|
|
|
"""ConvolutionModule definition."""
|
|
|
|
from typing import Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
|
|
class ConvolutionModule(nn.Module):
|
|
"""ConvolutionModule in Conformer model."""
|
|
|
|
def __init__(self,
|
|
channels: int,
|
|
kernel_size: int = 15,
|
|
activation: nn.Module = nn.ReLU(),
|
|
norm: str = "batch_norm",
|
|
causal: bool = False,
|
|
bias: bool = True):
|
|
"""Construct an ConvolutionModule object.
|
|
Args:
|
|
channels (int): The number of channels of conv layers.
|
|
kernel_size (int): Kernel size of conv layers.
|
|
causal (int): Whether use causal convolution or not
|
|
"""
|
|
super().__init__()
|
|
|
|
self.pointwise_conv1 = nn.Conv1d(
|
|
channels,
|
|
2 * channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
bias=bias,
|
|
)
|
|
|
|
|
|
|
|
|
|
if causal:
|
|
padding = 0
|
|
self.lorder = kernel_size - 1
|
|
else:
|
|
|
|
assert (kernel_size - 1) % 2 == 0
|
|
padding = (kernel_size - 1) // 2
|
|
self.lorder = 0
|
|
self.depthwise_conv = nn.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=padding,
|
|
groups=channels,
|
|
bias=bias,
|
|
)
|
|
|
|
assert norm in ['batch_norm', 'layer_norm']
|
|
if norm == "batch_norm":
|
|
self.use_layer_norm = False
|
|
self.norm = nn.BatchNorm1d(channels)
|
|
else:
|
|
self.use_layer_norm = True
|
|
self.norm = nn.LayerNorm(channels)
|
|
|
|
self.pointwise_conv2 = nn.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
bias=bias,
|
|
)
|
|
self.activation = activation
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
|
cache: torch.Tensor = torch.zeros((0, 0, 0)),
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Compute convolution module.
|
|
Args:
|
|
x (torch.Tensor): Input tensor (#batch, time, channels).
|
|
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
|
|
(0, 0, 0) means fake mask.
|
|
cache (torch.Tensor): left context cache, it is only
|
|
used in causal convolution (#batch, channels, cache_t),
|
|
(0, 0, 0) meas fake cache.
|
|
Returns:
|
|
torch.Tensor: Output tensor (#batch, time, channels).
|
|
"""
|
|
|
|
x = x.transpose(1, 2)
|
|
|
|
|
|
if mask_pad.size(2) > 0:
|
|
x.masked_fill_(~mask_pad, 0.0)
|
|
|
|
if self.lorder > 0:
|
|
if cache.size(2) == 0:
|
|
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
|
|
else:
|
|
assert cache.size(0) == x.size(0)
|
|
assert cache.size(1) == x.size(1)
|
|
x = torch.cat((cache, x), dim=2)
|
|
assert (x.size(2) > self.lorder)
|
|
new_cache = x[:, :, -self.lorder:]
|
|
else:
|
|
|
|
|
|
|
|
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
|
|
|
|
|
x = self.pointwise_conv1(x)
|
|
x = nn.functional.glu(x, dim=1)
|
|
|
|
|
|
x = self.depthwise_conv(x)
|
|
if self.use_layer_norm:
|
|
x = x.transpose(1, 2)
|
|
x = self.activation(self.norm(x))
|
|
if self.use_layer_norm:
|
|
x = x.transpose(1, 2)
|
|
x = self.pointwise_conv2(x)
|
|
|
|
if mask_pad.size(2) > 0:
|
|
x.masked_fill_(~mask_pad, 0.0)
|
|
|
|
return x.transpose(1, 2), new_cache
|
|
|