2UKGgGR0BoR5ppN9H+aAdNmAFoCEdAn/X9yDIzWXV9lChoBkfAUUMUKzAvc2gHTV0BaAhHQJ/352/zreJ1fZQoaAZHQGvALPMSsbNoB01iAWgIR0Cf/xfjjrAydX2UKGgGR0BnNKq2jO9naAdNnAFoCEdAoAC3mHP/rHV9lChoBkc/89G/etSydGgHTTkBaAhHQKABkYc/+sJ1fZQoaAZHQGy3HjyWiURoB03TAWgIR0CgAy0mD15CdX2UKGgGR0Bqq1cKPXCkaAdNdgFoCEdAoAR96sySFHV9lChoBkdAXmWx5cC5mWgHTU8CaAhHQKAJFiMHbAV1fZQoaAZHQGpwSGi5/b1oB02MAWgIR0CgCibFCLMtdX2UKGgGR0BnkDYywfQsaAdNkwFoCEdAoAs+Pikwe3V9lChoBkdAZ8LFJg9eQmgHTY0BaAhHQKAMVOTq0MR1fZQoaAZHwFCz1W8yvcJoB003AWgIR0CgDSn2RJVbdX2UKGgGR0Bkiux6fJ3gaAdNnwFoCEdAoBD0HjZL7HV9lChoBkdAamNZZjhDPWgHTSQCaAhHQKASia8YhuB1fZQoaAZHwBDGzfJmukloB00VAWgIR0CgE0cOLBKudX2UKGgGR0Bk+cmWt2cKaAdN/AFoCEdAoBSrKYAsCnV9lChoBkfART37Jnxri2gHTZcBaAhHQKAVw4tHxz91fZQoaAZHwDwcjrzGxUxoB01JAWgIR0CgGV9rGipOdX2UKGgGR0BlQeKwY+B6aAdNjgFoCEdAoBrKIxgy/XV9lChoBkdAX3nwEyLyc2gHTegDaAhHQKAd8w6hg3N1fZQoaAZHQGg/vuogmqpoB02VAWgIR0CgHw21UlzEdX2UKGgGR0Bqfm/vfCQ+aAdNmwFoCEdAoCLlHFxXGXV9lChoBkdAbtL2GIsRQWgHTXwBaAhHQKAj9bRF7Up1fZQoaAZHQGvWtcnmaH9oB02HAWgIR0CgJQY1gpjMdX2UKGgGR0BpzV/MGHHnaAdNuQFoCEdAoCY2LpA2RHV9lChoBkdAa4mhSLqD9WgHTYsBaAhHQKAnTzq8lHB1fZQoaAZHQGnhb0Fr2xpoB03rAmgIR0CgLBo8ZDRddX2UKGgGR8BQV2qtHQQdaAdNQgFoCEdAoCz0g8r7O3V9lChoBkdAaksPmxMWXWgHTcUBaAhHQKAuLF+d9Ul1fZQoaAZHwDcuv5gw485oB01xAWgIR0CgLylZgXuWdX2UKGgGR0BqLOP/7zkIaAdNgAFoCEdAoDONd9lVcXV9lChoBkdAZdcNxVAAyWgHTbgBaAhHQKA03BDXvph1fZQoaAZHQFiHb/wRXfZoB03oA2gIR0CgN5dr433pdX2UKGgGR0BYUZD/lyR0aAdN6ANoCEdAoDzwwsXiznV9lChoBkc/9Zaq0dBBzGgHTRwBaAhHQKA9sO938oB1fZQoaAZHQFeVaqS5iExoB03oA2gIR0CgQG2icoYvdX2UKGgGR0BnHy+Yc/+saAdNxAFoCEdAoERc2BJ7LXV9lChoBkdAbFQLJjlPrWgHTYIBaAhHQKBFbHH3lCF1fZQoaAZHQGpZQ1JlJ6JoB02KAWgIR0CgRoBW5paidX2UKGgGR0BkiHdRBNVSaAdNCQJoCEdAoEfzFAE+xHV9lChoBkdAa1WGUwBYFWgHTbcBaAhHQKBJcSqU/wB1fZQoaAZHQGgbhuGbkOtoB03MAWgIR0CgTdey7f52dX2UKGgGR0Bo5RtcfNiZaAdNrgFoCEdAoE8BhQWN3nV9lChoBkdAZbgCHRCx/2gHTY4BaAhHQKBQFIMjNY91fZQoaAZHQG4FqRU3n6loB02TAWgIR0CgUSmax5cDdX2UKGgGR0BnhPZh8YygaAdNggFoCEdAoFI0ejmCAnV9lChoBkdAaDVORDCxeWgHTe4BaAhHQKBWP5WzWwx1fZQoaAZHwEZo1tO2y9poB01IAWgIR0CgVyASeyzHdX2UKGgGR0Bnn4g1WKdhaAdN6QFoCEdAoFhxrnDBM3V9lChoBkdAa8EFgUlAvGgHTaIBaAhHQKBZkAxSHdp1fZQoaAZHQFR0EETxoZhoB03oA2gIR0CgXxSWJJoTdX2UKGgGR8BDy+dCmdiEaAdNkgFoCEdAoGCGM6zVt3V9lChoBkdAbYfo24uscWgHTYkBaAhHQKBh2iN83Mp1fZQoaAZHQGzB6uW8h9toB02RAWgIR0CgYyyBK+SKdX2UKGgGR0BQFW9lEqlQaAdN6ANoCEdAoGiTRc/t6XV9lChoBkdAZN/M4cWCVmgHTZ4BaAhHQKBpr0Yj0MB1fZQoaAZHQBQrzPKMefZoB01YAWgIR0CgapbJ4jbBdX2UKGgGR0BUSsvZh8YyaAdN6ANoCEdAoG/6iCaqj3V9lChoBkdAahF+MqBmPGgHTXMBaAhHQKBw/AB1cMV1fZQoaAZHQFcoqYJE6T5oB03oA2gIR0Cgc8H4GlhxdX2UKGgGR8BGaW9L6DXfaAdNOwFoCEdAoHSeWOZLI3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4890, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccc171e0efa48084386823077f20e84d7377e39098fddb6bdb7a544a442ad4b2
3
+ size 147428
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d9d88b912d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d9d88b91360>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d9d88b913f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d9d88b91480>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d9d88b91510>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d9d88b915a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d9d88b91630>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d9d88b916c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d9d88b91750>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d9d88b917e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d9d88b91870>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d9d88b91900>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d9d88b3a5c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1001472,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1710214509319558637,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM2DTr32F7c/7Y54vp97Vr6WOU69dRaevQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0014719999999999178,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQ6WBBiTdOMAWyUTbkBjAF0lEdAn0jFWfbsW3V9lChoBkdAY7PA+pwS8WgHTcMBaAhHQJ9L3bWVeKN1fZQoaAZHwFa0xWkrPMVoB017AWgIR0CfTr9x6v7ndX2UKGgGR0Br28ANoakzaAdNfgFoCEdAn1ZvMGHHm3V9lChoBkdAZFP2Dg62fGgHTUACaAhHQJ9ZnMeOn2t1fZQoaAZHwFMHo0Q9RrJoB02OAWgIR0CfW8W/rSmZdX2UKGgGR8BTs8khRqGlaAdNewFoCEdAn13CVbA1vXV9lChoBkdAa192TPjXF2gHTbQBaAhHQJ9leNCJGfB1fZQoaAZHQGN/Oa4MF2VoB03QAWgIR0CfaAAPNFBqdX2UKGgGR8BSOkLH+