unit1-LunarLander-v2 / config.json
dussinus's picture
Upload PPO LunarLander-v2 trained agent with gamma 0.998
b937241
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f27115dfc10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f27115dfca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f27115dfd30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f27115dfdc0>", "_build": "<function ActorCriticPolicy._build at 0x7f27115dfe50>", "forward": "<function ActorCriticPolicy.forward at 0x7f27115dfee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f27115dff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f27115e1040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f27115e10d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f27115e1160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f27115e11f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f27115e1280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f27115e03c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678972408970625952, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMmujxczwy6goUnOVOfJzQTjP06szxIuAAAgD8AAIA/ABpHPa6TjLo1ro07+vdXNlUfLbvVEaS6AACAPwAAgD/mNUC9rFe/P+5twr4F5yc+02oAPc5egbsAAAAAAAAAAEB2o71c61a6rWWEu1pK6zXdaGe6ApmZOgAAgD8AAIA/AC5XPI8qbbraao642sj2s2kwaDui5KQ3AACAPwAAgD8AKC07XD9Xur5WtrqeCmQ1P8Eru33oz7QAAIA/AACAPwbADD6f/bY+LbTTvZBUi77Rk/Q8214VvQAAAAAAAAAAABQdPI8+TboCiaI6Hu6HNR7uirp+u7+5AACAPwAAgD9NEBg9OJfYPgn8Fr1TS42+j255PAV2S70AAAAAAAAAAGZiTb1cq3i6haPlOkSOsDUOQRE5mFEGugAAgD8AAIA/phDHPbbSNj/SOk69xIfivkX3TD3o0888AAAAAAAAAABmQl48SB2IupMwoLsPoIU4DJcJuzDCdjkAAIA/AACAP5qETj2uj5m68wFkOtHbKTWLTOk6HceBuQAAgD8AAIA/Zn3GvPFqoj/btSq+ZcIOv/yOEL2qOOW9AAAAAAAAAAAAwQ2+rLp4P7Wryb0Clra+ZOlavvvaTj0AAAAAAAAAAICCjD2PHli6WH5ZvBX4tzaVEbU4ZGkotgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMiHmkiqFZkCUhpRSlIwBbJRN6AOMAXSUR0CVcdauOjqOdX2UKGgGaAloD0MIH4Kq0as1ZECUhpRSlGgVTegDaBZHQJV4HD50r9V1fZQoaAZoCWgPQwjjpZvEIAJlQJSGlFKUaBVN6ANoFkdAlXh0oKD02HV9lChoBmgJaA9DCFfPSe8bEURAlIaUUpRoFUveaBZHQJWUfeIl+mZ1fZQoaAZoCWgPQwjjUwCMZ+xMQJSGlFKUaBVL3WgWR0CVlgR5TqB3dX2UKGgGaAloD0MIBTI7i17dYkCUhpRSlGgVTegDaBZHQJWX6t3fQ8h1fZQoaAZoCWgPQwjwGB772RBjQJSGlFKUaBVN6ANoFkdAlZ0N47ihnXV9lChoBmgJaA9DCO6XT1YMWGdAlIaUUpRoFU3oA2gWR0CVotuEVWS2dX2UKGgGaAloD0MIjV4NUBrlZ0CUhpRSlGgVTegDaBZHQJWi7ldTo+x1fZQoaAZoCWgPQwgYBiy5illmQJSGlFKUaBVN6ANoFkdAlaX+GbkOqnV9lChoBmgJaA9DCJXx7zOubWVAlIaUUpRoFU3oA2gWR0CVqvfIjnmrdX2UKGgGaAloD0MI/RNcrChoZUCUhpRSlGgVTegDaBZHQJWtq7voePt1fZQoaAZoCWgPQwg1lxsMdWBkQJSGlFKUaBVN6ANoFkdAla8ZGjKxLXV9lChoBmgJaA9DCDCeQUP/9WNAlIaUUpRoFU3oA2gWR0CVtRzMA3kxdX2UKGgGaAloD0MIPUm6ZvKQY0CUhpRSlGgVTegDaBZHQJW3UGgSOBF1fZQoaAZoCWgPQwjEr1jDRcFRQJSGlFKUaBVLx2gWR0CVvR2IO6NEdX2UKGgGaAloD0MIGsIxy555Y0CUhpRSlGgVTegDaBZHQJW/x0Qsf7t1fZQoaAZoCWgPQwiCHJQw08hmQJSGlFKUaBVN6ANoFkdAlcSwElme2HV9lChoBmgJaA9DCJ4I4jwch2RAlIaUUpRoFU3oA2gWR0CVzU6RQrMDdX2UKGgGaAloD0MILLgf8EC4YkCUhpRSlGgVTegDaBZHQJXNhrYXfqJ1fZQoaAZoCWgPQwhJLZRMzjllQJSGlFKUaBVN6ANoFkdAlene0svqT3V9lChoBmgJaA9DCDL/6Js00WZAlIaUUpRoFU3oA2gWR0CV7EHqeK8+dX2UKGgGaAloD0MI4IWt2cpmZUCUhpRSlGgVTegDaBZHQJXu7ps41gp1fZQoaAZoCWgPQwiYGMv0yx5nQJSGlFKUaBVN6ANoFkdAlfZRQ3xWk3V9lChoBmgJaA9DCGFrtvKSWlNAlIaUUpRoFUvLaBZHQJX9UbDMvAZ1fZQoaAZoCWgPQwjsMvynG+RnQJSGlFKUaBVN6ANoFkdAlf1+qWC2+nV9lChoBmgJaA9DCCbHndJBsGNAlIaUUpRoFU3oA2gWR0CV/Y3y7PIGdX2UKGgGaAloD0MIzXfwE4e9aECUhpRSlGgVTegDaBZHQJYANpItlI51fZQoaAZoCWgPQwhsBOJ1/VliQJSGlFKUaBVN6ANoFkdAlgP20Z3s5XV9lChoBmgJaA9DCOcYkL3emmRAlIaUUpRoFU3oA2gWR0CWBuESdvsJdX2UKGgGaAloD0MImfBL/TydYkCUhpRSlGgVTegDaBZHQJYK90W/JvJ1fZQoaAZoCWgPQwi4ByEgX7diQJSGlFKUaBVN6ANoFkdAlgx+fEn9enV9lChoBmgJaA9DCMNmgAuykl5AlIaUUpRoFU3oA2gWR0CWEL8nuy/sdX2UKGgGaAloD0MINj/+0iIuYUCUhpRSlGgVTegDaBZHQJYTWcriEQJ1fZQoaAZoCWgPQwj7WwLwT1NlQJSGlFKUaBVN6ANoFkdAlhjK8tf5UXV9lChoBmgJaA9DCHUGRl7WFk5AlIaUUpRoFUunaBZHQJYdPyqdYnx1fZQoaAZoCWgPQwgIVWr2QEFJQJSGlFKUaBVL52gWR0CWHmckMTewdX2UKGgGaAloD0MIINJvX4dZZ0CUhpRSlGgVTegDaBZHQJYiZVENOM51fZQoaAZoCWgPQwg10lJ5O6BgQJSGlFKUaBVN6ANoFkdAliKeGfwqiHV9lChoBmgJaA9DCKOSOgHNPGRAlIaUUpRoFU3oA2gWR0CWQ13pOerddX2UKGgGaAloD0MI/iYUImAWZUCUhpRSlGgVTegDaBZHQJZGuuDBdld1fZQoaAZoCWgPQwgeGavNf/1lQJSGlFKUaBVN6ANoFkdAlkvvFirksHV9lChoBmgJaA9DCPBuZYlOC2NAlIaUUpRoFU3oA2gWR0CWUXjU/fO2dX2UKGgGaAloD0MIp8tiYnMIZUCUhpRSlGgVTegDaBZHQJZRrFkxyn11fZQoaAZoCWgPQwi8XS9NkRhlQJSGlFKUaBVN6ANoFkdAllG/E87p3XV9lChoBmgJaA9DCKyrArWYOGZAlIaUUpRoFU3oA2gWR0CWVJjBVMmGdX2UKGgGaAloD0MIlnfVA+ZRZkCUhpRSlGgVTegDaBZHQJZYa4UeuFJ1fZQoaAZoCWgPQwjIsfUMYU9lQJSGlFKUaBVN6ANoFkdAlltLuhK15XV9lChoBmgJaA9DCNS5opQQ+kZAlIaUUpRoFUvEaBZHQJZcj0btJFt1fZQoaAZoCWgPQwg5fqg0Yh4zQJSGlFKUaBVL2GgWR0CWXe41xbSrdX2UKGgGaAloD0MI3smnxzbmY0CUhpRSlGgVTegDaBZHQJZfm6e5Fw11fZQoaAZoCWgPQwgD0ZMyKaZlQJSGlFKUaBVN6ANoFkdAlmEo4ACGOHV9lChoBmgJaA9DCJRpNLkYG0NAlIaUUpRoFUvVaBZHQJZpHu0CzTp1fZQoaAZoCWgPQwgqOLwgoktlQJSGlFKUaBVN6ANoFkdAlnLRAOavzXV9lChoBmgJaA9DCOPdkbFaHmZAlIaUUpRoFU3oA2gWR0CWebkAPuohdX2UKGgGaAloD0MIFjHsMCYDX0CUhpRSlGgVTegDaBZHQJZ6zQHAymB1fZQoaAZoCWgPQwgZ48