duyvt6663 commited on
Commit
5e3b0a0
·
1 Parent(s): ffd38db

Training in progress, step 1150, checkpoint

Browse files
checkpoint-1150/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: vietcuna-3b-v2/kalapa-vietcuna-3b/
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: True
207
+ - load_in_4bit: False
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: fp4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float32
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-1150/adapter_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/kaggle/input/vietcuna-for-binary-classification/kalapa-vietcuna-3b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.1,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "query_key_value"
20
+ ],
21
+ "task_type": "SEQ_CLS"
22
+ }
checkpoint-1150/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b48df899abd154fbf50b9e598810948e16c4b09ce123e7ca31df6a2f203d282
3
+ size 9873829
checkpoint-1150/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6ecccc0f894808c22ec3232990665b15436f485f45fa231290b42fa87f3eebe
3
+ size 42788
checkpoint-1150/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a419d791da1489dbc9814fe938add20534d1ba9119bcaacc52823c0a78d98a84
3
+ size 14244
checkpoint-1150/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce3ebebfb8db37896ec479600b922a7e9ad1262a12ba04574dd700472f249d06
3
+ size 1064
checkpoint-1150/special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "<pad>",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "<unk>"
7
+ }
checkpoint-1150/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17a208233d2ee8d8c83b23bc214df737c44806a1919f444e89b31e586cd956ba
3
+ size 14500471
checkpoint-1150/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<unk>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<pad>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ }
36
+ },
37
+ "bos_token": "<s>",
38
+ "clean_up_tokenization_spaces": false,
39
+ "eos_token": "</s>",
40
+ "model_max_length": 1000000000000000019884624838656,
41
+ "pad_token": "<pad>",
42
+ "sep_token": "[SEP]",
43
+ "tokenizer_class": "BloomTokenizer",
44
+ "unk_token": "<unk>"
45
+ }
checkpoint-1150/trainer_state.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6430063247680664,
3
+ "best_model_checkpoint": "output/checkpoint-50",
4
+ "epoch": 0.9219360657380499,
5
+ "eval_steps": 50,
6
+ "global_step": 1150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 4.444444444444445e-07,
14
+ "loss": 0.5542,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.04,
19
+ "learning_rate": 2e-05,
20
+ "loss": 0.554,
21
+ "step": 50
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "eval_accuracy": 0.6626865671641791,
26
+ "eval_loss": 0.6430063247680664,
27
+ "eval_runtime": 61.7692,
28
+ "eval_samples_per_second": 5.423,
29
+ "eval_steps_per_second": 1.36,
30
+ "step": 50
31
+ },
32
+ {
33
+ "epoch": 0.08,
34
+ "learning_rate": 4.222222222222222e-05,
35
+ "loss": 0.5957,
36
+ "step": 100
37
+ },
38
+ {
39
+ "epoch": 0.08,
40
+ "eval_accuracy": 0.6686567164179105,
41
+ "eval_loss": 0.6705919504165649,
42
+ "eval_runtime": 60.4388,
43
+ "eval_samples_per_second": 5.543,
44
+ "eval_steps_per_second": 1.39,
45
+ "step": 100
46
+ },
47
+ {
48
+ "epoch": 0.12,
49
+ "learning_rate": 6.444444444444446e-05,
50
+ "loss": 0.5668,
51
+ "step": 150
52
+ },
53
+ {
54
+ "epoch": 0.12,
55
+ "eval_accuracy": 0.6805970149253732,
56
+ "eval_loss": 0.7224913835525513,
57
+ "eval_runtime": 56.4882,
58
+ "eval_samples_per_second": 5.93,
59
+ "eval_steps_per_second": 1.487,
60
+ "step": 150
61
+ },
62
+ {
63
+ "epoch": 0.16,
64
+ "learning_rate": 8.666666666666667e-05,
65
+ "loss": 0.5626,
66
+ "step": 200
67
+ },
68
+ {
69
+ "epoch": 0.16,
70
+ "eval_accuracy": 0.6746268656716418,
71
