Upload PPO LunarLander v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.54 +/- 22.91
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb8bc349750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb8bc3497e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb8bc349870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb8bc349900>", "_build": "<function ActorCriticPolicy._build at 0x7bb8bc349990>", "forward": "<function ActorCriticPolicy.forward at 0x7bb8bc349a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb8bc349ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb8bc349b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7bb8bc349bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb8bc349c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb8bc349cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb8bc349d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb8bc4efe00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696346031422743664, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMbGBL6Bk4Y/tZbOvrB+Ar91aAa+1hgtvgAAAAAAAAAAWCWrvu77Iz8gfYs+gxKvvm7eOL4y94g+AAAAAAAAAAAzGgg+X3/kPtZG4bxOgHy+1KDKPdKuPbwAAAAAAAAAADND7LtoH/091mJcvWpEj77jxSK8p0QBPAAAAAAAAAAAQMVcPvIbaT/qli0+ww/6vq0HOD756gS+AAAAAAAAAAAAmN676SUEvIhjMTyccD08+JZnvbIeIj0AAIA/AACAP6OIsb6K8EE/TkQSPfJx/r7crcu+HZ/mPQAAAAAAAAAAM4IKPqit+j6il1K+RpGjvgM0djz8t5i8AAAAAAAAAACzZde9/kGwPyWGIr8E75K++IAsvfHHnr4AAAAAAAAAAA36mj1Is4i6jUIRuBes/LKGXvO4txApNwAAgD8AAIA/zXzgupi1Fj+epPA88wGpvsT3WjxbCXQ9AAAAAAAAAABmBim879KwPyWifL4VEby+rAzSOzJ/obwAAAAAAAAAAOZOLD37Wzs/UsGMPQ/Fur4S8GY9XgW8PQAAAAAAAAAAAP4BPayVlT6i42u9/fSQvvEv+7yGEke8AAAAAAAAAABmfrq9OrnNPnSlhj7y5Zi+r3CMPV8GGDwAAAAAAAAAAGD3fj6fbZk/gti8PuRCzb6ouI0+ZqLbPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFFaRE4Nqg2MAWyUS7WMAXSUR0CaKvJEpiI+dX2UKGgGR0Bw95oh6jWTaAdNqwFoCEdAmiseqrBCU3V9lChoBkdAb4Q3gDRtxmgHTSgBaAhHQJoroN7SiM51fZQoaAZHQHF/wSBbwBpoB01BAWgIR0CaK79roGILdX2UKGgGR0BxtKvyLAHnaAdNQgFoCEdAmi+37pFCs3V9lChoBkdAcV2D7ZWaMWgHTTgBaAhHQJov2f7Jnxt1fZQoaAZHQG0TW4d6syVoB02FAWgIR0CaMe4ptrKvdX2UKGgGR0ByJ7mW+oLoaAdNZgFoCEdAmjPFEqlP8HV9lChoBkdAcZ9nkDIRy2gHTRIBaAhHQJo0uG7Bfrt1fZQoaAZHQHH7Rqj8DSxoB02HAWgIR0CaNTOGTLW7dX2UKGgGR0Bu6hbhWHUMaAdNBwFoCEdAmjX7dadMCnV9lChoBkdAcOlihnJ1aGgHTTkBaAhHQJo2DaM72ct1fZQoaAZHQHCPp8rqdH5oB005AWgIR0CaNhMxGlQ/dX2UKGgGR0Bwnil54W1uaAdNQwFoCEdAmjaRMnJDE3V9lChoBkdAbK9GyX2M9GgHTQsBaAhHQJo20nWrfch1fZQoaAZHQHERulO45LhoB02SAWgIR0CaNtpcHGCJdX2UKGgGR0Bxh3H5rP+oaAdNNQFoCEdAmjbo4+8oQXV9lChoBkdAcuEsHjZL7GgHTZsBaAhHQJo3HDO1OTJ1fZQoaAZHQHHo9oN/e+FoB00tAWgIR0CaN5ZVn27GdX2UKGgGR0Bw8O0BwMpgaAdL/WgIR0CaOJQSSNfgdX2UKGgGR0Bx++KYRdyDaAdNcAFoCEdAmjjqebutwXV9lChoBkdAcaQFjurp7mgHTTkBaAhHQJo6LgbZOBV1fZQoaAZHQHGHJR4yGi5oB00bAWgIR0CaOsHR1HOKdX2UKGgGR0Bt5CqIacZtaAdNBgFoCEdAmjuoOpbUw3V9lChoBkdAK7jE3sHB12gHS9RoCEdAmjxgQlKK53V9lChoBkdAcOAXp4bCJ2gHTRQBaAhHQJo89jqfOD91fZQoaAZHQG+tRradtl9oB00sAWgIR0CaPj1kUbkwdX2UKGgGR0Byk8RzzVc2aAdNDgFoCEdAmj60x7AtWnV9lChoBkdAcmSL6UJOWWgHTSUBaAhHQJo+33ueBhB1fZQoaAZHQHCp0mdAgPpoB00TAWgIR0CaP1mNR3vAdX2UKGgGR0BwJkny/bj+aAdNJAFoCEdAmj+Wv0RODnV9lChoBkdAcVPH6/IsAmgHTVEBaAhHQJpAU/cFhXt1fZQoaAZHQHGbzENvwVloB00nAWgIR0CaQKwLVnVYdX2UKGgGR0BxY1W912aEaAdNagFoCEdAmkEnjyWiUXV9lChoBkdAcQCXnyNGVmgHTVQBaAhHQJpBMflp48l1fZQoaAZHQHHziWqtHQRoB00VAWgIR0CaQb5zHS4OdX2UKGgGR0By27D4xk/baAdNLAFoCEdAmkICB5HEuXV9lChoBkdAbaqwV0tAcGgHTQUBaAhHQJpDSVlf7aZ1fZQoaAZHQHEa1p48loloB00OAWgIR0CaRGpNbkfcdX2UKGgGR0By3/XI2fkFaAdNPwFoCEdAmkRxcqvvB3V9lChoBkdAb88ow22oemgHTScBaAhHQJpX4Ouq3mV1fZQoaAZHQHB6ktVaOghoB00TAWgIR0CaWHEkB0ZFdX2UKGgGR0Bw1ZPk7wKCaAdNUwFoCEdAmljelGgBcXV9lChoBkdAcnjoQ4CIUWgHTSwBaAhHQJpaJxMnJDF1fZQoaAZHQG4oV5jYqXpoB00GAWgIR0CaWxe0ojOcdX2UKGgGR0ByOCkbgjyGaAdNLgFoCEdAmlsey3Td+HV9lChoBkdAbw/EMLF4s2gHS/VoCEdAmlsf73wkPnV9lChoBkdAbeZGza9K3GgHTR4BaAhHQJpbs3dbgTB1fZQoaAZHQHJ+rxI8QqZoB01SAWgIR0CaXP4t6HCXdX2UKGgGR0BxM/CiyprDaAdNCwFoCEdAmlz+fRNRFnV9lChoBkdAb/Wgkka/AWgHTT8BaAhHQJpeRwqAjIJ1fZQoaAZHQHJTOOKfnOloB000AWgIR0CaXybVSXMRdX2UKGgGR0BuIu/Ho5ggaAdNCQFoCEdAml8j19ORDHV9lChoBkdAcVL4DLbHqGgHTZ8BaAhHQJpfZJDmbLF1fZQoaAZHQG6aXEAHVwxoB00fAWgIR0CaYYdxhlUZdX2UKGgGR0Bwz95iVjZtaAdNNgFoCEdAmmJ72QGOdXV9lChoBkdAcHWDIRywOmgHTRMBaAhHQJpj4NlRP451fZQoaAZHQE5bjLjghr5oB0vMaAhHQJpkloh6jWV1fZQoaAZHQHDeKt5le4VoB00OAWgIR0CaZRK8L8aXdX2UKGgGR0BsK8VHnU2DaAdNJwFoCEdAmmW3n2ZiNXV9lChoBkdAcshw482aUmgHTR8BaAhHQJpnIPuogmt1fZQoaAZHQG5JpbMX7+FoB00MAWgIR0CaZxy2hIvrdX2UKGgGR0BzYgTCcf/4aAdNFgFoCEdAmmeNM9KVZHV9lChoBkdAcVqSOzY29GgHTQMBaAhHQJpoqioKlYV1fZQoaAZHQA2Ws7uDzy1oB0vZaAhHQJppEh/y5I91fZQoaAZHQHE7EytV7yBoB01JAWgIR0CaafG9pRGddX2UKGgGR0BtjuBjFyaNaAdNBQFoCEdAmmtbJSzgM3V9lChoBkdAcyZymALApWgHTSIBaAhHQJprbXUYsNF1fZQoaAZHQHJKgz+FUQ1oB01AAWgIR0Caa24H5aePdX2UKGgGR0Bw+WE7GNrCaAdNCQFoCEdAmm8CjUNKAnV9lChoBkdAbdPXYlIEsGgHS/xoCEdAmm+k1VHWjHV9lChoBkdAcj+70Fr2x2gHTUQBaAhHQJpwbtZ3cHp1fZQoaAZHQG14tKAavRtoB004AWgIR0Cacl/M4cWCdX2UKGgGR0Bw0o8IRh+faAdNwwFoCEdAmnL+nQ6ZIHV9lChoBkdAcj7rkKeCkGgHTRQBaAhHQJpy+ugYgq51fZQoaAZHQHMhSYTj/+9oB008AWgIR0Cac144Ia99dX2UKGgGR0Bx0qOPvKEGaAdNLgFoCEdAmnPf2oNutXV9lChoBkdAcVE1b7j1f2gHTWABaAhHQJp0GJDVpbl1fZQoaAZHQHJUTLB9Cu5oB00UAWgIR0CadF065oXbdX2UKGgGR0BwouUaAFxGaAdNAgFoCEdAmnRkfs/puHV9lChoBkdAcLzelbeMymgHTUcBaAhHQJp04EdNnGt1fZQoaAZHQHHlO6d1+y9oB01GAWgIR0CadXaTfR/mdX2UKGgGR0ByMYV0tAcDaAdNJwFoCEdAmnY4REnb7HV9lChoBkdAcb9PV/c32mgHTS4BaAhHQJp2WqQzUI91fZQoaAZHQHHH7SiM5wRoB00yAWgIR0CadoPq9oN/dX2UKGgGR0BvO3h60IC2aAdNCgFoCEdAmnfv/zasZHV9lChoBkdAcddb83uNP2gHTTQBaAhHQJp4xjZteld1fZQoaAZHQGz+RWLgn+hoB01CAWgIR0Caem4N7SiNdX2UKGgGR0BthBsEaESNaAdNCQFoCEdAmnq/qHGjsXV9lChoBkdAcaDoJiRW92gHTRsBaAhHQJp7YHnlnyx1fZQoaAZHQHDwX889wFVoB00zAWgIR0Cae6wQlKK6dX2UKGgGR0BsIG9+PRzBaAdNFwFoCEdAmnwlCHARCnV9lChoBkdAc0tIDHOryWgHTRkBaAhHQJp8gIu5BkZ1fZQoaAZHQHBQjmr8zhxoB00bAWgIR0CafNx1gYxddX2UKGgGR0Bx2Hc580DVaAdNPwFoCEdAmnz/oePq93V9lChoBkdAccI+xW1c+2gHS/loCEdAmn0PES/TLHV9lChoBkdASK0fvF3pwGgHS+xoCEdAmn2b3TNMXnV9lChoBkdAbX1eJpFkQWgHTTkBaAhHQJp+IlUp/gB1fZQoaAZHQHJJvAwfyPNoB00PAWgIR0CafmDXOGCadX2UKGgGR0BxhTn2ZiNLaAdNYQFoCEdAmn6evllsg3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5c2fe0ae84ef3bf93e3e56074860d8d2e103fe31040e6e2c770d83f9e908326
|
3 |
+
size 146747
