|
''' |
|
Author: Naiyuan liu |
|
Github: https://github.com/NNNNAI |
|
Date: 2021-11-23 17:03:58 |
|
LastEditors: Naiyuan liu |
|
LastEditTime: 2021-11-24 19:19:22 |
|
Description: |
|
''' |
|
|
|
import cv2 |
|
import torch |
|
import fractions |
|
import numpy as np |
|
from PIL import Image |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
from models.models import create_model |
|
from options.test_options import TestOptions |
|
from insightface_func.face_detect_crop_multi import Face_detect_crop |
|
from util.reverse2original import reverse2wholeimage |
|
import os |
|
from util.add_watermark import watermark_image |
|
import torch.nn as nn |
|
from util.norm import SpecificNorm |
|
import glob |
|
from parsing_model.model import BiSeNet |
|
|
|
def lcm(a, b): return abs(a * b) / fractions.gcd(a, b) if a and b else 0 |
|
|
|
transformer_Arcface = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
|
|
def _totensor(array): |
|
tensor = torch.from_numpy(array) |
|
img = tensor.transpose(0, 1).transpose(0, 2).contiguous() |
|
return img.float().div(255) |
|
|
|
def _toarctensor(array): |
|
tensor = torch.from_numpy(array) |
|
img = tensor.transpose(0, 1).transpose(0, 2).contiguous() |
|
return img.float().div(255) |
|
|
|
if __name__ == '__main__': |
|
opt = TestOptions().parse() |
|
|
|
start_epoch, epoch_iter = 1, 0 |
|
crop_size = opt.crop_size |
|
|
|
multisepcific_dir = opt.multisepcific_dir |
|
|
|
torch.nn.Module.dump_patches = True |
|
|
|
if crop_size == 512: |
|
opt.which_epoch = 550000 |
|
opt.name = '512' |
|
mode = 'ffhq' |
|
else: |
|
mode = 'None' |
|
|
|
logoclass = watermark_image('./simswaplogo/simswaplogo.png') |
|
model = create_model(opt) |
|
model.eval() |
|
mse = torch.nn.MSELoss().cuda() |
|
|
|
spNorm =SpecificNorm() |
|
|
|
|
|
app = Face_detect_crop(name='antelope', root='./insightface_func/models') |
|
app.prepare(ctx_id= 0, det_thresh=0.6, det_size=(640,640),mode = mode) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
source_specific_id_nonorm_list = [] |
|
source_path = os.path.join(multisepcific_dir,'SRC_*') |
|
source_specific_images_path = sorted(glob.glob(source_path)) |
|
|
|
for source_specific_image_path in source_specific_images_path: |
|
specific_person_whole = cv2.imread(source_specific_image_path) |
|
specific_person_align_crop, _ = app.get(specific_person_whole,crop_size) |
|
specific_person_align_crop_pil = Image.fromarray(cv2.cvtColor(specific_person_align_crop[0],cv2.COLOR_BGR2RGB)) |
|
specific_person = transformer_Arcface(specific_person_align_crop_pil) |
|
specific_person = specific_person.view(-1, specific_person.shape[0], specific_person.shape[1], specific_person.shape[2]) |
|
|
|
specific_person = specific_person.cuda() |
|
|
|
specific_person_downsample = F.interpolate(specific_person, size=(112,112)) |
|
specific_person_id_nonorm = model.netArc(specific_person_downsample) |
|
source_specific_id_nonorm_list.append(specific_person_id_nonorm.clone()) |
|
|
|
|
|
|
|
target_id_norm_list = [] |
|
target_path = os.path.join(multisepcific_dir,'DST_*') |
|
target_images_path = sorted(glob.glob(target_path)) |
|
|
|