+ "eval_loss": 0.7115103006362915,
72
+ "eval_runtime": 56.506,
73
+ "eval_samples_per_second": 5.929,
74
+ "eval_steps_per_second": 1.487,
75
+ "step": 200
76
+ },
77
+ {
78
+ "epoch": 0.2,
79
+ "learning_rate": 9.80430528375734e-05,
80
+ "loss": 0.5604,
81
+ "step": 250
82
+ },
83
+ {
84
+ "epoch": 0.2,
85
+ "eval_accuracy": 0.6746268656716418,
86
+ "eval_loss": 0.700947105884552,
87
+ "eval_runtime": 56.4927,
88
+ "eval_samples_per_second": 5.93,
89
+ "eval_steps_per_second": 1.487,
90
+ "step": 250
91
+ },
92
+ {
93
+ "epoch": 0.24,
94
+ "learning_rate": 9.315068493150684e-05,
95
+ "loss": 0.5675,
96
+ "step": 300
97
+ },
98
+ {
99
+ "epoch": 0.24,
100
+ "eval_accuracy": 0.6597014925373135,
101
+ "eval_loss": 0.662155032157898,
102
+ "eval_runtime": 56.4903,
103
+ "eval_samples_per_second": 5.93,
104
+ "eval_steps_per_second": 1.487,
105
+ "step": 300
106
+ },
107
+ {
108
+ "epoch": 0.28,
109
+ "learning_rate": 8.825831702544032e-05,
110
+ "loss": 0.5725,
111
+ "step": 350
112
+ },
113
+ {
114
+ "epoch": 0.28,
115
+ "eval_accuracy": 0.6567164179104478,
116
+ "eval_loss": 0.6746364831924438,
117
+ "eval_runtime": 56.482,
118
+ "eval_samples_per_second": 5.931,
119
+ "eval_steps_per_second": 1.487,
120
+ "step": 350
121
+ },
122
+ {
123
+ "epoch": 0.32,
124
+ "learning_rate": 8.336594911937378e-05,
125
+ "loss": 0.5884,
126
+ "step": 400
127
+ },
128
+ {
129
+ "epoch": 0.32,
130
+ "eval_accuracy": 0.6656716417910448,
131
+ "eval_loss": 0.7047849893569946,
132
+ "eval_runtime": 56.4873,
133
+ "eval_samples_per_second": 5.931,
134
+ "eval_steps_per_second": 1.487,
135
+ "step": 400
136
+ },
137
+ {
138
+ "epoch": 0.36,
139
+ "learning_rate": 7.847358121330725e-05,
140
+ "loss": 0.5567,
141
+ "step": 450
142
+ },
143
+ {
144
+ "epoch": 0.36,
145
+ "eval_accuracy": 0.6477611940298508,
146
+ "eval_loss": 0.6832321286201477,
147
+ "eval_runtime": 56.4814,
148
+ "eval_samples_per_second": 5.931,
149
+ "eval_steps_per_second": 1.487,
150
+ "step": 450
151
+ },
152
+ {
153
+ "epoch": 0.4,
154
+ "learning_rate": 7.35812133072407e-05,
155
+ "loss": 0.5723,
156
+ "step": 500
157
+ },
158
+ {
159
+ "epoch": 0.4,
160
+ "eval_accuracy": 0.6955223880597015,
161
+ "eval_loss": 0.7437570691108704,
162
+ "eval_runtime": 56.4677,
163
+ "eval_samples_per_second": 5.933,
164
+ "eval_steps_per_second": 1.488,
165
+ "step": 500
166
+ },
167
+ {
168
+ "epoch": 0.44,
169
+ "learning_rate": 6.868884540117417e-05,
170
+ "loss": 0.5908,
171
+ "step": 550
172
+ },
173
+ {
174
+ "epoch": 0.44,
175
+ "eval_accuracy": 0.6238805970149254,
176
+ "eval_loss": 0.6612433791160583,
177
+ "eval_runtime": 56.4799,
178
+ "eval_samples_per_second": 5.931,
179
+ "eval_steps_per_second": 1.487,
180
+ "step": 550
181
+ },
182
+ {
183
+ "epoch": 0.48,
184
+ "learning_rate": 6.379647749510763e-05,
185
+ "loss": 0.5681,
186
+ "step": 600
187
+ },
188
+ {
189
+ "epoch": 0.48,
190
+ "eval_accuracy": 0.6507462686567164,
191
+ "eval_loss": 0.6833732724189758,
192
+ "eval_runtime": 56.4689,
193
+ "eval_samples_per_second": 5.932,
194
+ "eval_steps_per_second": 1.488,
195
+ "step": 600
196
+ },
197
+ {
198
+ "epoch": 0.52,
199
+ "learning_rate": 5.89041095890411e-05,
200
+ "loss": 0.5782,
201
+ "step": 650
202
+ },
203
+ {
204
+ "epoch": 0.52,
205
+ "eval_accuracy": 0.6507462686567164,
206
+ "eval_loss": 0.67350834608078,
207
+ "eval_runtime": 56.4637,
208
+ "eval_samples_per_second": 5.933,
209
+ "eval_steps_per_second": 1.488,
210
+ "step": 650
211
+ },
212
+ {
213
+ "epoch": 0.56,
214
+ "learning_rate": 5.401174168297456e-05,
215
+ "loss": 0.569,
216
+ "step": 700
217
+ },
218
+ {
219
+ "epoch": 0.56,
220
+ "eval_accuracy": 0.6686567164179105,
221
+ "eval_loss": 0.7085319757461548,
222
+ "eval_runtime": 56.4627,
223
+ "eval_samples_per_second": 5.933,
