Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 975.54 +/- 73.77
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c072b94d111471c0f14e7fd394381316f2e146c4b641dc625c64c0589fde9f9d
|
3 |
+
size 129231
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f847dca6040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f847dca60d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f847dca6160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f847dca61f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f847dca6280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f847dca6310>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f847dca63a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f847dca6430>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f847dca64c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f847dca6550>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f847dca65e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f847dca6670>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f847dca7580>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1681844997799742417,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALNRAL89PLu+7TEmP9sr1T6xx5q/MldEPQquvj3m52O/F1vkPsNFdj8exty9ppDOv90HmL/7fFQ/LIAHP8oboj6F/Ps+uSeJP6enVD/zQNU8h+6aP2RJAb8m0Pe+T1a9P7yFnr8g6vU+2AHsPg4Nur+8W2e/2ZKFPyFBpL4Ljs4+zaM4PrX3Lz/NU6M9vYlYvmp4fj6uUwK/7mMbvyshOL6OJGK/uPg/PwxtGj8S96A9fI27Pswehj+48zU/2PoKvyZNPL6Ri9U9ep27vrIPJD68hZ6/IOr1PtgB7D6uHzA/rhDXvvnetT9kOp2/jaZqP6d6Nz+qNi8/EBHYPq2zTb/VLPO+uqcTP4LzGb+3rVO85Mc8vltQQz/gvRw/MwCDvRwmnz9l5n092W0wPxUTYr92yUy/veKLPqEudr6QQ5K+vIWevyDq9T7d1wrArh8wP6C/Q74MHKw/y7txv/X3ST9ZQzFA44+nPvLSPD8rqU2/suEJO9D6iD/dNxq/eNa1PHsrLT8tT3M/3r4aP4lG2ztG4Z4/h7j9u+XlSz9QoJY+LpOIvWvNv74sTw2+DeLRvryFnr8g6vU+2AHsPq4fMD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA4kJw1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcbiDPQAAAAD25eu/AAAAAO+9CT0AAAAAxdTiPwAAAABjKrg9AAAAAHY12j8AAAAATQO2OwAAAABhqN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV/uRtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJsIBz4AAAAA9sjrvwAAAAA15WK9AAAAAAqv9T8AAAAAE5rZvAAAAADr7Ow/AAAAAKkJobwAAAAAWm/xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ2SK7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICwkfo9AAAAAB683r8AAAAAJcTevQAAAACY4Po/AAAAALfY470