API_MC_AI / SimSwap /models /networks.py
duyv's picture
Upload 204 files
f884940 verified
import torch
import torch.nn as nn
import functools
from torch.autograd import Variable
import numpy as np
from torchvision import transforms
import torch.nn.functional as F
###############################################################################
# Functions
###############################################################################
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def get_norm_layer(norm_type='instance'):
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
def define_G(input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1,
n_blocks_local=3, norm='instance', gpu_ids=[]):
norm_layer = get_norm_layer(norm_type=norm)
if netG == 'global':
netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer)
elif netG == 'local':
netG = LocalEnhancer(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global,
n_local_enhancers, n_blocks_local, norm_layer)
elif netG == 'encoder':
netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer)
else:
raise('generator not implemented!')
print(netG)
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
netG.cuda(gpu_ids[0])
netG.apply(weights_init)
return netG
def define_G_Adain(input_nc, output_nc, latent_size, ngf, netG, n_downsample_global=2, n_blocks_global=4, norm='instance', gpu_ids=[]):
norm_layer = get_norm_layer(norm_type=norm)
netG = Generator_Adain(input_nc, output_nc, latent_size, ngf, n_downsample_global, n_blocks_global, norm_layer)
print(netG)
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
netG.cuda(gpu_ids[0])
netG.apply(weights_init)
return netG
def define_G_Adain_Mask(input_nc, output_nc, latent_size, ngf, netG, n_downsample_global=2, n_blocks_global=4, norm='instance', gpu_ids=[]):
norm_layer = get_norm_layer(norm_type=norm)
netG = Generator_Adain_Mask(input_nc, output_nc, latent_size, ngf, n_downsample_global, n_blocks_global, norm_layer)
print(netG)
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
netG.cuda(gpu_ids[0])
netG.apply(weights_init)
return netG
def define_G_Adain_Upsample(input_nc, output_nc, latent_size, ngf, netG, n_downsample_global=2, n_blocks_global=4, norm='instance', gpu_ids=[]):
norm_layer = get_norm_layer(norm_type=norm)
netG = Generator_Adain_Upsample(input_nc, output_nc, latent_size, ngf, n_downsample_global, n_blocks_global, norm_layer)
print(netG)
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
netG.cuda(gpu_ids[0])
netG.apply(weights_init)
return netG
def define_G_Adain_2(input_nc, output_nc, latent_size, ngf, netG, n_downsample_global=2, n_blocks_global=4, norm='instance', gpu_ids=[]):
norm_layer = get_norm_layer(norm_type=norm)
netG = Generator_Adain_2(input_nc, output_nc, latent_size, ngf, n_downsample_global, n_blocks_global, norm_layer)
print(netG)
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
netG.cuda(gpu_ids[0])
netG.apply(weights_init)
return netG
def define_D(input_nc, ndf, n_layers_D, norm='instance', use_sigmoid=False, num_D=1, getIntermFeat=False, gpu_ids=[]):
norm_layer = get_norm_layer(norm_type=norm)
netD = MultiscaleDiscriminator(input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat)
print(netD)
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
netD.cuda(gpu_ids[0])
netD.apply(weights_init)
return netD
def print_network(net):
if isinstance(net, list):
net = net[0]
num_params = 0
for param in net.parameters():
num_params += param.numel()
print(net)
print('Total number of parameters: %d' % num_params)
##############################################################################
# Losses
##############################################################################
class GANLoss(nn.Module):
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0,
tensor=torch.FloatTensor, opt=None):
super(GANLoss, self).__init__()
self.real_label = target_real_label
