Other
Transformers
Safetensors
blip
image-text-to-text
image-captioning
dxkrnn commited on
Commit
872ed46
1 Parent(s): ffca6be

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -159
README.md CHANGED
@@ -1,199 +1,158 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
 
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
 
 
63
 
64
- ### Recommendations
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
 
 
 
 
75
 
76
- ## Training Details
 
77
 
78
- ### Training Data
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
81
 
82
- [More Information Needed]
 
 
83
 
84
- ### Training Procedure
 
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ pipeline_tag: other
3
+ tags:
4
+ - image-captioning
5
+ inference: false
6
+ languages:
7
+ - en
8
+ license: bsd-3-clause
9
+ datasets:
10
+ - ybelkada/football-dataset
11
  ---
12
 
13
+ # BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
14
 
15
+ Model card for image captioning pretrained on COCO dataset - base architecture (with ViT base backbone) - and fine-tuned on
16
+ [football dataset](https://huggingface.co/datasets/ybelkada/football-dataset).
17
 
18
+ Google Colab notebook for fine-tuning: https://colab.research.google.com/drive/1lbqiSiA0sDF7JDWPeS0tccrM85LloVha?usp=sharing
19
 
20
+ | ![BLIP.gif](https://s3.amazonaws.com/moonup/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) |
21
+ |:--:|
22
+ | <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>|
23
 
24
+ ## TL;DR
25
 
26
+ Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract:
27
 
28
+ *Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
29
 
30
+ ## Usage
31
 
32
+ You can use this model for conditional and un-conditional image captioning
 
 
 
 
 
 
33
 
34
+ ### Using the Pytorch model
35
 
36
+ #### Running the model on CPU
37
 
38
+ <details>
39
+ <summary> Click to expand </summary>
 
40
 
41
+ ```python
42
+ import requests
43
+ from PIL import Image
44
+ from transformers import BlipProcessor, BlipForConditionalGeneration
45
 
46
+ processor = BlipProcessor.from_pretrained("ybelkada/blip-image-captioning-base")
47
+ model = BlipForConditionalGeneration.from_pretrained("ybelkada/blip-image-captioning-base")
48
 
49
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
50
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
51
 
52
+ # conditional image captioning
53
+ text = "a photography of"
54
+ inputs = processor(raw_image, text, return_tensors="pt")
55
 
56
+ out = model.generate(**inputs)
57
+ print(processor.decode(out[0], skip_special_tokens=True))
58
+ # >>> a photography of a woman and her dog
59
 
60
+ # unconditional image captioning
61
+ inputs = processor(raw_image, return_tensors="pt")
62
 
63
+ out = model.generate(**inputs)
64
+ print(processor.decode(out[0], skip_special_tokens=True))
65
+ >>> a woman sitting on the beach with her dog
66
+ ```
67
+ </details>
68
 
69
+ #### Running the model on GPU
70
 
71
+ ##### In full precision
72
 
73
+ <details>
74
+ <summary> Click to expand </summary>
75
 
76
+ ```python
77
+ import requests
78
+ from PIL import Image
79
+ from transformers import BlipProcessor, BlipForConditionalGeneration
80
 
81
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
82
+ model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base").to("cuda")
83
 
84
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
85
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
86
 
87
+ # conditional image captioning
88
+ text = "a photography of"
89
+ inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
90
 
91
+ out = model.generate(**inputs)
92
+ print(processor.decode(out[0], skip_special_tokens=True))
93
+ # >>> a photography of a woman and her dog
94
 
95
+ # unconditional image captioning
96
+ inputs = processor(raw_image, return_tensors="pt").to("cuda")
97
 
98
+ out = model.generate(**inputs)
99
+ print(processor.decode(out[0], skip_special_tokens=True))
100
+ >>> a woman sitting on the beach with her dog
101
+ ```
102
+ </details>
103
 
104
+ ##### In half precision (`float16`)
105
 
106
+ <details>
107
+ <summary> Click to expand </summary>
108
 
109
+ ```python
110
+ import torch
111
+ import requests
112
+ from PIL import Image
113
+ from transformers import BlipProcessor, BlipForConditionalGeneration
114
 
115
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
116
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda")
117
 
118
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
119
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
120
 
121
+ # conditional image captioning
122
+ text = "a photography of"
123
+ inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
124
 
125
+ out = model.generate(**inputs)
126
+ print(processor.decode(out[0], skip_special_tokens=True))
127
+ # >>> a photography of a woman and her dog
128
 
129
+ # unconditional image captioning
130
+ inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
131
 
132
+ out = model.generate(**inputs)
133
+ print(processor.decode(out[0], skip_special_tokens=True))
134
+ >>> a woman sitting on the beach with her dog
135
+ ```
136
+ </details>
137
+
138
+ ## BibTex and citation info
139
+
140
+ ```
141
+ @misc{https://doi.org/10.48550/arxiv.2201.12086,
142
+ doi = {10.48550/ARXIV.2201.12086},
143
+
144
+ url = {https://arxiv.org/abs/2201.12086},
145
+
146
+ author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
147
+
148
+ keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
149
+
150
+ title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
151
+
152
+ publisher = {arXiv},
153
+
154
+ year = {2022},
155
+
156
+ copyright = {Creative Commons Attribution 4.0 International}
157
+ }
158
+ ```