AAAAAEbL3PwAAAACDPMw9AAAAAJVk/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrN+60AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUsWxvAAAAABIEvO/AAAAAAfUAr4AAAAA2032PwAAAAD+uSi9AAAAAC5xAEAAAAAAZhwFvgAAAADubO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJJc/isGPgiMAWyUTegDjAF0lEdAqv1evECNj3V9lChoBkdAjw5OgpSaVmgHTegDaAhHQKsBpEzfrKN1fZQoaAZHQJIlyVII4VBoB03oA2gIR0CrBh4uTRpldX2UKGgGR0CQYPsOG0u2aAdN6ANoCEdAqwfisOoYN3V9lChoBkdAkb2ml67dzmgHTegDaAhHQKsJisBhhH91fZQoaAZHQI+PD3Gn4whoB03oA2gIR0CrD9c5sCT2dX2UKGgGR0CNxMNRWLgoaAdN6ANoCEdAqxXhZU1hs3V9lChoBkdAjnjpYDDCQGgHTegDaAhHQKsXuPEsJ6Z1fZQoaAZHQIx/gz544ZNoB03oA2gIR0CrGV8scyWSdX2UKGgGR0CO3Q6ltTDPaAdN6ANoCEdAqx2b39JjD3V9lChoBkdAhmKjdP+GXWgHTegDaAhHQKsiHWXkYGd1fZQoaAZHQIVPF/SYw7FoB03oA2gIR0CrI96+36RAdX2UKGgGR0CJ/Zvm5lOHaAdN6ANoCEdAqyWCzE74jHV9lChoBkdAbdqAq/dqL2gHTR4BaAhHQKspYOtnwod1fZQoaAZHQIpOiuIRAbBoB03oA2gIR0CrKpEmICU5dX2UKGgGR0CKMD34bjtHaAdN6ANoCEdAqzFZRO1v23V9lChoBkdAjXf8bJfYz2gHTegDaAhHQKszbebd8At1fZQoaAZHQI384qEvkBFoB03oA2gIR0CrOLCPhhphdX2UKGgGR0CPEzNh3JPqaAdN6ANoCEdAqzmKGrS3LHV9lChoBkdAidrZ2Qnx8WgHTegDaAhHQKs+JLPD50t1fZQoaAZHQI1SIRh+fAdoB03oA2gIR0CrP/iN83MqdX2UKGgGR0CKI8tzS1E3aAdN6ANoCEdAq0VYgs9SuXV9lChoBkdAi9U55AyEc2gHTegDaAhHQKtGK5lOGj91fZQoaAZHQI0QTh1klNVoB03oA2gIR0CrTPfsu3+ddX2UKGgGR0CJisOoYNy6aAdN6ANoCEdAq0/PY+Sr53V9lChoBkdAide61TisGWgHTegDaAhHQKtVKBwMpgF1fZQoaAZHQISHI0Q9RrJoB03oA2gIR0CrVfnl4keIdX2UKGgGR0CIvQ53kgfVaAdN6ANoCEdAq1qi6jFhonV9lChoBkdAhiNuPeYUnGgHTegDaAhHQKtci3xWkrR1fZQoaAZHQII1jZtelbhoB03oA2gIR0CrYc7/n4fwdX2UKGgGR0CJeCVi4J/oaAdN6ANoCEdAq2KY1k1/D3V9lChoBkdAi1+dLg4wRGgHTegDaAhHQKtopbSJCSl1fZQoaAZHQI5e/FJg9eRoB03oA2gIR0Cra4aciGFjdX2UKGgGR0CMv/OW0JF9aAdN6ANoCEdAq3HLor4FinV9lChoBkdAjT3RYq5LAmgHTegDaAhHQKtymxPfsNV1fZQoaAZHQI9aFQXQ+lloB03oA2gIR0CrdyLyUcGUdX2UKGgGR0CPe3qxC6YmaAdN6ANoCEdAq3j1lK9PDnV9lChoBkdAkF2AmAskIGgHTegDaAhHQKt+ML876pJ1fZQoaAZHQI5KT0g8r7RoB03oA2gIR0Crfvze40/GdX2UKGgGR0COpG5Jbt7baAdN6ANoCEdAq4Qe7YkE93V9lChoBkdAjzM109yLh2gHTegDaAhHQKuGuyY5T611fZQoaAZHQJCS1i5NGmVoB03oA2gIR0Crjd64UeuFdX2UKGgGR0CQPm8AaNuMaAdN6ANoCEdAq46uJk5IYnV9lChoBkdAkYMhDG96C2gHTegDaAhHQKuTJTisGPh1fZQoaAZHQJAIRB1LamJoB03oA2gIR0CrlPB06o2odX2UKGgGR0CQ+V4yXUpeaAdN6ANoCEdAq5ou5+Ytx3V9lChoBkdAj8yDrRjSX2gHTegDaAhHQKua+PYnOSp1fZQoaAZHQJFoVB9kSVZoB03oA2gIR0Crn4212JSBdX2UKGgGR0CRMYLvTgEVaAdN6ANoCEdAq6Hz876pHnV9lChoBkdAkfJ3zQNTcmgHTegDaAhHQKup5GyX2M91fZQoaAZHQJFOKOaOPvNoB03oA2gIR0CrqtCKBNEgdX2UKGgGR0CRoitcOby6aAdN6ANoCEdAq69bV8Ti83V9lChoBkdAkP93tv4ub2gHTegDaAhHQKuxO52hZhd1fZQoaAZHQJF1G+VTrE9oB03oA2gIR0CrtoGZ/kNndX2UKGgGR0CRdoGm1pj+aAdN6ANoCEdAq7dSLOzIFXV9lChoBkdAkedWeHzpYGgHTegDaAhHQKu78KDTSb91fZQoaAZHQJFBqKm8/UxoB03oA2gIR0CrvdCB5HEudX2UKGgGR0CSLny1eBxxaAdN6ANoCEdAq8VGc4HX3HV9lChoBkdAkizk6PsAvWgHTegDaAhHQKvGe5lvqC91fZQoaAZHQJHQAmois4loB03oA2gIR0Cry60L2HtXdX2UKGgGR0CRczh60IC2aAdN6ANoCEdAq81/5eqrBHV9lChoBkdAkfJrpqynk2gHTegDaAhHQKvSun7YTTR1fZQoaAZHQJGdCLfk3jxoB03oA2gIR0Cr04/FBIFvdX2UKGgGR0CROf62fChwaAdN6ANoCEdAq9gS4+bExnV9lChoBkdAkm6EXcgyM2gHTegDaAhHQKvZ2/QBxPx1fZQoaAZHQJBFM+LWI45oB03oA2gIR0Cr4FRUFSsKdX2UKGgGR0CR77m4AjptaAdN6ANoCEdAq+Gb92ovSXV9lChoBkdAkabkqQRwqGgHTegDaAhHQKvn4nCO3lV1fZQoaAZHQJH5PlGPPs1oB03oA2gIR0Cr6cF1jiGWdX2UKGgGR0CRVScTJyQxaAdN6ANoCEdAq+8SrT6SDHV9lChoBkdAkZfvZAY51mgHTegDaAhHQKvv2fYjB2x1fZQoaAZHQJCvno/zJ6poB03oA2gIR0Cr9F2kzoECdX2UKGgGR0CQ+Od8iOebaAdN6ANoCEdAq/YiFuejEnV9lChoBkdAkBG/CuU2UGgHTegDaAhHQKv72912aDx1fZQoaAZHQJBqVbC79Q5oB03oA2gIR0Cr/Pk9Mbm2dX2UKGgGR0CQSyI6r/83aAdN6ANoCEdArAPa8OCoTHV9lChoBkdAkSMHRPXTVmgHTegDaAhHQKwF7umaYu11fZQoaAZHQJC7DxkNF0BoB03oA2gIR0CsCzcxCY1HdX2UKGgGR0CRW9H+qBEsaAdN6ANoCEdArAwESVW0Z3V9lChoBkdAj4iEHMUypWgHTegDaAhHQKwQgFqSHM51fZQoaAZHQIz6cQd0aIhoB03oA2gIR0CsEkdJ8OTadX2UKGgGR0COpV1mrbQDaAdN6ANoCEdArBeRVXFLnXV9lChoBkdAkOyjaoMrmWgHTegDaAhHQKwYVPomoit1fZQoaAZHQJEAulxffGdoB03oA2gIR0CsHtw8GLUDdX2UKGgGR0CQcTJA+pwTaAdN6ANoCEdArCGsAYHgP3V9lChoBkdAkMz0UXYUWWgHTegDaAhHQKwnISvC/Gl1fZQoaAZHQJCQU/LTx5NoB03oA2gIR0CsJ+55Z8rqdX2UKGgGR0CP+g0fozN2aAdN6ANoCEdArCx1jbzshXV9lChoBkdAkdheqvNeMWgHTegDaAhHQKwuUz41xbV1fZQoaAZHQJDv2luWKMxoB03oA2gIR0CsM5e67NB4dX2UKGgGR0CQc6mFrVOLaAdN6ANoCEdArDRnPqs2enV9lChoBkdAkJmt4eLeh2gHTegDaAhHQKw588zyjHp1fZQoaAZHQJFylmqYJE9oB03oA2gIR0CsPKr+5vtMdX2UKGgGR0CQ4ISgoPTYaAdN6ANoCEdArENJ9uxbCHV9lChoBkdAkBQwIY3vQWgHTegDaAhHQKxEHl8PWhB1fZQoaAZHQJA8NxGUfPpoB03oA2gIR0CsSJA4OtnxdX2UKGgGR0CQChHgP3BYaAdN6ANoCEdArEpUQoTfznV9lChoBkdAj5JETQE6k2gHTegDaAhHQKxPifnwG4Z1fZQoaAZHQI9Vz7bcoH9oB03oA2gIR0CsUFkroW56dX2UKGgGR0CPVTv3JxNqaAdN6ANoCEdArFTkAcT8HnVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f34ec09660d0c61435cbe4c07af799b62819ae30d12377f592ccc0b40ec91e4
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:159cc83132df8e82400d18cfcb5ec9fdd48b71ca1deaebee961895d669393a08