self.fake_label = target_fake_label
self.real_label_tensor = None
self.fake_label_tensor = None
self.zero_tensor = None
self.Tensor = tensor
self.gan_mode = gan_mode
self.opt = opt
if gan_mode == 'ls':
pass
elif gan_mode == 'original':
pass
elif gan_mode == 'w':
pass
elif gan_mode == 'hinge':
pass
else:
raise ValueError('Unexpected gan_mode {}'.format(gan_mode))
def get_target_tensor(self, input, target_is_real):
if target_is_real:
if self.real_label_tensor is None:
self.real_label_tensor = self.Tensor(1).fill_(self.real_label)
self.real_label_tensor.requires_grad_(False)
return self.real_label_tensor.expand_as(input)
else:
if self.fake_label_tensor is None:
self.fake_label_tensor = self.Tensor(1).fill_(self.fake_label)
self.fake_label_tensor.requires_grad_(False)
return self.fake_label_tensor.expand_as(input)
def get_zero_tensor(self, input):
if self.zero_tensor is None:
self.zero_tensor = self.Tensor(1).fill_(0)
self.zero_tensor.requires_grad_(False)
return self.zero_tensor.expand_as(input)
def loss(self, input, target_is_real, for_discriminator=True):
if self.gan_mode == 'original': # cross entropy loss
target_tensor = self.get_target_tensor(input, target_is_real)
loss = F.binary_cross_entropy_with_logits(input, target_tensor)
return loss
elif self.gan_mode == 'ls':
target_tensor = self.get_target_tensor(input, target_is_real)
return F.mse_loss(input, target_tensor)
elif self.gan_mode == 'hinge':
if for_discriminator:
if target_is_real:
minval = torch.min(input - 1, self.get_zero_tensor(input))
loss = -torch.mean(minval)
else:
minval = torch.min(-input - 1, self.get_zero_tensor(input))
loss = -torch.mean(minval)
else:
assert target_is_real, "The generator's hinge loss must be aiming for real"
loss = -torch.mean(input)
return loss
else:
# wgan
if target_is_real:
return -input.mean()
else:
return input.mean()
def __call__(self, input, target_is_real, for_discriminator=True):
# computing loss is a bit complicated because |input| may not be
# a tensor, but list of tensors in case of multiscale discriminator
if isinstance(input, list):
loss = 0
for pred_i in input:
if isinstance(pred_i, list):
pred_i = pred_i[-1]
loss_tensor = self.loss(pred_i, target_is_real, for_discriminator)
bs = 1 if len(loss_tensor.size()) == 0 else loss_tensor.size(0)
new_loss = torch.mean(loss_tensor.view(bs, -1), dim=1)
loss += new_loss
return loss / len(input)
else:
return self.loss(input, target_is_real, for_discriminator)
class VGGLoss(nn.Module):
def __init__(self, gpu_ids):
super(VGGLoss, self).__init__()
self.vgg = Vgg19().cuda()
self.criterion = nn.L1Loss()
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0]
def forward(self, x, y):
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
loss = 0
for i in range(len(x_vgg)):
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
return loss
##############################################################################
# Generator
##############################################################################
class LocalEnhancer(nn.Module):
def __init__(self, input_nc, output_nc, ngf=32, n_downsample_global=3, n_blocks_global=9,
n_local_enhancers=1, n_blocks_local=3, norm_layer=nn.BatchNorm2d, padding_type='reflect'):
super(LocalEnhancer, self).__init__()
self.n_local_enhancers = n_local_enhancers
###### global generator model #####
ngf_global = ngf * (2**n_local_enhancers)
model_global = GlobalGenerator(input_nc, output_nc, ngf_global, n_downsample_global, n_blocks_global, norm_layer).model
model_global = [model_global[i] for i in range(len(model_global)-3)] # get rid of final convolution layers
self.model = nn.Sequential(*model_global)
###### local enhancer layers #####
for n in range(1, n_local_enhancers+1):
### downsample
ngf_global = ngf * (2**(n_local_enhancers-n))
model_downsample = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0),
norm_layer(ngf_global), nn.ReLU(True),
nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf_global * 2), nn.ReLU(True)]
### residual blocks
model_upsample = []
for i in range(n_blocks_local):
model_upsample += [ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer)]
### upsample
model_upsample += [nn.ConvTranspose2d(ngf_global * 2, ngf_global, kernel_size=3, stride=2, padding=1, output_padding=1),
norm_layer(ngf_global), nn.ReLU(True)]
### final convolution
if n == n_local_enhancers:
model_upsample += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]
setattr(self, 'model'+str(n)+'_1', nn.Sequential(*model_downsample))
setattr(self, 'model'+str(n)+'_2', nn.Sequential(*model_upsample))
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
def forward(self, input):
### create input pyramid
input_downsampled = [input]
for i in range(self.n_local_enhancers):
input_downsampled.append(self.downsample(input_downsampled[-1]))
### output at coarest level
output_prev = self.model(input_downsampled[-1])
### build up one layer at a time
for n_local_enhancers in range(1, self.n_local_enhancers+1):
model_downsample = getattr(self, 'model'+str(n_local_enhancers)+'_1')
model_upsample = getattr(self, 'model'+str(n_local_enhancers)+'_2')
input_i = input_downsampled[self.n_local_enhancers-n_local_enhancers]
output_prev = model_upsample(model_downsample(input_i) + output_prev)
return output_prev
class GlobalGenerator(nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
padding_type='reflect'):
assert(n_blocks >= 0)
super(GlobalGenerator, self).__init__()
activation = nn.ReLU(True)
model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]
### downsample
for i in range(n_downsampling):
mult = 2**i
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2), activation]
### resnet blocks
mult = 2**n_downsampling
for i in range(n_blocks):
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)]
### upsample
for i in range(n_downsampling):
mult = 2**(n_downsampling - i)
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
norm_layer(int(ngf * mult / 2)), activation]
model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]
self.model = nn.Sequential(*model)
def forward(self, input):
return self.model(input)
# Define a resnet block
class ResnetBlock(nn.Module):
def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout)
def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim),
activation]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
class InstanceNorm(nn.Module):
def __init__(self, epsilon=1e-8):
"""
@notice: avoid in-place ops.
https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3
"""
super(InstanceNorm, self).__init__()
self.epsilon = epsilon
def forward(self, x):
x = x - torch.mean(x, (2, 3), True)
tmp = torch.mul(x, x) # or x ** 2
tmp = torch.rsqrt(torch.mean(tmp, (2, 3), True) + self.epsilon)
return x * tmp
class SpecificNorm(nn.Module):
def __init__(self, epsilon=1e-8):
"""
@notice: avoid in-place ops.
https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3
"""
super(SpecificNorm, self).__init__()
self.mean = np.array([0.485, 0.456, 0.406])
self.mean = torch.from_numpy(self.mean).float().cuda()
self.mean = self.mean.view([1, 3, 1, 1])
self.std = np.array([0.229, 0.224, 0.225])
self.std = torch.from_numpy(self.std).float().cuda()
self.std = self.std.view([1, 3, 1, 1])
def forward(self, x):
mean = self.mean.expand([1, 3, x.shape[2], x.shape[3]])
std = self.std.expand([1, 3, x.shape[2], x.shape[3]])
x = (x - mean) / std
return x
class ApplyStyle(nn.Module):
"""
@ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb
"""
def __init__(self, latent_size, channels):
super(ApplyStyle, self).__init__()
self.linear = nn.Linear(latent_size, channels * 2)
def forward(self, x, latent):
style = self.linear(latent) # style => [batch_size, n_channels*2]
shape = [-1, 2, x.size(1), 1, 1]
style = style.view(shape) # [batch_size, 2, n_channels, ...]
x = x * (style[:, 0] + 1.) + style[:, 1]
return x
class ResnetBlock_Adain(nn.Module):
def __init__(self, dim, latent_size, padding_type, activation=nn.ReLU(True)):
super(ResnetBlock_Adain, self).__init__()
p = 0
conv1 = []
if padding_type == 'reflect':
conv1 += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv1 += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv1 += [nn.Conv2d(dim, dim, kernel_size=3, padding = p), InstanceNorm()]
self.conv1 = nn.Sequential(*conv1)
self.style1 = ApplyStyle(latent_size, dim)
self.act1 = activation
p = 0
conv2 = []
if padding_type == 'reflect':
conv2 += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv2 += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv2 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()]
self.conv2 = nn.Sequential(*conv2)
self.style2 = ApplyStyle(latent_size, dim)
def forward(self, x, dlatents_in_slice):
y = self.conv1(x)
y = self.style1(y, dlatents_in_slice)
y = self.act1(y)
y = self.conv2(y)
y = self.style2(y, dlatents_in_slice)
out = x + y
return out
class UpBlock_Adain(nn.Module):
def __init__(self, dim_in, dim_out, latent_size, padding_type, activation=nn.ReLU(True)):
super(UpBlock_Adain, self).__init__()
p = 0
conv1 = [nn.Upsample(scale_factor=2, mode='bilinear')]
if padding_type == 'reflect':
conv1 += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv1 += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv1 += [nn.Conv2d(dim_in, dim_out, kernel_size=3, padding = p), InstanceNorm()]
self.conv1 = nn.Sequential(*conv1)
self.style1 = ApplyStyle(latent_size, dim_out)
self.act1 = activation
def forward(self, x, dlatents_in_slice):
y = self.conv1(x)
y = self.style1(y, dlatents_in_slice)
y = self.act1(y)
return y
class Encoder(nn.Module):
def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d):
super(Encoder, self).__init__()
self.output_nc = output_nc
model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0),
norm_layer(ngf), nn.ReLU(True)]
### downsample
for i in range(n_downsampling):
mult = 2**i
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2), nn.ReLU(True)]
### upsample
for i in range(n_downsampling):
mult = 2**(n_downsampling - i)
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
norm_layer(int(ngf * mult / 2)), nn.ReLU(True)]
model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]
self.model = nn.Sequential(*model)
def forward(self, input, inst):
outputs = self.model(input)
# instance-wise average pooling
outputs_mean = outputs.clone()
inst_list = np.unique(inst.cpu().numpy().astype(int))
for i in inst_list:
for b in range(input.size()[0]):
indices = (inst[b:b+1] == int(i)).nonzero() # n x 4
for j in range(self.output_nc):
output_ins = outputs[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]]
mean_feat = torch.mean(output_ins).expand_as(output_ins)
outputs_mean[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]] = mean_feat
return outputs_mean
class Generator_Adain(nn.Module):
def __init__(self, input_nc, output_nc, latent_size, ngf=64, n_downsampling=2, n_blocks=4, norm_layer=nn.BatchNorm2d,
padding_type='reflect'):
assert (n_blocks >= 0)
super(Generator_Adain, self).__init__()
activation = nn.ReLU(True)
Enc = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]
### downsample
for i in range(n_downsampling):
mult = 2 ** i
Enc += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2), activation]
self.Encoder = nn.Sequential(*Enc)
### resnet blocks
BN = []
mult = 2 ** n_downsampling
for i in range(n_blocks):
BN += [ResnetBlock_Adain(ngf*mult, latent_size=latent_size, padding_type=padding_type, activation=activation)]
self.BottleNeck = nn.Sequential(*BN)
'''self.ResBlockAdain1 = ResnetBlock_Adain(ngf * mult, latent_size=latent_size, padding_type=padding_type,
activation=activation)
self.ResBlockAdain2 = ResnetBlock_Adain(ngf * mult, latent_size=latent_size, padding_type=padding_type,
activation=activation)
self.ResBlockAdain3 = ResnetBlock_Adain(ngf * mult, latent_size=latent_size, padding_type=padding_type,