224
+ "eval_steps_per_second": 1.488,
225
+ "step": 700
226
+ },
227
+ {
228
+ "epoch": 0.6,
229
+ "learning_rate": 4.911937377690802e-05,
230
+ "loss": 0.5661,
231
+ "step": 750
232
+ },
233
+ {
234
+ "epoch": 0.6,
235
+ "eval_accuracy": 0.6835820895522388,
236
+ "eval_loss": 0.7564846277236938,
237
+ "eval_runtime": 56.4648,
238
+ "eval_samples_per_second": 5.933,
239
+ "eval_steps_per_second": 1.488,
240
+ "step": 750
241
+ },
242
+ {
243
+ "epoch": 0.64,
244
+ "learning_rate": 4.422700587084149e-05,
245
+ "loss": 0.5675,
246
+ "step": 800
247
+ },
248
+ {
249
+ "epoch": 0.64,
250
+ "eval_accuracy": 0.6417910447761194,
251
+ "eval_loss": 0.6759604215621948,
252
+ "eval_runtime": 56.4652,
253
+ "eval_samples_per_second": 5.933,
254
+ "eval_steps_per_second": 1.488,
255
+ "step": 800
256
+ },
257
+ {
258
+ "epoch": 0.68,
259
+ "learning_rate": 3.933463796477495e-05,
260
+ "loss": 0.5611,
261
+ "step": 850
262
+ },
263
+ {
264
+ "epoch": 0.68,
265
+ "eval_accuracy": 0.6477611940298508,
266
+ "eval_loss": 0.6798116564750671,
267
+ "eval_runtime": 56.4714,
268
+ "eval_samples_per_second": 5.932,
269
+ "eval_steps_per_second": 1.487,
270
+ "step": 850
271
+ },
272
+ {
273
+ "epoch": 0.72,
274
+ "learning_rate": 3.4442270058708414e-05,
275
+ "loss": 0.5664,
276
+ "step": 900
277
+ },
278
+ {
279
+ "epoch": 0.72,
280
+ "eval_accuracy": 0.6656716417910448,
281
+ "eval_loss": 0.7185413837432861,
282
+ "eval_runtime": 56.4811,
283
+ "eval_samples_per_second": 5.931,
284
+ "eval_steps_per_second": 1.487,
285
+ "step": 900
286
+ },
287
+ {
288
+ "epoch": 0.76,
289
+ "learning_rate": 2.9549902152641878e-05,
290
+ "loss": 0.5765,
291
+ "step": 950
292
+ },
293
+ {
294
+ "epoch": 0.76,
295
+ "eval_accuracy": 0.6417910447761194,
296
+ "eval_loss": 0.6795146465301514,
297
+ "eval_runtime": 56.4589,
298
+ "eval_samples_per_second": 5.934,
299
+ "eval_steps_per_second": 1.488,
300
+ "step": 950
301
+ },
302
+ {
303
+ "epoch": 0.8,
304
+ "learning_rate": 2.4657534246575342e-05,
305
+ "loss": 0.555,
306
+ "step": 1000
307
+ },
308
+ {
309
+ "epoch": 0.8,
310
+ "eval_accuracy": 0.6298507462686567,
311
+ "eval_loss": 0.677854061126709,
312
+ "eval_runtime": 56.4673,
313
+ "eval_samples_per_second": 5.933,
314
+ "eval_steps_per_second": 1.488,
315
+ "step": 1000
316
+ },
317
+ {
318
+ "epoch": 0.84,
319
+ "learning_rate": 1.9765166340508805e-05,
320
+ "loss": 0.5578,
321
+ "step": 1050
322
+ },
323
+ {
324
+ "epoch": 0.84,
325
+ "eval_accuracy": 0.6507462686567164,
326
+ "eval_loss": 0.6885824203491211,
327
+ "eval_runtime": 56.4615,
328
+ "eval_samples_per_second": 5.933,
329
+ "eval_steps_per_second": 1.488,
330
+ "step": 1050
331
+ },
332
+ {
333
+ "epoch": 0.88,
334
+ "learning_rate": 1.4872798434442269e-05,
335
+ "loss": 0.5709,
336
+ "step": 1100
337
+ },
338
+ {
339
+ "epoch": 0.88,
340
+ "eval_accuracy": 0.6447761194029851,
341
+ "eval_loss": 0.6935857534408569,
342
+ "eval_runtime": 56.4542,
343
+ "eval_samples_per_second": 5.934,
344
+ "eval_steps_per_second": 1.488,
345
+ "step": 1100
346
+ },
347
+ {
348
+ "epoch": 0.92,
349
+ "learning_rate": 9.980430528375734e-06,
350
+ "loss": 0.5711,
351
+ "step": 1150
352
+ },
353
+ {
354
+ "epoch": 0.92,
355
+ "eval_accuracy": 0.6388059701492538,
356
+ "eval_loss": 0.6908484101295471,
357
+ "eval_runtime": 56.4666,
358
+ "eval_samples_per_second": 5.933,
359
+ "eval_steps_per_second": 1.488,
360
+ "step": 1150
361
+ }
362
+ ],
363
+ "logging_steps": 50,
364
+ "max_steps": 1247,
365
+ "num_train_epochs": 1,
366
+ "save_steps": 50,
367
+ "total_flos": 4.2922784557756416e+17,
368
+ "trial_name": null,
369
+ "trial_params": null
370
+ }
checkpoint-1150/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87bd30bd4b21b4a0c66f1fd545858ef6e2d33b5984a8d292e79011acc3affd6b
3
+ size 4472