for target_image_path in target_images_path: |
|
img_a_whole = cv2.imread(target_image_path) |
|
img_a_align_crop, _ = app.get(img_a_whole,crop_size) |
|
img_a_align_crop_pil = Image.fromarray(cv2.cvtColor(img_a_align_crop[0],cv2.COLOR_BGR2RGB)) |
|
img_a = transformer_Arcface(img_a_align_crop_pil) |
|
img_id = img_a.view(-1, img_a.shape[0], img_a.shape[1], img_a.shape[2]) |
|
|
|
img_id = img_id.cuda() |
|
|
|
img_id_downsample = F.interpolate(img_id, size=(112,112)) |
|
latend_id = model.netArc(img_id_downsample) |
|
latend_id = F.normalize(latend_id, p=2, dim=1) |
|
target_id_norm_list.append(latend_id.clone()) |
|
|
|
assert len(target_id_norm_list) == len(source_specific_id_nonorm_list), "The number of images in source and target directory must be same !!!" |
|
|
|
|
|
|
|
pic_b = opt.pic_b_path |
|
img_b_whole = cv2.imread(pic_b) |
|
|
|
img_b_align_crop_list, b_mat_list = app.get(img_b_whole,crop_size) |
|
|
|
swap_result_list = [] |
|
|
|
id_compare_values = [] |
|
b_align_crop_tenor_list = [] |
|
for b_align_crop in img_b_align_crop_list: |
|
|
|
b_align_crop_tenor = _totensor(cv2.cvtColor(b_align_crop,cv2.COLOR_BGR2RGB))[None,...].cuda() |
|
|
|
b_align_crop_tenor_arcnorm = spNorm(b_align_crop_tenor) |
|
b_align_crop_tenor_arcnorm_downsample = F.interpolate(b_align_crop_tenor_arcnorm, size=(112,112)) |
|
b_align_crop_id_nonorm = model.netArc(b_align_crop_tenor_arcnorm_downsample) |
|
|
|
id_compare_values.append([]) |
|
for source_specific_id_nonorm_tmp in source_specific_id_nonorm_list: |
|
id_compare_values[-1].append(mse(b_align_crop_id_nonorm,source_specific_id_nonorm_tmp).detach().cpu().numpy()) |
|
b_align_crop_tenor_list.append(b_align_crop_tenor) |
|
|
|
id_compare_values_array = np.array(id_compare_values).transpose(1,0) |
|
min_indexs = np.argmin(id_compare_values_array,axis=0) |
|
min_value = np.min(id_compare_values_array,axis=0) |
|
|
|
swap_result_list = [] |
|
swap_result_matrix_list = [] |
|
swap_result_ori_pic_list = [] |
|
|
|
for tmp_index, min_index in enumerate(min_indexs): |
|
if min_value[tmp_index] < opt.id_thres: |
|
swap_result = model(None, b_align_crop_tenor_list[tmp_index], target_id_norm_list[min_index], None, True)[0] |
|
swap_result_list.append(swap_result) |
|
swap_result_matrix_list.append(b_mat_list[tmp_index]) |
|
swap_result_ori_pic_list.append(b_align_crop_tenor_list[tmp_index]) |
|
else: |
|
pass |
|
|
|
if len(swap_result_list) !=0: |
|
|
|
if opt.use_mask: |
|
n_classes = 19 |
|
net = BiSeNet(n_classes=n_classes) |
|
net.cuda() |
|
save_pth = os.path.join('./parsing_model/checkpoint', '79999_iter.pth') |
|
net.load_state_dict(torch.load(save_pth)) |
|
net.eval() |
|
else: |
|
net =None |
|
|
|
reverse2wholeimage(swap_result_ori_pic_list, swap_result_list, swap_result_matrix_list, crop_size, img_b_whole, logoclass,\ |
|
os.path.join(opt.output_path, 'result_whole_swap_multispecific.jpg'), opt.no_simswaplogo,pasring_model =net,use_mask=opt.use_mask, norm = spNorm) |
|
|
|
print(' ') |
|
|
|
print('************ Done ! ************') |
|
|
|
else: |
|
print('The people you specified are not found on the picture: {}'.format(pic_b)) |
|
|