|
import numpy as np
|
|
import cv2, argparse, torch
|
|
import torchvision.transforms.functional as TF
|
|
|
|
from models import load_network, load_DNet
|
|
from tqdm import tqdm
|
|
from PIL import Image
|
|
from scipy.spatial import ConvexHull
|
|
from third_part import face_detection
|
|
from third_part.face3d.models import networks
|
|
|
|
import warnings
|
|
warnings.filterwarnings("ignore")
|
|
|
|
def options():
|
|
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
|
|
|
|
parser.add_argument('--DNet_path', type=str, default='checkpoints/DNet.pt')
|
|
parser.add_argument('--LNet_path', type=str, default='checkpoints/LNet.pth')
|
|
parser.add_argument('--ENet_path', type=str, default='checkpoints/ENet.pth')
|
|
parser.add_argument('--face3d_net_path', type=str, default='checkpoints/face3d_pretrain_epoch_20.pth')
|
|
parser.add_argument('--face', type=str, help='Filepath of video/image that contains faces to use', required=True)
|
|
parser.add_argument('--audio', type=str, help='Filepath of video/audio file to use as raw audio source', required=True)
|
|
parser.add_argument('--exp_img', type=str, help='Expression template. neutral, smile or image path', default='neutral')
|
|
parser.add_argument('--outfile', type=str, help='Video path to save result')
|
|
|
|
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', default=25., required=False)
|
|
parser.add_argument('--pads', nargs='+', type=int, default=[0, 20, 0, 0], help='Padding (top, bottom, left, right). Please adjust to include chin at least')
|
|
parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=4)
|
|
parser.add_argument('--LNet_batch_size', type=int, help='Batch size for LNet', default=16)
|
|
parser.add_argument('--img_size', type=int, default=384)
|
|
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1],
|
|
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. '
|
|
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
|
|
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1],
|
|
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
|
|
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
|
|
parser.add_argument('--nosmooth', default=False, action='store_true', help='Prevent smoothing face detections over a short temporal window')
|
|
parser.add_argument('--static', default=False, action='store_true')
|
|
|
|
|
|
parser.add_argument('--up_face', default='original')
|
|
parser.add_argument('--one_shot', action='store_true')
|
|
parser.add_argument('--without_rl1', default=False, action='store_true', help='Do not use the relative l1')
|
|
parser.add_argument('--tmp_dir', type=str, default='temp', help='Folder to save tmp results')
|
|
parser.add_argument('--re_preprocess', action='store_true')
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
exp_aus_dict = {
|
|
'sad': torch.Tensor([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
|
|
'angry':torch.Tensor([[0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
|
|
'surprise': torch.Tensor([[0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
|
|
}
|
|
|
|
def mask_postprocess(mask, thres=20):
|
|
mask[:thres, :] = 0; mask[-thres:, :] = 0
|
|
mask[:, :thres] = 0; mask[:, -thres:] = 0
|
|
mask = cv2.GaussianBlur(mask, (101, 101), 11)
|
|
mask = cv2.GaussianBlur(mask, (101, 101), 11)
|
|
return mask.astype(np.float32)
|
|
|
|
def trans_image(image):
|
|
image = TF.resize(
|
|
image, size=256, interpolation=Image.BICUBIC)
|
|
image = TF.to_tensor(image)
|
|
image = TF.normalize(image, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
|
return image
|
|
|
|
def obtain_seq_index(index, num_frames):
|
|
seq = list(range(index-13, index+13))
|
|
seq = [ min(max(item, 0), num_frames-1) for item in seq ]
|
|
return seq
|
|
|
|
def transform_semantic(semantic, frame_index, crop_norm_ratio=None):
|
|
index = obtain_seq_index(frame_index, semantic.shape[0])
|
|
|
|
coeff_3dmm = semantic[index,...]