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f847dca6040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f847dca60d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f847dca6160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f847dca61f0>", "_build": "<function ActorCriticPolicy._build at 0x7f847dca6280>", "forward": "<function ActorCriticPolicy.forward at 0x7f847dca6310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f847dca63a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f847dca6430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f847dca64c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f847dca6550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f847dca65e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f847dca6670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f847dca7580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681844997799742417, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALNRAL89PLu+7TEmP9sr1T6xx5q/MldEPQquvj3m52O/F1vkPsNFdj8exty9ppDOv90HmL/7fFQ/LIAHP8oboj6F/Ps+uSeJP6enVD/zQNU8h+6aP2RJAb8m0Pe+T1a9P7yFnr8g6vU+2AHsPg4Nur+8W2e/2ZKFPyFBpL4Ljs4+zaM4PrX3Lz/NU6M9vYlYvmp4fj6uUwK/7mMbvyshOL6OJGK/uPg/PwxtGj8S96A9fI27Pswehj+48zU/2PoKvyZNPL6Ri9U9ep27vrIPJD68hZ6/IOr1PtgB7D6uHzA/rhDXvvnetT9kOp2/jaZqP6d6Nz+qNi8/EBHYPq2zTb/VLPO+uqcTP4LzGb+3rVO85Mc8vltQQz/gvRw/MwCDvRwmnz9l5n092W0wPxUTYr92yUy/veKLPqEudr6QQ5K+vIWevyDq9T7d1wrArh8wP6C/Q74MHKw/y7txv/X3ST9ZQzFA44+nPvLSPD8rqU2/suEJO9D6iD/dNxq/eNa1PHsrLT8tT3M/3r4aP4lG2ztG4Z4/h7j9u+XlSz9QoJY+LpOIvWvNv74sTw2+DeLRvryFnr8g6vU+2AHsPq4fMD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA4kJw1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcbiDPQAAAAD25eu/AAAAAO+9CT0AAAAAxdTiPwAAAABjKrg9AAAAAHY12j8AAAAATQO2OwAAAABhqN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV/uRtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJsIBz4AAAAA9sjrvwAAAAA15WK9AAAAAAqv9T8AAAAAE5rZvAAAAADr7Ow/AAAAAKkJobwAAAAAWm/xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ2SK7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICwkfo9AAAAAB683r8AAAAAJcTevQAAAACY4Po/AAAAALfY470AAAAAEbL3PwAAAACDPMw9AAAAAJVk/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrN+60AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUsWxvAAAAABIEvO/AAAAAAfUAr4