|
''' |
|
Author: Naiyuan liu |
|
Github: https://github.com/NNNNAI |
|
Date: 2021-11-23 17:03:58 |
|
LastEditors: Naiyuan liu |
|
LastEditTime: 2021-11-24 19:00:34 |
|
Description: |
|
''' |
|
|
|
import cv2 |
|
import torch |
|
import fractions |
|
import numpy as np |
|
from PIL import Image |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
from models.models import create_model |
|
from options.test_options import TestOptions |
|
from insightface_func.face_detect_crop_multi import Face_detect_crop |
|
from util.videoswap import video_swap |
|
import os |
|
|
|
def lcm(a, b): return abs(a * b) / fractions.gcd(a, b) if a and b else 0 |
|
|
|
transformer = transforms.Compose([ |
|
transforms.ToTensor(), |
|
|
|
]) |
|
|
|
transformer_Arcface = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
opt = TestOptions().parse() |
|
|
|
start_epoch, epoch_iter = 1, 0 |
|
crop_size = opt.crop_size |
|
|
|
torch.nn.Module.dump_patches = True |
|
|
|
if crop_size == 512: |
|
opt.which_epoch = 550000 |
|
opt.name = '512' |
|
mode = 'ffhq' |
|
else: |
|
mode = 'None' |
|
model = create_model(opt) |
|
model.eval() |
|
|
|
app = Face_detect_crop(name='antelope', root='./insightface_func/models') |
|
app.prepare(ctx_id= 0, det_thresh=0.6, det_size=(640,640),mode = mode) |
|
|
|
with torch.no_grad(): |
|
pic_a = opt.pic_a_path |
|
|
|
img_a_whole = cv2.imread(pic_a) |
|
img_a_align_crop, _ = app.get(img_a_whole,crop_size) |
|
img_a_align_crop_pil = Image.fromarray(cv2.cvtColor(img_a_align_crop[0],cv2.COLOR_BGR2RGB)) |
|
img_a = transformer_Arcface(img_a_align_crop_pil) |
|
img_id = img_a.view(-1, img_a.shape[0], img_a.shape[1], img_a.shape[2]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_id = img_id.cuda() |
|
|
|
|
|
|
|
img_id_downsample = F.interpolate(img_id, size=(112,112)) |
|
latend_id = model.netArc(img_id_downsample) |
|
latend_id = F.normalize(latend_id, p=2, dim=1) |
|
|
|
video_swap(opt.video_path, latend_id, model, app, opt.output_path,temp_results_dir=opt.temp_path,\ |
|
no_simswaplogo=opt.no_simswaplogo,use_mask=opt.use_mask,crop_size=crop_size) |
|
|
|
|