|
|
ex_coeff = coeff_3dmm[:,80:144]
|
|
angles = coeff_3dmm[:,224:227]
|
|
translation = coeff_3dmm[:,254:257]
|
|
crop = coeff_3dmm[:,259:262]
|
|
|
|
if crop_norm_ratio:
|
|
crop[:, -3] = crop[:, -3] * crop_norm_ratio
|
|
|
|
coeff_3dmm = np.concatenate([ex_coeff, angles, translation, crop], 1)
|
|
return torch.Tensor(coeff_3dmm).permute(1,0)
|
|
|
|
def find_crop_norm_ratio(source_coeff, target_coeffs):
|
|
alpha = 0.3
|
|
exp_diff = np.mean(np.abs(target_coeffs[:,80:144] - source_coeff[:,80:144]), 1)
|
|
angle_diff = np.mean(np.abs(target_coeffs[:,224:227] - source_coeff[:,224:227]), 1)
|
|
index = np.argmin(alpha*exp_diff + (1-alpha)*angle_diff)
|
|
crop_norm_ratio = source_coeff[:,-3] / target_coeffs[index:index+1, -3]
|
|
return crop_norm_ratio
|
|
|
|
def get_smoothened_boxes(boxes, T):
|
|
for i in range(len(boxes)):
|
|
if i + T > len(boxes):
|
|
window = boxes[len(boxes) - T:]
|
|
else:
|
|
window = boxes[i : i + T]
|
|
boxes[i] = np.mean(window, axis=0)
|
|
return boxes
|
|
|
|
def face_detect(images, args, jaw_correction=False, detector=None):
|
|
if detector == None:
|
|
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
|
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
|
flip_input=False, device=device)
|
|
|
|
batch_size = args.face_det_batch_size
|
|
while 1:
|
|
predictions = []
|
|
try:
|
|
for i in tqdm(range(0, len(images), batch_size),desc='FaceDet:'):
|
|
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
|
except RuntimeError:
|
|
if batch_size == 1:
|
|
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
|
|
batch_size //= 2
|
|
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
|
|
continue
|
|
break
|
|
|
|
results = []
|
|
pady1, pady2, padx1, padx2 = args.pads if jaw_correction else (0,20,0,0)
|
|
for rect, image in zip(predictions, images):
|
|
if rect is None:
|
|
cv2.imwrite('temp/faulty_frame.jpg', image)
|
|
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
|
|
|
|
y1 = max(0, rect[1] - pady1)
|
|
y2 = min(image.shape[0], rect[3] + pady2)
|
|
x1 = max(0, rect[0] - padx1)
|
|
x2 = min(image.shape[1], rect[2] + padx2)
|
|
results.append([x1, y1, x2, y2])
|
|
|
|
boxes = np.array(results)
|
|
if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
|
|
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
|
|
|
del detector
|
|
torch.cuda.empty_cache()
|
|
return results
|
|
|
|
def _load(checkpoint_path, device):
|
|
if device == 'cuda':
|
|
checkpoint = torch.load(checkpoint_path)
|
|
else:
|
|
checkpoint = torch.load(checkpoint_path,
|
|
map_location=lambda storage, loc: storage)
|
|
return checkpoint
|
|
|
|
def split_coeff(coeffs):
|
|
"""
|
|
Return:
|
|
coeffs_dict -- a dict of torch.tensors
|
|
|
|
Parameters:
|
|
coeffs -- torch.tensor, size (B, 256)
|
|
"""
|
|
id_coeffs = coeffs[:, :80]
|
|
exp_coeffs = coeffs[:, 80: 144]
|
|
tex_coeffs = coeffs[:, 144: 224]
|
|
angles = coeffs[:, 224: 227]
|
|
gammas = coeffs[:, 227: 254]
|
|
translations = coeffs[:, 254:]
|
|
return {
|
|
'id': id_coeffs,
|
|
'exp': exp_coeffs,
|
|
'tex': tex_coeffs,
|
|
'angle': angles,
|
|
'gamma': gammas,
|
|
'trans': translations
|
|
}
|
|
|
|
def Laplacian_Pyramid_Blending_with_mask(A, B, m, num_levels = 6):
|
|
|
|
GA = A.copy()
|
|
GB = B.copy()
|
|
GM = m.copy()
|
|
gpA = [GA]
|
|
gpB = [GB]
|
|
gpM = [GM]
|
|
for i in range(num_levels):
|
|
GA = cv2.pyrDown(GA)
|
|
GB = cv2.pyrDown(GB)
|
|
GM = cv2.pyrDown(GM)
|
|
gpA.append(np.float32(GA))
|
|
gpB.append(np.float32(GB))
|
|
gpM.append(np.float32(GM))
|
|
|
|
|
|
lpA = [gpA[num_levels-1]]
|
|
lpB = [gpB[num_levels-1]]
|
|
gpMr = [gpM[num_levels-1]]
|
|
for i in range(num_levels-1,0,-1):
|
|
|
|
|
|
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
|
|
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
|
|
lpA.append(LA)
|
|
lpB.append(LB)
|
|
gpMr.append(gpM[i-1])
|
|
|
|
|
|
LS = []
|
|
for la,lb,gm in zip(lpA,lpB,gpMr):
|
|
gm = gm[:,:,np.newaxis]
|
|
ls = la * gm + lb * (1.0 - gm)
|
|
LS.append(ls)
|
|
|
|
|
|
ls_ = LS[0]
|
|
for i in range(1,num_levels):
|
|
ls_ = cv2.pyrUp(ls_)
|
|
ls_ = cv2.add(ls_, LS[i])
|
|
return ls_
|
|
|
|
def load_model(args, device):
|
|
D_Net = load_DNet(args).to(device)
|
|
model = load_network(args).to(device)
|
|
return D_Net, model
|
|
|
|
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
|
|
use_relative_movement=False, use_relative_jacobian=False):
|
|
if adapt_movement_scale:
|
|
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume
|
|
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume
|
|
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
|
|
else:
|
|
adapt_movement_scale = 1
|
|
|
|
kp_new = {k: v for k, v in kp_driving.items()}
|
|
if use_relative_movement:
|
|
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
|
|
kp_value_diff *= adapt_movement_scale
|
|
kp_new['value'] = kp_value_diff + kp_source['value']
|
|
|
|
if use_relative_jacobian:
|
|
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
|
|
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
|
|
return kp_new
|
|
|
|
def load_face3d_net(ckpt_path, device):
|
|
net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device)
|
|
checkpoint = torch.load(ckpt_path, map_location=device)
|
|
net_recon.load_state_dict(checkpoint['net_recon'])
|
|
net_recon.eval()
|
|
return net_recon |