Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,158 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
|
|
9 |
|
|
|
10 |
|
|
|
|
|
|
|
11 |
|
12 |
-
##
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
###
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
|
|
|
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
|
|
55 |
|
56 |
-
|
|
|
|
|
|
|
57 |
|
58 |
-
|
|
|
59 |
|
60 |
-
|
|
|
61 |
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
|
|
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
|
72 |
-
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
|
|
77 |
|
78 |
-
|
|
|
79 |
|
80 |
-
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
83 |
|
84 |
-
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
pipeline_tag: other
|
3 |
+
tags:
|
4 |
+
- image-captioning
|
5 |
+
inference: false
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
license: bsd-3-clause
|
9 |
+
datasets:
|
10 |
+
- ybelkada/football-dataset
|
11 |
---
|
12 |
|
13 |
+
# BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
|
14 |
|
15 |
+
Model card for image captioning pretrained on COCO dataset - base architecture (with ViT base backbone) - and fine-tuned on
|
16 |
+
[football dataset](https://huggingface.co/datasets/ybelkada/football-dataset).
|
17 |
|
18 |
+
Google Colab notebook for fine-tuning: https://colab.research.google.com/drive/1lbqiSiA0sDF7JDWPeS0tccrM85LloVha?usp=sharing
|
19 |
|
20 |
+
| ![BLIP.gif](https://s3.amazonaws.com/moonup/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) |
|
21 |
+
|:--:|
|
22 |
+
| <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>|
|
23 |
|
24 |
+
## TL;DR
|
25 |
|
26 |
+
Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract:
|
27 |
|
28 |
+
*Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
|
29 |
|
30 |
+
## Usage
|
31 |
|
32 |
+
You can use this model for conditional and un-conditional image captioning
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
### Using the Pytorch model
|
35 |
|
36 |
+
#### Running the model on CPU
|
37 |
|
38 |
+
<details>
|
39 |
+
<summary> Click to expand </summary>
|
|
|
40 |
|
41 |
+
```python
|
42 |
+
import requests
|
43 |
+
from PIL import Image
|
44 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
45 |
|
46 |
+
processor = BlipProcessor.from_pretrained("ybelkada/blip-image-captioning-base")
|
47 |
+
model = BlipForConditionalGeneration.from_pretrained("ybelkada/blip-image-captioning-base")
|
48 |
|
49 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
50 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
51 |
|
52 |
+
# conditional image captioning
|
53 |
+
text = "a photography of"
|
54 |
+
inputs = processor(raw_image, text, return_tensors="pt")
|
55 |
|
56 |
+
out = model.generate(**inputs)
|
57 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
58 |
+
# >>> a photography of a woman and her dog
|
59 |
|
60 |
+
# unconditional image captioning
|
61 |
+
inputs = processor(raw_image, return_tensors="pt")
|
62 |
|
63 |
+
out = model.generate(**inputs)
|
64 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
65 |
+
>>> a woman sitting on the beach with her dog
|
66 |
+
```
|
67 |
+
</details>
|
68 |
|
69 |
+
#### Running the model on GPU
|
70 |
|
71 |
+
##### In full precision
|
72 |
|
73 |
+
<details>
|
74 |
+
<summary> Click to expand </summary>
|
75 |
|
76 |
+
```python
|
77 |
+
import requests
|
78 |
+
from PIL import Image
|
79 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
80 |
|
81 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
82 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base").to("cuda")
|
83 |
|
84 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
85 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
86 |
|
87 |
+
# conditional image captioning
|
88 |
+
text = "a photography of"
|
89 |
+
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
|
90 |
|
91 |
+
out = model.generate(**inputs)
|
92 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
93 |
+
# >>> a photography of a woman and her dog
|
94 |
|
95 |
+
# unconditional image captioning
|
96 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda")
|
97 |
|
98 |
+
out = model.generate(**inputs)
|
99 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
100 |
+
>>> a woman sitting on the beach with her dog
|
101 |
+
```
|
102 |
+
</details>
|
103 |
|
104 |
+
##### In half precision (`float16`)
|
105 |
|
106 |
+
<details>
|
107 |
+
<summary> Click to expand </summary>
|
108 |
|
109 |
+
```python
|
110 |
+
import torch
|
111 |
+
import requests
|
112 |
+
from PIL import Image
|
113 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
114 |
|
115 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
116 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda")
|
117 |
|
118 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
119 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
120 |
|
121 |
+
# conditional image captioning
|
122 |
+
text = "a photography of"
|
123 |
+
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
|
124 |
|
125 |
+
out = model.generate(**inputs)
|
126 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
127 |
+
# >>> a photography of a woman and her dog
|
128 |
|
129 |
+
# unconditional image captioning
|
130 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
131 |
|
132 |
+
out = model.generate(**inputs)
|
133 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
134 |
+
>>> a woman sitting on the beach with her dog
|
135 |
+
```
|
136 |
+
</details>
|
137 |
+
|
138 |
+
## BibTex and citation info
|
139 |
+
|
140 |
+
```
|
141 |
+
@misc{https://doi.org/10.48550/arxiv.2201.12086,
|
142 |
+
doi = {10.48550/ARXIV.2201.12086},
|
143 |
+
|
144 |
+
url = {https://arxiv.org/abs/2201.12086},
|
145 |
+
|
146 |
+
author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
|
147 |
+
|
148 |
+
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
149 |
+
|
150 |
+
title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
|
151 |
+
|
152 |
+
publisher = {arXiv},
|
153 |
+
|
154 |
+
year = {2022},
|
155 |
+
|
156 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
157 |
+
}
|
158 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|