activation=activation)
self.ResBlockAdain4 = ResnetBlock_Adain(ngf * mult, latent_size=latent_size, padding_type=padding_type,
activation=activation)'''
### upsample
Dec = []
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
Dec += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1,
output_padding=1),
norm_layer(int(ngf * mult / 2)), activation]
Dec += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]
self.Decoder = nn.Sequential(*Dec)
#self.model = nn.Sequential(*model)
self.spNorm = SpecificNorm()
def forward(self, input, dlatents):
x = input
x = self.Encoder(x)
for i in range(len(self.BottleNeck)):
x = self.BottleNeck[i](x, dlatents)
'''x = self.ResBlockAdain1(x, dlatents)
x = self.ResBlockAdain2(x, dlatents)
x = self.ResBlockAdain3(x, dlatents)
x = self.ResBlockAdain4(x, dlatents)'''
x = self.Decoder(x)
x = (x + 1) / 2
x = self.spNorm(x)
return x
class Generator_Adain_Mask(nn.Module):
def __init__(self, input_nc, output_nc, latent_size, ngf=64, n_downsampling=2, n_blocks=4, norm_layer=nn.BatchNorm2d,
padding_type='reflect'):
assert (n_blocks >= 0)
super(Generator_Adain_Mask, self).__init__()
activation = nn.ReLU(True)
Enc = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]
### downsample
for i in range(n_downsampling):
mult = 2 ** i
Enc += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2), activation]
self.Encoder = nn.Sequential(*Enc)
### resnet blocks
BN = []
mult = 2 ** n_downsampling
for i in range(n_blocks):
BN += [ResnetBlock_Adain(ngf*mult, latent_size=latent_size, padding_type=padding_type, activation=activation)]
self.BottleNeck = nn.Sequential(*BN)
### upsample
Dec = []
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
Dec += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1,
output_padding=1),
norm_layer(int(ngf * mult / 2)), activation]
Fake_out = [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]
Mast_out = [nn.ReflectionPad2d(3), nn.Conv2d(ngf, 1, kernel_size=7, padding=0), nn.Sigmoid()]
self.Decoder = nn.Sequential(*Dec)
#self.model = nn.Sequential(*model)
self.spNorm = SpecificNorm()
self.Fake_out = nn.Sequential(*Fake_out)
self.Mask_out = nn.Sequential(*Mast_out)
def forward(self, input, dlatents):
x = input
x = self.Encoder(x)
for i in range(len(self.BottleNeck)):
x = self.BottleNeck[i](x, dlatents)
x = self.Decoder(x)
fake_out = self.Fake_out(x)
mask_out = self.Mask_out(x)
fake_out = (fake_out + 1) / 2
fake_out = self.spNorm(fake_out)
generated = fake_out * mask_out + input * (1-mask_out)
return generated, mask_out
class Generator_Adain_Upsample(nn.Module):
def __init__(self, input_nc, output_nc, latent_size, ngf=64, n_downsampling=2, n_blocks=4, norm_layer=nn.BatchNorm2d,
padding_type='reflect'):
assert (n_blocks >= 0)
super(Generator_Adain_Upsample, self).__init__()
activation = nn.ReLU(True)
Enc = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]
### downsample
for i in range(n_downsampling):
mult = 2 ** i
Enc += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2), activation]
self.Encoder = nn.Sequential(*Enc)
### resnet blocks
BN = []
mult = 2 ** n_downsampling
for i in range(n_blocks):
BN += [ResnetBlock_Adain(ngf*mult, latent_size=latent_size, padding_type=padding_type, activation=activation)]
self.BottleNeck = nn.Sequential(*BN)
### upsample
Dec = []
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
'''Dec += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1,
output_padding=1),
norm_layer(int(ngf * mult / 2)), activation]'''
Dec += [nn.Upsample(scale_factor=2, mode='bilinear'),
nn.Conv2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=1, padding=1),
norm_layer(int(ngf * mult / 2)), activation]
Dec += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]
self.Decoder = nn.Sequential(*Dec)
self.spNorm = SpecificNorm()
def forward(self, input, dlatents):
x = input
x = self.Encoder(x)
for i in range(len(self.BottleNeck)):
x = self.BottleNeck[i](x, dlatents)
x = self.Decoder(x)
x = (x + 1) / 2
x = self.spNorm(x)
return x