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7bb8bc349750>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb8bc3497e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb8bc349870>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb8bc349900>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7bb8bc349990>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7bb8bc349a20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb8bc349ab0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb8bc349b40>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7bb8bc349bd0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb8bc349c60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb8bc349cf0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb8bc349d80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7bb8bc4efe00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1696346031422743664,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMbGBL6Bk4Y/tZbOvrB+Ar91aAa+1hgtvgAAAAAAAAAAWCWrvu77Iz8gfYs+gxKvvm7eOL4y94g+AAAAAAAAAAAzGgg+X3/kPtZG4bxOgHy+1KDKPdKuPbwAAAAAAAAAADND7LtoH/091mJcvWpEj77jxSK8p0QBPAAAAAAAAAAAQMVcPvIbaT/qli0+ww/6vq0HOD756gS+AAAAAAAAAAAAmN676SUEvIhjMTyccD08+JZnvbIeIj0AAIA/AACAP6OIsb6K8EE/TkQSPfJx/r7crcu+HZ/mPQAAAAAAAAAAM4IKPqit+j6il1K+RpGjvgM0djz8t5i8AAAAAAAAAACzZde9/kGwPyWGIr8E75K++IAsvfHHnr4AAAAAAAAAAA36mj1Is4i6jUIRuBes/LKGXvO4txApNwAAgD8AAIA/zXzgupi1Fj+epPA88wGpvsT3WjxbCXQ9AAAAAAAAAABmBim879KwPyWifL4VEby+rAzSOzJ/obwAAAAAAAAAAOZOLD37Wzs/UsGMPQ/Fur4S8GY9XgW8PQAAAAAAAAAAAP4BPayVlT6i42u9/fSQvvEv+7yGEke8AAAAAAAAAABmfrq9OrnNPnSlhj7y5Zi+r3CMPV8GGDwAAAAAAAAAAGD3fj6fbZk/gti8PuRCzb6ouI0+ZqLbPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFFaRE4Nqg2MAWyUS7WMAXSUR0CaKvJEpiI+dX2UKGgGR0Bw95oh6jWTaAdNqwFoCEdAmiseqrBCU3V9lChoBkdAb4Q3gDRtxmgHTSgBaAhHQJoroN7SiM51fZQoaAZHQHF/wSBbwBpoB01BAWgIR0CaK79roGILdX2UKGgGR0BxtKvyLAHnaAdNQgFoCEdAmi+37pFCs3V9lChoBkdAcV2D7ZWaMWgHTTgBaAhHQJov2f7Jnxt1fZQoaAZHQG0TW4d6syVoB02FAWgIR0CaMe4ptrKvdX2UKGgGR0ByJ7mW+oLoaAdNZgFoCEdAmjPFEqlP8HV9lChoBkdAcZ9nkDIRy2gHTRIBaAhHQJo0uG7Bfrt1fZQoaAZHQHH7Rqj8DSxoB02HAWgIR0CaNTOGTLW7dX2UKGgGR0Bu6hbhWHUMaAdNBwFoCEdAmjX7dadMCnV9lChoBkdAcOlihnJ1aGgHTTkBaAhHQJo2DaM72ct