AAAAA2032PwAAAAD+uSi9AAAAAC5xAEAAAAAAZhwFvgAAAADubO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJJc/isGPgiMAWyUTegDjAF0lEdAqv1evECNj3V9lChoBkdAjw5OgpSaVmgHTegDaAhHQKsBpEzfrKN1fZQoaAZHQJIlyVII4VBoB03oA2gIR0CrBh4uTRpldX2UKGgGR0CQYPsOG0u2aAdN6ANoCEdAqwfisOoYN3V9lChoBkdAkb2ml67dzmgHTegDaAhHQKsJisBhhH91fZQoaAZHQI+PD3Gn4whoB03oA2gIR0CrD9c5sCT2dX2UKGgGR0CNxMNRWLgoaAdN6ANoCEdAqxXhZU1hs3V9lChoBkdAjnjpYDDCQGgHTegDaAhHQKsXuPEsJ6Z1fZQoaAZHQIx/gz544ZNoB03oA2gIR0CrGV8scyWSdX2UKGgGR0CO3Q6ltTDPaAdN6ANoCEdAqx2b39JjD3V9lChoBkdAhmKjdP+GXWgHTegDaAhHQKsiHWXkYGd1fZQoaAZHQIVPF/SYw7FoB03oA2gIR0CrI96+36RAdX2UKGgGR0CJ/Zvm5lOHaAdN6ANoCEdAqyWCzE74jHV9lChoBkdAbdqAq/dqL2gHTR4BaAhHQKspYOtnwod1fZQoaAZHQIpOiuIRAbBoB03oA2gIR0CrKpEmICU5dX2UKGgGR0CKMD34bjtHaAdN6ANoCEdAqzFZRO1v23V9lChoBkdAjXf8bJfYz2gHTegDaAhHQKszbebd8At1fZQoaAZHQI384qEvkBFoB03oA2gIR0CrOLCPhhphdX2UKGgGR0CPEzNh3JPqaAdN6ANoCEdAqzmKGrS3LHV9lChoBkdAidrZ2Qnx8WgHTegDaAhHQKs+JLPD50t1fZQoaAZHQI1SIRh+fAdoB03oA2gIR0CrP/iN83MqdX2UKGgGR0CKI8tzS1E3aAdN6ANoCEdAq0VYgs9SuXV9lChoBkdAi9U55AyEc2gHTegDaAhHQKtGK5lOGj91fZQoaAZHQI0QTh1klNVoB03oA2gIR0CrTPfsu3+ddX2UKGgGR0CJisOoYNy6aAdN6ANoCEdAq0/PY+Sr53V9lChoBkdAide61TisGWgHTegDaAhHQKtVKBwMpgF1fZQoaAZHQISHI0Q9RrJoB03oA2gIR0CrVfnl4keIdX2UKGgGR0CIvQ53kgfVaAdN6ANoCEdAq1qi6jFhonV9lChoBkdAhiNuPeYUnGgHTegDaAhHQKtci3xWkrR1fZQoaAZHQII1jZtelbhoB03oA2gIR0CrYc7/n4fwdX2UKGgGR0CJeCVi4J/oaAdN6ANoCEdAq2KY1k1/D3V9lChoBkdAi1+dLg4wRGgHTegDaAhHQKtopbSJCSl1fZQoaAZHQI5e/FJg9eRoB03oA2gIR0Cra4aciGFjdX2UKGgGR0CMv/OW0JF9aAdN6ANoCEdAq3HLor4FinV9lChoBkdAjT3RYq5LAmgHTegDaAhHQKtymxPfsNV1fZQoaAZHQI9aFQXQ+lloB03oA2gIR0CrdyLyUcGUdX2UKGgGR0CPe3qxC6YmaAdN6ANoCEdAq3j1lK9PDnV9lChoBkdAkF2AmAskIGgHTegDaAhHQKt+ML876pJ1fZQoaAZHQI5KT0g8r7RoB03oA2gIR0Crfvze40/GdX2UKGgGR0COpG5Jbt7baAdN6ANoCEdAq4Qe7YkE93V9lChoBkdAjzM109yLh2gHTegDaAhHQKuGuyY5T611fZQoaAZHQJCS1i5NGmVoB03oA2gIR0Crjd64UeuFdX2UKGgGR0CQPm8AaNuMaAdN6ANoCEdAq46uJk5IYnV9lChoBkdAkYMhDG96C2gHTegDaAhHQKuTJTisGPh1fZQoaAZHQJAIRB1LamJoB03oA2gIR0CrlPB06o2odX2UKGgGR0CQ+V4yXUpeaAdN6ANoCEdAq5ou5+Ytx3V9lChoBkdAj8yDrRjSX2gHTegDaAhHQKua+PYnOSp1fZQoaAZHQJFoVB9kSVZoB03oA2gIR0Crn4212JSBdX2UKGgGR0CRMYLvTgEVaAdN6ANoCEdAq6Hz876pHnV9lChoBkdAkfJ3zQNTcmgHTegDaAhHQKup5GyX2M91fZQoaAZHQJFOKOaOPvNoB03oA2gIR0CrqtCKBNEgdX2UKGgGR0CRoitcOby6aAdN6ANoCEdAq69bV8Ti83V9lChoBkdAkP93tv4ub2gHTegDaAhHQKuxO52hZhd1fZQoaAZHQJF1