class Generator_Adain_2(nn.Module):
def __init__(self, input_nc, output_nc, latent_size, ngf=64, n_downsampling=2, n_blocks=4, norm_layer=nn.BatchNorm2d,
padding_type='reflect'):
assert (n_blocks >= 0)
super(Generator_Adain_2, self).__init__()
activation = nn.ReLU(True)
Enc = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]
### downsample
for i in range(n_downsampling):
mult = 2 ** i
Enc += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2), activation]
self.Encoder = nn.Sequential(*Enc)
### resnet blocks
BN = []
mult = 2 ** n_downsampling
for i in range(n_blocks):
BN += [ResnetBlock_Adain(ngf*mult, latent_size=latent_size, padding_type=padding_type, activation=activation)]
self.BottleNeck = nn.Sequential(*BN)
### upsample
Dec = []
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
Dec += [UpBlock_Adain(dim_in=ngf * mult, dim_out=int(ngf * mult / 2), latent_size=latent_size, padding_type=padding_type)]
layer_out = [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]
self.Decoder = nn.Sequential(*Dec)
#self.model = nn.Sequential(*model)
self.spNorm = SpecificNorm()
self.layer_out = nn.Sequential(*layer_out)
def forward(self, input, dlatents):
x = input
x = self.Encoder(x)
for i in range(len(self.BottleNeck)):
x = self.BottleNeck[i](x, dlatents)
for i in range(len(self.Decoder)):
x = self.Decoder[i](x, dlatents)
x = self.layer_out(x)
x = (x + 1) / 2
x = self.spNorm(x)
return x
class MultiscaleDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d,
use_sigmoid=False, num_D=3, getIntermFeat=False):
super(MultiscaleDiscriminator, self).__init__()
self.num_D = num_D
self.n_layers = n_layers
self.getIntermFeat = getIntermFeat
for i in range(num_D):
netD = NLayerDiscriminator(input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat)
if getIntermFeat:
for j in range(n_layers+2):
setattr(self, 'scale'+str(i)+'_layer'+str(j), getattr(netD, 'model'+str(j)))
else:
setattr(self, 'layer'+str(i), netD.model)
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
def singleD_forward(self, model, input):
if self.getIntermFeat:
result = [input]
for i in range(len(model)):
result.append(model[i](result[-1]))
return result[1:]
else:
return [model(input)]
def forward(self, input):
num_D = self.num_D
result = []
input_downsampled = input
for i in range(num_D):
if self.getIntermFeat:
model = [getattr(self, 'scale'+str(num_D-1-i)+'_layer'+str(j)) for j in range(self.n_layers+2)]
else:
model = getattr(self, 'layer'+str(num_D-1-i))
result.append(self.singleD_forward(model, input_downsampled))
if i != (num_D-1):
input_downsampled = self.downsample(input_downsampled)
return result
# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False):
super(NLayerDiscriminator, self).__init__()
self.getIntermFeat = getIntermFeat
self.n_layers = n_layers
kw = 4
padw = 1
sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]]
nf = ndf
for n in range(1, n_layers):
nf_prev = nf
nf = min(nf * 2, 512)
sequence += [[
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
norm_layer(nf), nn.LeakyReLU(0.2, True)
]]
nf_prev = nf
nf = min(nf * 2, 512)
sequence += [[
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]]
if use_sigmoid:
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw), nn.Sigmoid()]]
else:
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
if getIntermFeat:
for n in range(len(sequence)):
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
else:
sequence_stream = []
for n in range(len(sequence)):
sequence_stream += sequence[n]
self.model = nn.Sequential(*sequence_stream)
def forward(self, input):
if self.getIntermFeat:
res = [input]
for n in range(self.n_layers+2):
model = getattr(self, 'model'+str(n))
res.append(model(res[-1]))
return res[1:]
else:
return self.model(input)
from torchvision import models
class Vgg19(torch.nn.Module):
def __init__(self, requires_grad=False):
super(Vgg19, self).__init__()
vgg_pretrained_features = models.vgg19(pretrained=True).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out