1fZQoaAZHQHCPp8rqdH5oB005AWgIR0CaNhMxGlQ/dX2UKGgGR0Bwnil54W1uaAdNQwFoCEdAmjaRMnJDE3V9lChoBkdAbK9GyX2M9GgHTQsBaAhHQJo20nWrfch1fZQoaAZHQHERulO45LhoB02SAWgIR0CaNtpcHGCJdX2UKGgGR0Bxh3H5rP+oaAdNNQFoCEdAmjbo4+8oQXV9lChoBkdAcuEsHjZL7GgHTZsBaAhHQJo3HDO1OTJ1fZQoaAZHQHHo9oN/e+FoB00tAWgIR0CaN5ZVn27GdX2UKGgGR0Bw8O0BwMpgaAdL/WgIR0CaOJQSSNfgdX2UKGgGR0Bx++KYRdyDaAdNcAFoCEdAmjjqebutwXV9lChoBkdAcaQFjurp7mgHTTkBaAhHQJo6LgbZOBV1fZQoaAZHQHGHJR4yGi5oB00bAWgIR0CaOsHR1HOKdX2UKGgGR0Bt5CqIacZtaAdNBgFoCEdAmjuoOpbUw3V9lChoBkdAK7jE3sHB12gHS9RoCEdAmjxgQlKK53V9lChoBkdAcOAXp4bCJ2gHTRQBaAhHQJo89jqfOD91fZQoaAZHQG+tRradtl9oB00sAWgIR0CaPj1kUbkwdX2UKGgGR0Byk8RzzVc2aAdNDgFoCEdAmj60x7AtWnV9lChoBkdAcmSL6UJOWWgHTSUBaAhHQJo+33ueBhB1fZQoaAZHQHCp0mdAgPpoB00TAWgIR0CaP1mNR3vAdX2UKGgGR0BwJkny/bj+aAdNJAFoCEdAmj+Wv0RODnV9lChoBkdAcVPH6/IsAmgHTVEBaAhHQJpAU/cFhXt1fZQoaAZHQHGbzENvwVloB00nAWgIR0CaQKwLVnVYdX2UKGgGR0BxY1W912aEaAdNagFoCEdAmkEnjyWiUXV9lChoBkdAcQCXnyNGVmgHTVQBaAhHQJpBMflp48l1fZQoaAZHQHHziWqtHQRoB00VAWgIR0CaQb5zHS4OdX2UKGgGR0By27D4xk/baAdNLAFoCEdAmkICB5HEuXV9lChoBkdAbaqwV0tAcGgHTQUBaAhHQJpDSVlf7aZ1fZQoaAZHQHEa1p48loloB00OAWgIR0CaRGpNbkfcdX2UKGgGR0By3/XI2fkFaAdNPwFoCEdAmkRxcqvvB3V9lChoBkdAb88ow22oemgHTScBaAhHQJpX4Ouq3mV1fZQoaAZHQHB6ktVaOghoB00TAWgIR0CaWHEkB0ZFdX2UKGgGR0Bw1ZPk7wKCaAdNUwFoCEdAmljelGgBcXV9lChoBkdAcnjoQ4CIUWgHTSwBaAhHQJpaJxMnJDF1fZQoaAZHQG4oV5jYqXpoB00GAWgIR0CaWxe0ojOcdX2UKGgGR0ByOCkbgjyGaAdNLgFoCEdAmlsey3Td+HV9lChoBkdAbw/EMLF4s2gHS/VoCEdAmlsf73wkPnV9lChoBkdAbeZGza9K3GgHTR4BaAhHQJpbs3dbgTB1fZQoaAZHQHJ+rxI8QqZoB01SAWgIR0CaXP4t6HCXdX2UKGgGR0BxM/CiyprDaAdNCwFoCEdAmlz+fRNRFnV9lChoBkdAb/Wgkka/AWgHTT8BaAhHQJpeRwqAjIJ1fZQoaAZHQHJTOOKfnOloB000AWgIR0CaXybVSXMRdX2UKGgGR0BuIu/Ho5ggaAdNCQFoCEdAml8j19ORDHV9lChoBkdAcVL4DLbHqGgHTZ8BaAhHQJpfZJDmbLF1fZQoaAZHQG6aXEAHVwxoB00fAWgIR0CaYYdxhlUZdX2UKGgGR0Bwz95iVjZtaAdNNgFoCEdAmmJ72QGOdXV9lChoBkdAcHWDIRywOmgHTRMBaAhHQJpj4NlRP451fZQoaAZHQE5bjLjghr5oB0vMaAhHQJpkloh6jWV1fZQoaAZHQHDeKt5le4VoB00OAWgIR0CaZRK8L8aXdX2UKGgGR0BsK8VHnU2DaAdNJwFoCEdAmmW3n2ZiNXV9lChoBkdAcshw482aUmgHTR8BaAhHQJpnIPuogmt1fZQoaAZHQG5JpbMX7+FoB00MAWgIR0CaZxy2hIvrdX2UKGgGR0BzYgTCcf/4aAdNFgFoCEdAmmeNM9KVZHV9lChoBkdAcVqSOzY29GgHTQMBaAhHQJpoqioKlYV1fZQoaAZHQA2Ws7uDzy1oB0vZaAhHQJppEh/y5I91fZQoaAZHQHE7EytV7yBoB01JAWgIR0CaafG9pRGddX2UKGgGR0BtjuBjFyaNaAdNBQFoCEdAmmtbJSzgM3V9lChoBkdAcyZymALApWgHTSIBaAhHQJprbXUYsNF1fZQoaAZHQHJKgz+FUQ1oB01AAWgIR0Caa24H5aePdX2UKGgGR0Bw+WE7GNrCaAdNCQFoCEdAmm8CjUNKAnV9lChoBkdAbdPXYlIEsGgHS/xoCEdAmm+k1VHWjHV9lChoBkdAcj+70Fr2x2gHTUQBaAhHQJpwbtZ3cHp1fZQoaAZHQG14tKAavRtoB004AWgIR0Cacl/M4cWCdX2UKGgGR0Bw0o8IRh+faAdNwwFoCEdAmnL+nQ6ZIHV9lChoBkdAcj7rkKeCkGgHTRQBaAhHQJpy+ugYgq51fZQoaAZHQHMhSYTj/+9oB008AWgIR0Cac144Ia99dX2UKGgGR0Bx0qOPvKEGaAdNLgFoCEdAmnPf2oNutXV9lChoBkdAcVE1b7j1f2gHTWABaAhHQJp0GJDVpbl1fZQoaAZHQHJUTLB9Cu5oB00UAWgIR0CadF065oXbdX2UKGgGR0BwouUaAFxGaAdNAgFoCEdAmnRkfs/puHV9lChoBkdAcLzelbeMymgHTUcBaAhHQJp04EdNnGt1fZQoaAZHQHHlO6d1+y9oB01GAWgIR0CadXaTfR/mdX2UKGgGR0ByMYV0tAcDaAdNJwFoCEdAmnY4REnb7HV9lChoBkdAcb9PV/c32mgHTS4BaAhHQJp2WqQzUI91fZQoaAZHQHHH7SiM5wRoB00yAWgIR0CadoPq9oN/dX2UKGgGR0BvO3h60IC2aAdNCgFoCEdAmnfv/zasZHV9lChoBkdAcddb83uNP2gHTTQBaAhHQJp4xjZteld1fZQoaAZHQGz+RWLgn+hoB01CAWgIR0Caem4N7SiNdX2UKGgGR0BthBsEaESNaAdNCQFoCEdAmnq/qHGjsXV9lChoBkdAcaDoJiRW92gHTRsBaAhHQJp7YHnlnyx1fZQoaAZHQHDwX889wFVoB00zAWgIR0Cae6wQlKK6dX2UKGgGR0BsIG9+PRzBaAdNFwFoCEdAmnwlCHARCnV9lChoBkdAc0tIDHOryWgHTRkBaAhHQJp8gIu5BkZ1fZQoaAZHQHBQjmr8zhxoB00bAWgIR0CafNx1gYxddX2UKGgGR0Bx2Hc580DVaAdNPwFoCEdAmnz/oePq93V9lChoBkdAccI+xW1c+2gHS/loCEdAmn0PES/TLHV9lChoBkdASK0fvF3pwGgHS+xoCEdAmn2b3TNMXnV9lChoBkdAbX1eJpFkQWgHTTkBaAhHQJp+IlUp/gB1fZQoaAZHQHJJvAwfyPNoB00PAWgIR0CafmDXOGCadX2UKGgGR0BxhTn2ZiNLaAdNYQFoCEdAmn6evllsg3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71c1d72349431a82edf834ed1c2ba42406166264f2a282524851cbdcde844173
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dc72b33b4d70ee3101d665199bee9bfa5676b94f67f1342feac1d682ebea634
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (163 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.5391976, "std_reward": 22.913527302154105, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-03T15:37:29.973506"}
|