G+VTrE9oB03oA2gIR0CrtoGZ/kNndX2UKGgGR0CRdoGm1pj+aAdN6ANoCEdAq7dSLOzIFXV9lChoBkdAkedWeHzpYGgHTegDaAhHQKu78KDTSb91fZQoaAZHQJFBqKm8/UxoB03oA2gIR0CrvdCB5HEudX2UKGgGR0CSLny1eBxxaAdN6ANoCEdAq8VGc4HX3HV9lChoBkdAkizk6PsAvWgHTegDaAhHQKvGe5lvqC91fZQoaAZHQJHQAmois4loB03oA2gIR0Cry60L2HtXdX2UKGgGR0CRczh60IC2aAdN6ANoCEdAq81/5eqrBHV9lChoBkdAkfJrpqynk2gHTegDaAhHQKvSun7YTTR1fZQoaAZHQJGdCLfk3jxoB03oA2gIR0Cr04/FBIFvdX2UKGgGR0CROf62fChwaAdN6ANoCEdAq9gS4+bExnV9lChoBkdAkm6EXcgyM2gHTegDaAhHQKvZ2/QBxPx1fZQoaAZHQJBFM+LWI45oB03oA2gIR0Cr4FRUFSsKdX2UKGgGR0CR77m4AjptaAdN6ANoCEdAq+Gb92ovSXV9lChoBkdAkabkqQRwqGgHTegDaAhHQKvn4nCO3lV1fZQoaAZHQJH5PlGPPs1oB03oA2gIR0Cr6cF1jiGWdX2UKGgGR0CRVScTJyQxaAdN6ANoCEdAq+8SrT6SDHV9lChoBkdAkZfvZAY51mgHTegDaAhHQKvv2fYjB2x1fZQoaAZHQJCvno/zJ6poB03oA2gIR0Cr9F2kzoECdX2UKGgGR0CQ+Od8iOebaAdN6ANoCEdAq/YiFuejEnV9lChoBkdAkBG/CuU2UGgHTegDaAhHQKv72912aDx1fZQoaAZHQJBqVbC79Q5oB03oA2gIR0Cr/Pk9Mbm2dX2UKGgGR0CQSyI6r/83aAdN6ANoCEdArAPa8OCoTHV9lChoBkdAkSMHRPXTVmgHTegDaAhHQKwF7umaYu11fZQoaAZHQJC7DxkNF0BoB03oA2gIR0CsCzcxCY1HdX2UKGgGR0CRW9H+qBEsaAdN6ANoCEdArAwESVW0Z3V9lChoBkdAj4iEHMUypWgHTegDaAhHQKwQgFqSHM51fZQoaAZHQIz6cQd0aIhoB03oA2gIR0CsEkdJ8OTadX2UKGgGR0COpV1mrbQDaAdN6ANoCEdArBeRVXFLnXV9lChoBkdAkOyjaoMrmWgHTegDaAhHQKwYVPomoit1fZQoaAZHQJEAulxffGdoB03oA2gIR0CsHtw8GLUDdX2UKGgGR0CQcTJA+pwTaAdN6ANoCEdArCGsAYHgP3V9lChoBkdAkMz0UXYUWWgHTegDaAhHQKwnISvC/Gl1fZQoaAZHQJCQU/LTx5NoB03oA2gIR0CsJ+55Z8rqdX2UKGgGR0CP+g0fozN2aAdN6ANoCEdArCx1jbzshXV9lChoBkdAkdheqvNeMWgHTegDaAhHQKwuUz41xbV1fZQoaAZHQJDv2luWKMxoB03oA2gIR0CsM5e67NB4dX2UKGgGR0CQc6mFrVOLaAdN6ANoCEdArDRnPqs2enV9lChoBkdAkJmt4eLeh2gHTegDaAhHQKw588zyjHp1fZQoaAZHQJFylmqYJE9oB03oA2gIR0CsPKr+5vtMdX2UKGgGR0CQ4ISgoPTYaAdN6ANoCEdArENJ9uxbCHV9lChoBkdAkBQwIY3vQWgHTegDaAhHQKxEHl8PWhB1fZQoaAZHQJA8NxGUfPpoB03oA2gIR0CsSJA4OtnxdX2UKGgGR0CQChHgP3BYaAdN6ANoCEdArEpUQoTfznV9lChoBkdAj5JETQE6k2gHTegDaAhHQKxPifnwG4Z1fZQoaAZHQI9Vz7bcoH9oB03oA2gIR0CsUFkroW56dX2UKGgGR0CPVTv3JxNqaAdN6ANoCEdArFTkAcT8HnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (976 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 975.5415588663542, "std_reward": 73.7667304049216, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-18T20:11:39.273750"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:788b81adf2c571dc7a091c8924f516639264c146d48ac02a0715be0d3f6a7f74
|
3 |
+
size 2170
|