6y0aAdNswFoCEdAn2pSPU8V6HV9lChoBkdAVO0GQjlgdGgHTegDaAhHQJ9vvfk3juN1fZQoaAZHQGyXNsWO6upoB016AWgIR0Cfd1zDXOGCdX2UKGgGR0Bp+xxJd0JXaAdNtAFoCEdAn3qSxu89OnV9lChoBkdAZfVzLfUF0WgHTbUCaAhHQJ9/V2A5Jbt1fZQoaAZHwDl8L9deIEdoB02WAWgIR0CfgYgFHJ9zdX2UKGgGR0BXZxBZ6lchaAdN6ANoCEdAn4xVbJOnEXV9lChoBkdAVXNvm5lOGmgHTegDaAhHQJ+RyYSg5BF1fZQoaAZHQGtstVrAP/doB02FAWgIR0CfmVGqgh8qdX2UKGgGR8BeLptNzr/saAdN4wFoCEdAn5vyncclxHV9lChoBkdAaW8ykbgjyGgHTaYBaAhHQJ+eNi1Aqut1fZQoaAZHQGh3O89Oh01oB02vAWgIR0CfoH+VTrE+dX2UKGgGR0BWgl+mWMS9aAdN6ANoCEdAn60H1jAi3XV9lChoBkfASUeaScLBsWgHTUUBaAhHQJ+uyDf3vhJ1fZQoaAZHQGTZPKMefZpoB03BAmgIR0CfspNtqHoHdX2UKGgGR0BnydVzZHuraAdNfwFoCEdAn7SaJhvzfHV9lChoBkfATtQiHIp6QmgHTTcBaAhHQJ+7pIK+i8F1fZQoaAZHQGMvM6RyOrBoB00EAmgIR0CfvnAvcrRTdX2UKGgGR0BvNJeLNwBHaAdNdAFoCEdAn8BpYT0xunV9lChoBkdAZ7bvUjLSu2gHTdkBaAhHQJ/DAC1Z1V51fZQoaAZHQGcD3yRSxaBoB02JAmgIR0Cfy/508vEkdX2UKGgGR0Bold/WlMyraAdN8gFoCEdAn86w0GeMAHV9lChoBkdAV8aW+oLofWgHTegDaAhHQJ/UL/Pw/gR1fZQoaAZHwEbsBas6q81oB03LAWgIR0Cf10ldTo+wdX2UKGgGR0Bo5lYfW+XaaAdNrgFoCEdAn+AHqRlpXnV9lChoBkdAawf3cpLEk2gHTZ4BaAhHQJ/iRb2USqV1fZQoaAZHQFjHW2gFotdoB03oA2gIR0Cf57XCCSRsdX2UKGgGR0BmF8OZssQNaAdNugFoCEdAn++FRpDeCXV9lChoBkdAaZdzcRDkVGgHTZ0BaAhHQJ/xyki2Ujd1fZQoaAZHwFQ2OfukUK1oB01XAWgIR0Cf87WjoIOZdX2UKGgGR0BoR5ppN9H+aAdNmAFoCEdAn/X9yDIzWXV9lChoBkfAUUMUKzAvc2gHTV0BaAhHQJ/352/zreJ1fZQoaAZHQGvALPMSsbNoB01iAWgIR0Cf/xfjjrAydX2UKGgGR0BnNKq2jO9naAdNnAFoCEdAoAC3mHP/rHV9lChoBkc/89G/etSydGgHTTkBaAhHQKABkYc/+sJ1fZQoaAZHQGy3HjyWiURoB03TAWgIR0CgAy0mD15CdX2UKGgGR0Bqq1cKPXCkaAdNdgFoCEdAoAR96sySFHV9lChoBkdAXmWx5cC5mWgHTU8CaAhHQKAJFiMHbAV1fZQoaAZHQGpwSGi5/b1oB02MAWgIR0CgCibFCLMtdX2UKGgGR0BnkDYywfQsaAdNkwFoCEdAoAs+Pikwe3V9lChoBkdAZ8LFJg9eQmgHTY0BaAhHQKAMVOTq0MR1fZQoaAZHwFCz1W8yvcJoB003AWgIR0CgDSn2RJVbdX2UKGgGR0Bkiux6fJ3gaAdNnwFoCEdAoBD0HjZL7HV9lChoBkdAamNZZjhDPWgHTSQCaAhHQKASia8YhuB1fZQoaAZHwBDGzfJmukloB00VAWgIR0CgE0cOLBKudX2UKGgGR0Bk+cmWt2cKaAdN/AFoCEdAoBSrKYAsCnV9lChoBkfART37Jnxri2gHTZcBaAhHQKAVw4tHxz91fZQoaAZHwDwcjrzGxUxoB01JAWgIR0CgGV9rGipOdX2UKGgGR0BlQeKwY+B6aAdNjgFoCEdAoBrKIxgy/XV9lChoBkdAX3nwEyLyc2gHTegDaAhHQKAd8w6hg3N1fZQoaAZHQGg/vuogmqpoB02VAWgIR0CgHw21UlzEdX2UKGgGR0Bqfm/vfCQ+aAdNmwFoCEdAoCLlHFxXGXV9lChoBkdAbtL2GIsRQWgHTXwBaAhHQKAj9bRF7Up1fZQoaAZHQGvWtcnmaH9oB02HAWgIR0CgJQY1gpjMdX2UKGgGR0BpzV/MGHHnaAdNuQFoCEdAoCY2LpA2RHV9lChoBkdAa4mhSLqD9WgHTYsBaAhHQKAnTzq8lHB1fZQoaAZHQGnhb0Fr2xpoB03rAmgIR0CgLBo8ZDRddX2UKGgGR8BQV2qtHQQdaAdNQgFoCEdAoCz0g8r7O3V9lChoBkdAaksPmxMWXWgHTcUBaAhHQKAuLF+d9Ul1fZQoaAZHwDcuv5gw485oB01xAWgIR0CgLylZgXuWdX2UKGgGR0BqLOP/7zkIaAdNgAFoCEdAoDONd9lVcXV9lChoBkdAZdcNxVAAyWgHTbgBaAhHQKA03BDXvph1fZQoaAZHQFiHb/wRXfZoB03oA2gIR0CgN5dr433pdX2UKGgGR0BYUZD/lyR0aAdN6ANoCEdAoDzwwsXiznV9lChoBkc/9Zaq0dBBzGgHTRwBaAhHQKA9sO938oB1fZQoaAZHQFeVaqS5iExoB03oA2gIR0CgQG2icoYvdX2UKGgGR0BnHy+Yc/+saAdNxAFoCEdAoERc2BJ7LXV9lChoBkdAbFQLJjlPrWgHTYIBaAhHQKBFbHH3lCF1fZQoaAZHQGpZQ1JlJ6JoB02KAWgIR0CgRoBW5paidX2UKGgGR0BkiHdRBNVSaAdNCQJoCEdAoEfzFAE+xHV9lChoBkdAa1WGUwBYFWgHTbcBaAhHQKBJcSqU/wB1fZQoaAZHQGgbhuGbkOtoB03MAWgIR0CgTdey7f52dX2UKGgGR0Bo5RtcfNiZaAdNrgFoCEdAoE8BhQWN3nV9lChoBkdAZbgCHRCx/2gHTY4BaAhHQKBQFIMjNY91fZQoaAZHQG4FqRU3n6loB02TAWgIR0CgUSmax5cDdX2UKGgGR0BnhPZh8YygaAdNggFoCEdAoFI0ejmCAnV9lChoBkdAaDVORDCxeWgHTe4BaAhHQKBWP5WzWwx1fZQoaAZHwEZo1tO2y9poB01IAWgIR0CgVyASeyzHdX2UKGgGR0Bnn4g1WKdhaAdN6QFoCEdAoFhxrnDBM3V9lChoBkdAa8EFgUlAvGgHTaIBaAhHQKBZkAxSHdp1fZQoaAZHQFR0EETxoZhoB03oA2gIR0CgXxSWJJoTdX2UKGgGR8BDy+dCmdiEaAdNkgFoCEdAoGCGM6zVt3V9lChoBkdAbYfo24uscWgHTYkBaAhHQKBh2iN83Mp1fZQoaAZHQGzB6uW8h9toB02RAWgIR0CgYyyBK+SKdX2UKGgGR0BQFW9lEqlQaAdN6ANoCEdAoGiTRc/t6XV9lChoBkdAZN/M4cWCVmgHTZ4BaAhHQKBpr0Yj0MB1fZQoaAZHQBQrzPKMefZoB01YAWgIR0CgapbJ4jbBdX2UKGgGR0BUSsvZh8YyaAdN6ANoCEdAoG/6iCaqj3V9lChoBkdAahF+MqBmPGgHTXMBaAhHQKBw/AB1cMV1fZQoaAZHQFcoqYJE6T5oB03oA2gIR0Cgc8H4GlhxdX2UKGgGR8BGaW9L6DXfaAdNOwFoCEdAoHSeWOZLI3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4890,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d06a679dde97811b5c11ecd9ef97686bca08caa8fb16891da58ecbaaf6253ba
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ce133d55386e6ff818c97b5f360356692182815f3042c6782db7471453afbfb
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (160 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 141.86553239999998, "std_reward": 90.17152502894062, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-12T05:35:05.781762"}