Ps5RdhQJSGlFKUaBVN6ANoFkdAln6ZD/lyR3V9lChoBmgJaA9DCBRdF35wxWNAlIaUUpRoFU3oA2gWR0CWftWRzRx+dX2UKGgGaAloD0MINBR3vMkqXkCUhpRSlGgVTegDaBZHQJaZpAv+OwR1fZQoaAZoCWgPQwiit3h4T5RkQJSGlFKUaBVN6ANoFkdAlpzxm03OwHV9lChoBmgJaA9DCO8eoPvyN2NAlIaUUpRoFU3oA2gWR0CWolKjzqbCdX2UKGgGaAloD0MICqLuAxC1ZECUhpRSlGgVTegDaBZHQJaqkY51eSl1fZQoaAZoCWgPQwhWtg95yzVMQJSGlFKUaBVL0GgWR0CWrah5gPVedX2UKGgGaAloD0MIBmfw94utX0CUhpRSlGgVTegDaBZHQJavWLl3hXN1fZQoaAZoCWgPQwgGMGXggO5jQJSGlFKUaBVN6ANoFkdAlrVUGA08/3V9lChoBmgJaA9DCLPttDUi3E5AlIaUUpRoFUu4aBZHQJa6VpEhJRR1fZQoaAZoCWgPQwioUUgyq9lHQJSGlFKUaBVLlmgWR0CWulfyPMjedX2UKGgGaAloD0MInSy13m9SZkCUhpRSlGgVTegDaBZHQJa66nXNC7d1fZQoaAZoCWgPQwgNwXEZt1NkQJSGlFKUaBVN6ANoFkdAlrxYtxuKoHV9lChoBmgJaA9DCHLhQEiWLmVAlIaUUpRoFU3oA2gWR0CWvhEUj9n9dX2UKGgGaAloD0MIKEUr94J0Y0CUhpRSlGgVTegDaBZHQJa/lJDmbLF1fZQoaAZoCWgPQwjYSBKEq6JiQJSGlFKUaBVN6ANoFkdAlsV9eIEbHnV9lChoBmgJaA9DCNf2dkty+EBAlIaUUpRoFUvMaBZHQJbGM2VE/jd1fZQoaAZoCWgPQwg9J71v/MViQJSGlFKUaBVN6ANoFkdAlsulqBVdX3V9lChoBmgJaA9DCN47akyIYWZAlIaUUpRoFU3oA2gWR0CW0IKdxyXEdX2UKGgGaAloD0MIcTs0LMZrY0CUhpRSlGgVTegDaBZHQJbRotWdVed1fZQoaAZoCWgPQwg0oN6MmopkQJSGlFKUaBVN6ANoFkdAltVQv+OwPnV9lChoBmgJaA9DCLPQzmmWmWNAlIaUUpRoFU3oA2gWR0CW1YuBtk4FdX2UKGgGaAloD0MIq+y7IvgnP0CUhpRSlGgVS8poFkdAlteg2Q4jr3V9lChoBmgJaA9DCAn84ee/YU9AlIaUUpRoFUujaBZHQJbZWJAMUh51fZQoaAZoCWgPQwgHCydp/tVSQJSGlFKUaBVLuWgWR0CW9RbS7Xg+dX2UKGgGaAloD0MI0jdpGpSZYkCUhpRSlGgVTegDaBZHQJb1Gf29L6F1fZQoaAZoCWgPQwjIsfUMYWNmQJSGlFKUaBVN6ANoFkdAlvxjNY8uBnV9lChoBmgJaA9DCNwr81bdmmBAlIaUUpRoFU3oA2gWR0CXBE8q4H5adX2UKGgGaAloD0MIUIvBw7QiUkCUhpRSlGgVS8RoFkdAlwde4wyqMnV9lChoBmgJaA9DCNXKhF/qGGpAlIaUUpRoFU3oA2gWR0CXCBMEA5q/dX2UKGgGaAloD0MIGAXB49vKZUCUhpRSlGgVTegDaBZHQJcLZtzjm0V1fZQoaAZoCWgPQwj4/DBC+GNnQJSGlFKUaBVN6ANoFkdAlwtnO4XoDHV9lChoBmgJaA9DCBrh7UEIsmRAlIaUUpRoFU3oA2gWR0CXDQattALRdX2UKGgGaAloD0MIMSb9vRSVZkCUhpRSlGgVTegDaBZHQJcOTlCCz1N1fZQoaAZoCWgPQwi6nui68HxgQJSGlFKUaBVN6ANoFkdAlw+JvHcUNHV9lChoBmgJaA9DCMAma9TDemRAlIaUUpRoFU3oA2gWR0CXFJ7Dl5nldX2UKGgGaAloD0MIAmcpWc5UY0CUhpRSlGgVTegDaBZHQJcVTzcynDR1fZQoaAZoCWgPQwh3EaYol54iQJSGlFKUaBVLzWgWR0CXGBzRx95RdX2UKGgGaAloD0MI+62dKIkvY0CUhpRSlGgVTegDaBZHQJcnx1/2Cd11fZQoaAZoCWgPQwjzAuyj0+pmQJSGlFKUaBVN6ANoFkdAlygwkgOjI3V9lChoBmgJaA9DCMhgxanWZGVAlIaUUpRoFU3oA2gWR0CXLJdPci4bdX2UKGgGaAloD0MI7idjfJh8ZkCUhpRSlGgVTegDaBZHQJcwPIBBAwB1fZQoaAZoCWgPQwhO8E3TZ7ZkQJSGlFKUaBVN6ANoFkdAlzRAtSQ5m3V9lChoBmgJaA9DCF1Q3zKnpGBAlIaUUpRoFU3oA2gWR0CXNEvHcUM5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}